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ABSTRACT

Identification of differentially expressed subnet-
works from protein–protein interaction (PPI)
networks has become increasingly important to
our global understanding of the molecular mechan-
isms that drive cancer. Several methods have been
proposed for PPI subnetwork identification, but the
dependency among network member genes is not
explicitly considered, leaving many important hub
genes largely unidentified. We present a new
method, based on a bagging Markov random field
(BMRF) framework, to improve subnetwork identifi-
cation for mechanistic studies of breast cancer. The
method follows a maximum a posteriori principle to
form a novel network score that explicitly considers
pairwise gene interactions in PPI networks, and it
searches for subnetworks with maximal network
scores. To improve their robustness across data
sets, a bagging scheme based on bootstrapping
samples is implemented to statistically select high
confidence subnetworks. We first compared the
BMRF-based method with existing methods on
simulation data to demonstrate its improved
performance. We then applied our method to
breast cancer data to identify PPI subnetworks
associated with breast cancer progression and/or
tamoxifen resistance. The experimental results
show that not only an improved prediction perform-
ance can be achieved by the BMRF approach when
tested on independent data sets, but biologically
meaningful subnetworks can also be revealed that
are relevant to breast cancer and tamoxifen
resistance.

INTRODUCTION

Biological systems consist of different multi-functional
elements or modules that interact selectively, and often
nonlinearly, to coordinately regulate complex behaviours
(1). Multiple data sources can reveal different aspects and
levels of biological system function. Traditional computa-
tional or statistical approaches (2–5), mainly focusing on
one type of data source, cannot provide a ‘systems view’
or a ‘global picture’ of a complex biological system, such
as cancer (1,6). To achieve a greater understanding of the
main features of complex biological processes or systems
requires the effective integration of diverse sets of data
and knowledge. Many methods have been developed to
integrate different types of biological data, including
combining protein–DNA interaction and gene expression
data for regulatory network identification (7,8) or gene set
enrichment analysis for differentially expressed pathway
identification (9–11). Integrating protein–protein inter-
action (PPI) data with gene expression data has also
been attempted for active PPI network identification
(12–14). The availability of high-dimensional microarray
gene expression data and PPI data should support the
identification of biologically meaningful and ‘cancer
driver’-related networks for cancer studies (15).
Protein–DNA interaction, PPI and/or molecular

pathway data are rich in information about biological
processes captured at different levels of system function.
Some methods have been developed to identify significant
gene sets or pathways involved in diseases or biological
processes by incorporating prior biological knowledge to
help understand underlying biological mechanisms.
For example, gene set enrichment analysis or pathway en-
richment analysis approaches (9–11) were proposed by
using ‘known’ membership information in functional
gene clusters or pathways. Prior knowledge can also
contain network structure information, such that PPIs,
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protein–DNA interactions or other knowledge from
canonical signalling pathways can be conveniently repre-
sented as the edges in graphs. Based on the structure of a
PPI network, identification of active subnetworks is
becoming increasingly important in systems biology, as
it can reveal the underlying mechanisms governing the
observed changes in gene expression (12). As such, bio-
markers have been extended from traditional individual
genes to a network of gene markers that reveal more bio-
logically relevant information, often by incorporating PPI
network or pathway information.
From PPI network data, several methods have been

proposed to search for subnetworks with significant
changes in gene expression under different conditions
(12–14,16). For example, Chuang et al. (12) proposed a
PPI network-based approach to identify biomarkers of
metastasis in conjunction with breast cancer gene expres-
sion profiles. In this approach, biomarkers are not indi-
vidual genes or proteins, but rather subnetworks of
interacting proteins within a large human PPI network.
Subnetworks identified by these methods not only
suggest possible models of the molecular mechanisms
underlying metastasis but they can also reveal key
network hubs that are usually not detectable by examining
only their differential expression. Ideker et al. (14) first
converted the significance value (P-value) into a Z-score
(measuring the change in gene expression between two
phenotypes), and then aggregated the Z-scores of genes
in a subnetwork to a network score for overall evaluation.
A search algorithm was then implemented to find subnet-
works with maximum network scores. Dittrich et al. (13)
further revised Ideker’s method by proposing a scoring
function based on a mixture model for signal-noise de-
composition and a search algorithm based on integer
linear programming techniques.
These methods have achieved some success in identify-

ing biologically relevant subnetworks, but with noticeable
limitations. The foremost limitation is that genes in a PPI
network are treated independently when the network score
is calculated; dependency among the genes in a subnet-
work is ignored during the network analysis. However,
genes in a local subnetwork have functional relevance;
therefore, they should form a significant subnetwork
even though not all of them have significantly different
gene expression values. Another limitation is that many
hub genes, which are biologically important and have
many interactions in a PPI network, often show little
change in expression compared with their downstream
genes. By selecting downstream genