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ABSTRACT

DNA shuffling is widely used for optimizing complex
properties contained within DNA and proteins.
Demonstrated here is the amplification of a gene
library by PCR using uridine triphosphate (dUTP) as
a fragmentation defining exchange nucleotide with
thymidine, together with the three other nucleotides.
The incorporated uracil bases were excised using
uracil-DNA-glycosylase and the DNA backbone sub-
sequently cleaved with piperidine. These end-point
reactions required no adjustments. Polyacrylamide
urea gels demonstrated adjustable fragmentation
size over a wide range. The oligonucleotide pool was
reassembled by internal primer extension to full
length with a proofreading polymerase to improve
yield over Taq. We present a computer program that
accurately predicts the fragmentation pattern and
yields all possible fragment sequences with their res-
pective likelihood of occurrence, taking the guess-
work out of the fragmentation. The technique has been
demonstrated by shuffling chloramphenicol acetyl-
transferase gene libraries. A 33% dUTP PCR resulted
in shuffled clones with an average parental fragment
size of 86 bases even without employment of a frag-
ment size separation, and revealed a low mutation
rate (0.1%). NExT DNA fragmentation is rational,
easily executed and reproducible, making it superior
to other techniques. Additionally, NExT could feasibly
be applied to several other nucleotide analogs.

INTRODUCTION

Since the first reports of hybrid gene synthesis (1), PCR-based
gene cross-overs (2) and PCR-based gene synthesis (3), were

published, the idea of directing evolution (4) initialized the
development of various methods for the shuffling of gene
libraries (5), which permit homologous recombination in
vitro. To date, however, all of these methods have not been
without disadvantage or difficulty. In the well-established
protocol of Stemmer, DNase is used to fragment DNA requir-
ing careful optimization of the digest conditions, e.g. time,
temperature, amount of nuclease and DNA (4,6). Other
methods such as the staggered extension process (7) and
random-priming (8) are limited by the DNA composition,
and matters are complicated further by the lack of controlla-
bility of the range of fragment sizes generated. Methods such
as RACHITT (9) also require DNase digests and are even more
labor intensive. The race for the best method is still on. Simple
comparisons (9) can be helpful but need to be taken with
caution since the gene length, the homology of the shuffled
gene libraries and the intended cross-over rate would have to be
taken into account. Besides the homlogy-dependent methods,
which are related to the presented data, homology-independent
methods have also been developed based on DNA fragment
fusion [e.g. thio-ITCHY (10) and SHIPREC (11)].

We have devised a new method that, we are confident, is
both rational and robust. Nucleotide Exchange and Excision
Technology (NExT) DNA shuffling is based on the random
incorporation of ‘exchange nucleotides’. The occurrence and
position of these exchange nucleotides in the DNA will dictate
the subsequent fragmentation pattern without the need
for further adjustment. We used highly homologous libraries
with a few members to be able to analyze our fragmentation
and shuffling results in detail. The key advantages of our
method are (i) calculable experimental setup aided by a
computer program, (ii) reproducible end-point reactions
without adjustments, (iii) no gel purification required, (iv) effi-
cient reassembly with a proofreading polymerase, (v) gene
recombination including very short fragments of only a few
bases, (vi) low error rate and (vii) practically no contamination
with unshuffled clones.
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METHODS

Cloning steps

Genes used in the NExT DNA shuffling procedures were the
657 bp chloramphenicol acetyl transferase I (CAT) wild-type
gene (CATwt, SwissProt: P00483, PDB: 1NOC:B) and vari-
ants coding for an N-terminally 10 amino acid truncated (the
Met start codon was added again), C-terminally 9 amino acid
truncated or double-truncated CAT (CAT_Nd10, CAT_Cd9,
CAT_Nd10_Cd9) or C-terminally 26 amino acid truncated
CAT (CAT_Cd26). For shuffling and error-prone PCR
genes were amplified using the primers Pr-N-shuffle (50-ATT-
TCTAGATAACGAGGGCAA-30) and Pr-C-shuffle (50-ACT-
TCACAGGTCAAGCTTTC-30) for the wild-type and
N-terminally truncated genes, Pr-N-shuffle and Pr-Cdx-
shuffle (50-CTTCACAGGTCAAGCTTATCA-30) for the
C-terminally truncated and for the double-truncated genes.
Priming sites were located shortly before and after the
gene adding in total 45 nt to the genes and contained the
restriction sites XbaI and HindIII for cloning into the vector
pLisc-SAFH11 (12) thus replacing part of the original plas-
mid. Plasmids were transformed by electroporation in
Escherichia coli strain RV308 (ATCC No. 31608) using stan-
dard methods (13). Mutated variants of the various clones were
obtained by error-prone PCR using 2.5 U Taq polymerase in a
50 ml reaction supplemented with vendor-supplied buffer
(Genaxxon, GeneCraft, Amersham) and with 7 mM MgCl2,
0.5 mM MnCl2, 0.4 mM each dNTP and 50 ng template. The
PCR protocol was as follows: 1 cycle of 94�C, 3 min; 30 cycles
of 92�C, 1 min; 60�C, 1 min; 72�C, 2 min; 1 cycle of 72�C,
7 min.

Uridine exchange PCR

The uridine versus thymidine exchange PCR mixture con-
tained 50 ng template (0.017 pmol of a 4340 bp plasmid),
25 pmol of each primer (see above), 0.2 mM of dATP,
dGTP and dCTP each, a 0.2 mM mixture of dUTP:dTTP
in various ratios, 5 U Taq DNA polymerase (GeneCraft,
Amersham, Genaxxon), and 5 ml 10· PCR buffer containing
160 mM (NH4)2SO4, 670 mM Tris–HCl, pH 8.8 (at 25�C),
15 mM MgCl2, 0.1% Tween-20 for the reactions shown in the
ethidium bromide stained gels and 5 ml 10· PCR buffer con-
taining 100 mM Tris–HCl, pH 9.0 (at 25�C), 500 mM NaCl,
15 mM MgCl2, 1% Triton X-100 for the reactions shown in the
autoradiographed gel. The volume was adjusted to 50 ml with
H2O. Before adding to the reaction, the 100 mM nucleotide
stock solutions (Peqlab, Germany) were diluted in water to
10 mM for dATP, dGTP and dCTP, and to 1 mM for dUTP
and dTTP. For radioactive experiments, 0.5 ml of a 3.3 mM
[32P]dCTP solution or 0.5 mCi, respectively, were added. The
cycler program was as follows: 1 cycle of 94�C, 1 min;
25 cycles of 92�C, 30 s; 62�C, 20 s; 72�C, 2 min; final incuba-
tion 72�C, 4 min. To obtain sufficient product, four 50 ml
reactions were combined, separated on a 1% agarose gel,
purified using one column of a PCR clean-up kit (Amersham
GFX Gel Band Purification Kit) and eluted with 50 ml of
10 mM Tris, pH 8.0. For radioactive experiments, the
clean-up kit was used without the gel step. The concentration
of the PCR product was determined by taking the baseline
corrected 260 nm value of an absorption spectrum from 220 to

350 nm of a 1:30 diluted 5 ml aliquot in a 140 ml microcuvette.
Product yield for 200 ml of PCR was 10–17 mg.

Enzymatic digest and chemical cleavage

About 15 mg in 45 ml (minimal 7 mg) of the purified PCR
product were supplemented with 6 ml supplied uracil-DNA-
glycosylase (UDG) 10· buffer and 2 U E.coli UDG (Peqlab,
Germany), adjusted to 60 ml with water and digested for 1 h at
37�C. The DNA was cleaved by adding piperidine (Sigma) to
a final concentration of 10% (v/v) and heated for 30 min at
90�C in a thermocycler with heated lid. Piperidine is toxic and
should be handled in a hood. Alternatively, piperidine was
replaced by a 5 M NaOH stock solution added at 10% (v/v)
to the cleavage reaction.

Fragment purification

Fragments were purified directly from the piperidine or NaOH
cleavage using the QiaexII kit (Qiagen) according to the manu-
facturer manual. The capture buffer included was added and
neutralized (�20 ml of 3 M Na-acetate, pH 5.3). After two
washing steps, fragments were extracted two times with 25 ml
of 10 mM Tris pH 8.0 and pooled. Two centrifugation steps
with transfer to a fresh tube ensured that oligonucleotides were
not contaminated with matrix. Note that Qiagen recommends
this kit for fragments longer than 40 bp. For the extraction of
fragments from polyacrylamide urea gels, the excised slices
were crushed and incubated either with 1 ml water or diffusion
buffer containing 0.5 M ammonium acetate, 10 mM magnes-
ium acetate, 1 mM EDTA, 0.1% SDS, pH 8.0 in a thermomixer
(Eppendorf ) at 37�C, 1000 r.p.m. overnight. The water extra-
cted oligonucleotides were precipitated by adding sodium
acetate, MgCl2 and 2-propanol. The diffusion-buffer-
extracted fragments were purified with the QiaexII kit as
described above. Initially, fragments were quantified by mix-
ing with SYBR Green II (Molecular Probes) and measuring
fluorescence emission intensity relative to a 60 bp oligonu-
cleotide calibration curve.

Denaturing polyacrylamide urea gel

Gels were composed of 6.7 M urea, 11.3% polyacrylamide/
bisacrylamide (37.5:1), 1· TBE, ammoniumperoxodisulfate
and TEMED (13). Gels (10 cm · 8 cm · 1 mm) were pre-
pared freshly, as older gels did not run properly, and elec-
trophoresed in a Hoefer mighty small basic unit (Amersham)
heated to 56�C with an attached temperature-controlled water
bath. Before loading, the cleaved DNA was concentrated to
7 ml in a speed-vac in order to evaporate the piperidine, sup-
plemented with 25 ml of deionized formamide and heated to
80�C for 3 min in a thermocycler; 9 ml of the sample were
loaded on the gel. For the radioactive experiments, 7 ml of the
DNA-formamide sample were additionally supplemented with
3 ml of 60% sucrose solution, which improved loading, and
7 ml H2O and then 15 ml were loaded. Oligonucleotides of
20, 38, 48, 58, 65 or 68 nt, as well as a 100 bp ladder
(New England Biolabs) with added bromophenol blue dye
served as visible length standard. For radioactive experiments,
the oligonucleotides were kinased with [g-32P]ATP and puri-
fied by size exclusion. After heating and a 10 min pre-run at
100 V, the gel was loaded and run at 170 V until the dye was 1–
2 cm from the bottom of the gel. The gel was stained in 30 ml,
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1.2 mg/ml ethidium bromide for 5 min. Note that with longer
incubation times the smaller fragments start to elude from the
gel (therefore SYBR Green II was not suited for staining) and
exposure to UV light bleaches the gels.

Gene reassembly and amplification

For the reassembly �2 mg of the purified DNA fragments
(typically 20 ml) were mixed with 4 ml of a mix of 10 mM
of each dATP, dTTP, dCTP and dGTP (800 mM final), 4 U
Vent DNA Polymerase (NEB) with 1–4 ml of 25 mM MgSO4

and 5 ml supplied 10· buffer. For the experiments with Taq,
1 or 4 ml of the dNTP mix were tested (without noticeable
differences in yield) and 5 U of the enzyme were used. The
volume was adjusted to 50 ml. In case of the Vent polymerase,
even <1 mg of DNA was sufficient. Cycles for the reassembly
were as follows (Eppendorf mastercycler): 1 cycle of 94�C,
3 min; 36 cycles of 92�C, 30 s; 30�C, 60 s + 1�C per cycle
(cooling ramp 1�C/s); 72�C, 1 min + 4 s per cycle; final
incubation at 72�C, 3 min. Ten microliters of the reassembly
product (this volume was chosen to ensure diversity) were
amplified using a standard PCR reaction (25 pmol primer,
0.2 mM dNTPs, 25 cycles, 40 s elongation time) with the
appropriate primers listed in cloning steps. Amplified genes
were cloned via the XbaI and HindIII restriction sites, and
plasmids prepared from E.coli grown on plates without selec-
tion pressure were named, e.g. pNd10_Cd9_control# and
equivalents. Clones were sequenced using the Big Dye ter-
mination kit 1.1 or 3.0 (Applied Biosystems) and analyzed in
an ABI Prism sequencer.

RESULTS AND DISCUSSION

Test-libraries

The NExT procedure was developed and tested by increasing
the functionality of truncated mutants of chloramphenicol
acetyl transferease I (CAT), which mediates resistance against
the antibiotic chloramphenicol. Directed evolution was inde-
pendently applied to four sets of variants truncated at the
genetic level. The first library of CAT mutants was shortened
by ten amino acids at the N-terminus (CAT_Nd10) while
maintaining the start methionine, the second library by
9 amino acids at the C-terminus (CAT_Cd9), the third library
by 26 amino acids at the C-terminus (CAT_Cd26), and the
fourth library was truncated at both ends by 10 and 9 amino
acids (CAT_Nd10_Cd9), respectively. Besides testing the
NExT method, these experiments were set up to elucidate
the structure–function relations of this thermostable enzyme.
We also wanted to test the applicability of our structure per-
turbation strategy (14) to improve the thermostability of
already thermostable enzymes. Detailed data for the NExT
shuffling were obtained using test ‘libraries’ with three to
six members selected from error-prone PCR diversification
steps (15) containing 14–49 mutations within the genes of
627 (CAT_Nd10, CAT_Cd9) to 579 (CAT_Cd26) bp in
length. The small number of library members with a manage-
able set of mutations ensured that almost all mutations found
in recombined clones could be unambiguously traced to par-
ental segments. The biochemical and biophysical character-
ization of improved CAT enzymes will be published

elsewhere (S.C. Stebel, manuscript in preparation). For exam-
ple, the melting temperature of the truncated CAT_Nd10 vari-
ant was increased by 24�C as detected by circular dichroism
measurements.

Preferred NExT implementation

In the following, we first demonstrate the NExT DNA shuf-
fling in the preferred protocol and later give data on variations
of this technique. Uridine was chosen as exchange nucleotide
because dUTP is known to be incorporated into the DNA
by various polymerases (16). A NExT shuffling procedure
was carried out according to the following protocol: first, a
PCR reaction with Taq polymerase amplified the gene pool
and additionally incorporated uridine. Various ratios of
dUTP:dTTP could be used to obtain the optimal fragmentation
(Figure 1a). No apparent difference in the amount of PCR
product was observed when using dUTP fractions of up to
50% within the dUTP and dTTP mixture. Only the PCR
sample containing uridine alone yielded about a quarter of
the product. Second, the PCR product was agarose gel-
purified to separate it from any non-uracil containing template.
Third, the exchange nucleotide was cleaved out by incubating
with uracil-DNA-glycosylase (UDG) (17). This enzyme
attacks double-stranded as well as single-stranded DNA
using a hydrolytic mechanism to remove the uracil moiety
by a nucleophilic attack at the C10 position (18). Fourth, piper-
idine was used to split the backbone positions where a uracil
had been cleaved out by UDG. Piperidine is a well-established
cleaving agent for chemical sequencing (19). As in our case,
the base moiety is already eliminated at this step we propose
that piperidine mainly promotes two base-catalyzed beta-elim-
inations of the phosphates. This is supported by our observa-
tion that replacing piperidine with NaOH resulted in an almost
identical fragment distribution (data not shown). The result of
such a cleavage reaction was analyzed with high resolution on
denaturing polyacrylamide urea gels for dUTP fractions rang-
ing from 100 to 0% (Figure 1b) and quantified by image
analysis (Figure 2a). Several length distributions with defined
maxima were easily obtained including pools of very small
and large fragments, which is optimal for shuffling short genes
or long gene clusters, respectively. Such initial tests deter-
mined the optimal dUTP fraction for the given gene. Once
established, the chosen dUTP fraction of 33.3% for the
test libraries was found to be highly reproducible. The gel
analysis step was no longer required and omitted for
subsequent experiments.

Resulting fragments were cleaned simply and quickly direct
from the cleavage reaction solution using a silica-based resin.
The full-length gene was reassembled from the fragments in
an internal primer extension procedure with increasing anneal-
ing temperatures using a proofreading DNA polymerase such
as Vent (Figure 1c). In an internal primer extension, also
named ‘recursive’ PCR (3), the fragments serve each other
as primers and thus get longer with each cycle of the PCR
reaction, until full-length products are achieved. As a final
step, products of the assembly reaction were amplified with
a standard PCR reaction, cloned and sequenced. While estab-
lishing the method, the assembly reaction was monitored by
agarose gel electrophoresis (Figure 1c). The assembly process
was stopped after a serial increase in the number of PCR cycles

PAGE 3 OF 9 Nucleic Acids Research, 2005, Vol. 33, No. 13 e117



and products obtained at theses points were subjected to the
amplification PCR. Despite the harsh chemical cleavage
conditions with piperidine or NaOH, the assembly worked
very efficiently, and the use of a proofreading polymerase

further improved the yield. In particular, the gel purification
step for a defined fragment size range was omitted and yet no
full-length product could be amplified without several cycles
of the reassembly process demonstrating a very efficient
fragmentation.

Evaluation of NExT shuffling

The NExT DNA shuffling procedure described so far has been
applied to the directed evolution of a 600 bp long CAT gene
truncated at both ends (CAT_Nd10_Cd9). In the course of
these experiments, a defined library of six clones with different
mutation patterns between nucleotides 12 and 383 was shuf-
fled based on a 33.3% uridine exchange PCR. Eight shuffled
clones taken from control plates without selection pressure
were sequenced (Figure 2b). The unique mutation pattern
of these clones showed that all clones tested were derived
from at least two (e.g. clone 1) to four (e.g. clone 4) parental
clones. Within the 372 bp stretch amenable to analysis, this
resulted in one cross-over per 93 to 186 bp with a mean frag-
ment length of 114 bp. Sequencing also determined the error
level of this procedure. Within 4425 bases sequenced, four
alterations were found (one A to G and one T to C transition, a
1 bp insertion and a 1 bp deletion) giving a mutation rate of
0.09%. This is remarkably lower than an error rate of 0.7%
reported previously for DNase shuffling (6). As detailed
below, this is not a unique feature of using Vent polymerase.
As our fragment distribution and cross-over rate were com-
parable to previous experiments, we are inclined to attribute
the previously reported error rates more to the DNase digest
and to the UV damage due to gel visualization rather than
the fragment size and the polymerase. A low mutation rate is
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Figure 1. Analysis of the NExT DNA shuffling technology. (a) 1% agarose gel
showing the uracil-PCR products of CAT_Nd10 clones obtained with different
amounts of uridine in the reactions. For the PCR program, an extended elonga-
tion time of 2 min was chosen based on a test series showing that the yield was
significantly improved compared to shorter times (data not shown). %U was
calculated by c(dUTP)/[c(dUTP) + c(dTTP)] · 100. (b) Polyacrylamide urea
gel stained with ethidium bromide showing UDG/piperidine digests of
CAT_Nd10 PCR products obtained with various dUTP:dTTP ratios (1:0,
0:1, 1:1, 1:2, 1:3, 1:4, 1:5) to determine an optimal ratio. Digests between 1
and 3 h yielded equivalent results, indicating a selective and consistent
reaction. From left to right: lane 1, oligonucleotides with 58, 48 and 36 bases
as size marker; lane 2, 100% dUTP PCR digested; lane 3, 0% dUTP digested;
lane 4, 0% dUTP undigested; lane 5, 50% dUTP digested; lane 6, 33.3% dUTP
digested; lane 7, 25% dUTP digested; lane 8, 20% dUTP digested; lane 9, 16.7%
dUTP digested; lane 10, 100 bp DNA ladder. Note that residual amounts of
piperidine contribute to slightly distorted lanes. (c) 1% agarose gel of
CAT_Nd10_Cd9 gene fragment libraries from DNA containing 33.3% U show-
ing the reassembly process with Vent DNA polymerase and the amplification of
reassembled genes with Taq polymerase. Lane 1, fragments without reassembly
PCR; lane 2, fragments after 16 cycles of reassembly; lane 3, fragments after 26
cycles of reassembly; lane 4, fragments after 36 cycles of reassembly; lane 5,
100 bp DNA ladder; lane 6, amplification PCR of fragments without reassem-
bly; lane 7, amplification PCR of fragments subjected to 16 reassembly cycles;
lane 8, amplification PCR of fragments subjected to 26 reassembly cycles; lane
9, amplification PCR of fragments subjected to 36 reassembly cycles.
(d) Polyacrylamide urea gel with UDG/T4 endonuclease V digests of CAT
wild-type PCR products containing various dUTP:dTTP ratios to analyze
enzymatic fragmentation. Lanes 1–3, oligonucleotides with 68, 48 and 36 bases;
lanes 4–10, digests of PCR products obtained with 100%, 0%, 50%, 33.3%,
25%, 20% and 16.7% dUTP; lanes 11–12, PCR products without digest ob-
tained with 100% and 0% dUTP; lane 13, pBR322/HpaII DNA marker. Note
that the migration behavior of DNA without uracil incorporation is influenced
by the digestion with UDG/piperidine or UDG/T4 endonuclease V. A small
fraction of the cleavage might be attributed to this treatment.
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particularly important when shuffling of longer DNAs is
envisioned as this will avoid dilution of the gene pool with
dysfunctional or undesired molecules. Using a proofreading
polymerase for the amplification of the gene assembly could
further lower the error rate. In another experiment, four par-
ental truncated CAT genes (CAT_Cd26) containing a total of
49 mutations spread from bases at position 9–575 were shuf-
fled and five clones sequenced. A detectable mean fragment

length of 86 bases was found, including fragments down to
only 8 bases (Figure 2c). The mean fragment length in this
experiment is smaller than in the previous one, as more muta-
tions result in a better detection of the fragment length. The
short fragments can be explained by the possibility
that the QiaexII kit used purified significant amounts of
short fragments or, more likely, by efficient priming with
frequent strand switching for each PCR cycle. In general,
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Figure 2. Quantification of fragmentation size range and analysis of shuffling results. (a) Lane density plot of lane 1 and lanes 5–10 of Figure 1b detailing the
fragment sizes based on the fraction of dUTP used. For the shuffling of all CAT variants, a uracil-PCR containing 33.3% dUTP was used producing fragments ranging
from about 30 to 200 bases in length (thick red line). The image was acquired with a FluorS Multiimager and the plot generated using the Quantity One software
(Bio-Rad). For clarity of the plot, the signal of the 100 bp ladder was shifted by �750 counts and the signal of the oligonucleotides by �500 counts. (b) Sequencing
results of a NExT DNA shuffling experiment with a CAT_Nd10_Cd9 gene mutant library with quick clean-up of fragments and reassembly using a proofreading
polymerase. About 500–571 bases per clone were sequenced. The test shuffling was prepared with a 33.3% uracil–PCR containing 26 ng (52%) truncated CAT
wild-type fragments and 4.8 ng (9.6%) fragments of each mutant. The bottom panel lists the sequences of clones obtained without selection pressure focusing on the
shuffled mutations, the minimal number of parental clones as can be deduced from the mutation patterns and the frequency of additionally introduced mutations not
listed in the table. On average, the 372 bp segment analyzed is composed of 3.25 parental clones. Owing to the excess of wild-type, which was added for backcrossing,
the real number of parental clones is likely to be higher than the minimal value listed. (c) Schematic representation of a clone obtained from a NExT DNA shuffling
experiment with four equally mixed parental clones of CAT_Cd26 with up to 49 mutations between bases 9 and 575. The composition assuming a minimal number
of parental clones is shown by boxes shaded according to originating parent clone. The length of the fragment is given in the box. Cross-over positions were calculated
as midpoints between two parent defining mutations. In this experiment, four clones were sequenced and an overall mean fragment length of 86 bases was detected.
The clone shown displays a mean fragment length of 57 bases.
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gene assembly is a complex process mainly but not only
determined by fragment length.

A complete directed evolution series based on error-prone
PCR and NExT DNA shuffling was applied to improve the
enzymatic activity of truncated CAT_Nd10, which grew on
plates up to only 25 mg/ml chloramphenicol in the presence
of 1 mM isopropyl-b-D-thiogalactopyranoside (IPTG), and
CAT_Cd9, which failed to grow at all. After optimization,
several clones of both libraries grew even at 400 mg/ml
chloramphenicol/IPTG (higher concentrations were not
tested), demonstrating the efficacy of this technique. In addi-
tion, the preferred method was applied to TEM-1 b-lactamase
using a dUTP fraction of 30%. The fragmentation and assem-
bly worked in the first experiment only ensuring sufficient
material to start with but without any prior or intermediate
tests or analysis steps (data not shown).

A computer program to predict NExT fragmentation

Since the dUTP incorporation and the resulting fragmenta-
tion are based on deducible principles, a computer program
was developed and named NExTProg (20) (http://
www.molbiotech.uni-freiburg.de/next, http://www.ATG-
biosynthetics.com). This permits the prediction of the NExT
fragmentation pattern of double-stranded DNA allowing the
researcher to tailor the dUTP:dTTP ratio without the need
for experiments. The program was designed to read a DNA
sequence file and dUTP:dTTP values, and calculate all pos-
sible fragments, their likelihood of occurrence and relative
distribution. The complementary strand for a given DNA is
automatically generated and taken into account. The program
displays the result in a bar chart and allows the export of all
calculated data as tabulated lists for further use (Figure 3a).
When upper and lower ranges for the fragment size are set
(e.g. due to gel purification), the program calculates the poten-
tial loss of material and adjusts the relative likelihood of the
individual fragments.

The underlying mathematics is as follows: let the probabil-
ity that a thymidine in a given DNA sequence is replaced by
uridine be ‘p’. A fragment between two given thymidines
is generated if both are replaced by uridine, which equals
the probability p · p. However, this fragments can only
exist if all n-number thymidines between the two uridines
are not replaced resulting in the overall probability of
p · p · (1 � p)n. For fragments including one or both ends
of the DNA, one or both p of the p · p probability are set to 1.
Note that the sum for all possible patterns of the uridine
incorporation in the gene is 1, but the sum of the probabilities
for the fragments is larger as each pattern results in several
fragments. Thus, for comparing fragmentation results, we nor-
malized the fragment probabilities by dividing through the
sum of all values. Our calculation approach is distinguished
from previous calculations (21), as we take into account the
fact that both ends of a fragment need to be generated and
we do not face the problems of partial sequence preferences
and uncertain digest conditions, which severely hamper the
calculation of DNase digests.

For a gene with x number of thymidines, there are
Pxþ1

i¼1 i
possible fragments [which is according to Gauß n · (n + 1)/2
for even n values with n ¼ x + 1]. Thus, for a typical 1000 bp
gene with, for example, 251 thymidines and 241 adenines

that are calculated as thymidines in the opposite strand,
the program calculates and generates in a few seconds
31 878 + 29 403 ¼ 61 281 fragments with their probabilities
and individual sequences. This formula gives the theoretical
maximal number as also fragments of zero length (i.e. two
neighboring Ts) are calculated, which are not taken into
account by the software. As most users are probably interested
in an overview, the program pools all fragments of the same
length, sums up their probabilities and gives the distribution as
percentage of the sum of all probabilities versus the length
(shown as %mol). To reflect the visualization on electrophor-
eses gels, the ‘mass’ distribution is calculated by multiplying
the probability of a certain fragment length with its length
(shown as %mass). These values are normalized and represent
the percent bases, which we termed ‘mass’ as defined by
length in base pairs. For the fragment sequence, output frag-
ments of identical sequence are listed only once with their
summed probabilities, and all fragments are sorted by decreas-
ing likelihood of occurrence.

Determination of the incorporation rate of
dUTP versus dTTP

Before one can compare the measured and calculated
values, there is one important point to consider: the incorp-
oration rate of uridine versus thymidine by the polymerase
in the exchange PCR. This value might not only depend on
the ratio of dUTP:dTTP but also on the type of polymerase
used, the absolute concentration of nucleotides and the buffer.
Thus, this value needs to be set when using the program.

To provide a default value for the uridine incorporation rate,
a quantitative analysis of a fragmentation experiment with
widely used conditions [standard Taq polymerase (22),
0.2 mM dNTPs] were performed. DNA was radioactively
labeled with [32P]dCTP in the uridine incorporating PCR.
Denaturing polyacrylamide gels were run as described and
autoradiographed, thus avoiding signal distortions due to inef-
ficient staining of short fragments (Figure 3b). The calculation
of ‘%mass’ already implies that longer oligonucleotides con-
tain more radioactive [32P]dCTP per molecule. The relative
migration for the fragment smear and the radioactively labeled
markers were taken from line density plots. The relative dis-
tance of the markers were fitted with the equation relative
distance ¼ a · ln(length in bp) + b with the variables a
and b, and the relative distance of the fragment smear
converted to nucleotide length using the reverse equation.
This resulted in an intensity signal versus a continuous length
distribution, which was made discrete to integer numbers by
combining rounded nucleotide length values and by averag-
ing the respective intensity values. This distribution was then
normalized by dividing each intensity value through the sum
of all values and is shown in percent in Figure 3c.

This experiment was compared with program calculations
to determine the relative uridine versus thymidine incorpora-
tion value. For the calculations, incorporation values from
0.2. to 0.3 in 0.01 increments were used. Setting a value of
0.26 resulted in the best agreement of measurement
and prediction based on a mean root square analysis of the
fragment size range between 10 and 150 bases where the
length calculation is probably reliable and also between
4 and 200 bases (Figure 3c). In case of using the range between
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the markers (20 and 100 bases), a factor of 0.25 scored margin-
ally better. It is remarkable how well these plots overlay and
peaks and dips within the fragment smear (indicated by arrows
in Figure 3b and c) can be explained. Importantly, the scaling
of the y-axis falls into place without further adjustment. We are
very confident that the uridine incorporation rate has been
determined and not a factor accounting for incomplete frag-
mentation, because of the near-perfect agreement of calcula-
tion and experiment under many experimental conditions
tested for fragmentation. Measurements of the radioactive
33.3% uridine fragmentation and calculations agreed equally
well. The radioactive 25% dUTP fragmentation produced sig-
nificant amounts of fragments above the 100 nt marker, and
thus showed some deviations due to scaling problems, since

fragment size determination was less accurate in the upper
part of the gel. However, using the same incorporation rate
value of 0.26 and comparing the results with the ethidium-
bromide-stained fragmentation results, which were more
accurate for longer fragments due to the available markers,
demonstrated a good agreement (Figure 3d) considering the
length dependency of the gel staining. Note that the
different buffers used for the PCR had no significant effect.

Variation of NExT shuffling—endonuclease V versus
piperidine

Our preferred form of the NExT DNA shuffling method
emerged from several tests and experiments. In the following
section, variations of the method are described.
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Figure 3. Comparison of calculated NExT fragmentations with radioactively labeled and ethidium bromide stained fragmentation experiments. (a) Graphical front
end of NExTProg 1.0 (20). This program reads DNA sequences and calculates all possible fragments. The program exports lists of fragment length versus normalized
fraction of molecules or mass as defined by number of nucleotides, respectively. The sequences of all fragments can be generated, whereby identical sequences are
combined, and exported for subsequent assembly calculations. (b) Denaturing PAGE of radioactively labeled DNA samples. From left to right: lanes 1–3, marker
oligonucleotides kinased with [32P]ATP; lanes 4–6, fragments of a gene (CAT_Cd26, 624 Bp) based on the indicated amount of uridine and [32P]CTP in the exchange
PCR (each lane contained 0.3 mCi). The gel was autoradiographed with a phosphor screen (Kodak) and read with a phosphoimager (Biorad Fx). Note the
inhomogeneities in the lower third of the lanes which correspond to sequence-specific peaks in the fragmentation. (c) Measured and calculated fragment distributions
used to determine the incorporation rate of uridine versus thymidine in the exchange PCR. The orange line represents a line density plot of the radioactive 50% U lane
in panel b, which was converted from relative migration distance to nucleotide length based on the marker nucleotides, set to integer numbers by averaging the
respective values and normalized. The black line represents the calculation of NExTProg for the fragment ‘mass’ distribution for the same gene with 50% uridine and
an incorporation rate of 0.26, which provided the lowest root mean square deviation. (d) The orange line is the line density plot of a 20% U reaction (Figures 1b and
2a) stained with ethidium bromide, which was converted to fragment length and normalized. The black line is the calculation of NExTProg with 20% uridine and an
incorporation rate of 0.26. Note that the staining of short single-stranded oligonucleotides with ethidium bromide is inefficient and consequently longer fragments are
overrepresented in the normalized plot.
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As an alternative to piperidine, other endonucleases
such as endonuclease IV (23), exonuclease III (24) or
T4-endonuclease V (25) could be used to cleave the DNA
backbone (17). We tested the latter but discontinued its use
even before data were published by Miyazaki (26). Even in
combination with UDG, fragmentation was not as efficient
as with piperidine. This is demonstrated by, for example,
the cleavage of the 50% U PCR product by piperidine in
Figure 1b, which has its center of mass within the 38–58 nt
marker range, in comparison with the analogous endonuclease
V cleavage in Figure 1d, which has its center of mass above the
68 nt marker. Even more problematic was the high error rate
inherent to this procedure. Applying an UDG and T4 endonu-
clease V fragmentation with gel extraction, and a reassembly
to a CAT wild-type gene and sequencing six clones with a total
of 3930 bases gave a mutation rate of 1.75%. We propose two
reasons for this finding. First, the DNA backbone is cleaved
by the T4 endonuclease V with its lyase activity, which cat-
alyzes a b-elimination reaction leaving a 30 unsaturated alde-
hyde (4-hydroxy-2-pentenal) attached at the phosphate group
(17,27). The further chemical reaction leading to the free
phosphate group is unlikely to be complete and such generated
fragments are an unfavorable starting point for a polymerase.
Second, the size distribution of fragments hints an incom-
plete backbone cleavage at sites with a cleaved uracil, so
that gapped templates could lead to erroneous nucleotide
incorporation. Further experiments could solve these prob-
lems, but were not carried out as the piperidine cleavage
worked well and was much more cost-effective.

Variation of NExT shuffling—Taq versus Vent

One important variation of the NExT DNA shuffling tested
was the use of the proofreading polymerase Vent instead of
Taq for the fragment reassembly procedure. Taq has been the
enzyme of choice for most published fragment reassembly
procedures. The use of a proofreading polymerase has been
reported (28) for the main purpose to reduce the error rate.
However, as shown below the polymerase was not the main
factor determining the error rate.

The 30!50 proofreading exonuclease activity of Vent DNA
polymerase relies on removal of mismatched nucleotides only
from the 30 terminus of the priming strand, until polymeriza-
tion can be initiated from an annealed end. Thus, point
mutations in nucleotides even in close proximity to the 30

end will pose no problem (29). For comparison, two reassem-
bly procedures were run in parallel with the same fragment
pool using either Taq or Vent, respectively. Subsequent amp-
lification PCR reactions with Taq resulted in one band each in
an agarose gel. Quantification by image analysis revealed a
35 times higher yield for the procedure with Vent. Interest-
ingly, sequencing of 6988 bases of the Taq-based procedure
revealed only five additional mutations (0.075%). Thus, within
the statistical limitations based on available sequences, Taq
and Vent provided the same low error rate for DNA reassem-
bly. The low error rate for Taq is in agreement with other
reports (30). The significantly improved yield can be explained
by several traits of proofreading polymerases such as Vent.
The strand displacement activity might help in the presence of
many hybridization reactions, and a half-life of �8 h at 95�C
compared with 1.6 h half-life of Taq DNA polymerase ensures

fitness during the long reassembly reaction (31). Another
difficulty is that Taq adds additional dATPs to the 30 hydroxyl
terminus (32), a possible hindrance in the reassembly reaction.
Hence, the benefits of Taq are limited to templates difficult to
amplify with proofreading polymerases.

Variation of NExT shuffling—gel purification versus
quick clean-up

As a further variation of the fragmentation and assembly
procedure, it was tested to what extent a high resolution
urea gel purification of the fragments compares to the quick
clean-up with a one-step silica matrix. Gel purification to
ensure that no undesired long fragments get involved in the
reassembly reaction could aid the cross-over frequency. For
the fragment extraction from urea gels either water or a dif-
fusion buffer were used. In both cases, fragments remained in
the gel as seen by staining of previously extracted gel material.
To elucidate the cross-over rate with gel extraction, a shuffling
experiment with three parental clones (CAT_Nd10 mutants)
was set up. Two of the clones contained one and one clone
contained two distinct mutations within a stretch of 100 bp.
Sequencing of eight shuffled clones revealed that six clones
had one cross-over within the 100 bp stretch. A total of 3851
bases were sequenced and 12 errors were found equaling a
mutation rate of 0.31%. Thus, the cross-over rate was in the
range of the shuffling procedure using the quick clean-up.
The error rate is significantly higher which might be explained
by UV damage due to visualization even on the weak 366 nm
light source used and/or chemical modifications due to the
gel. For the preferred NExT DNA shuffling method, we
omitted the gel purification step, because of the additional
work without significant benefit, loss of material and the
higher error rate.

Variation of NExT shuffling—dUTP and alternative
analogs

This study focused solely upon uracil as exchange nucleotide,
however the technique could equally be applied to the
incorporation of several other analogs. One such example,
8-oxo-guanine, can be cleaved out by 8-oxoguanine DNA
gylcosylase (formamidopyrimidine-DNA glycosylase, Fpg)
(33). This base could prove useful in AT-rich regions where
DNA cleavage by UDG is too frequent or in GC-rich genes
where thymidines are seldom found. Alternatively, a combina-
tion of several exchange nucleotides together could generate
fragments of the desired range. In our case, the use of addi-
tional analogs was not necessary. Furthermore, nucleotides
other than dUTP are significantly more costly. Nonetheless,
our software is easily adapted to other nucleotides.

If required, incorporation of exchange nucleotides into the
primers of the incorporating PCR should ensure that these
regions of the gene library could also be shuffled in both
strands.

NExT is based on rational and predefined dUTP:dTTP ratios
and is well suited for the shuffling of short genes and large
gene assemblies. Owing to the robustness and simplicity of
NExT shuffling, even those with little prior experience in this
area should be able to apply this technique.
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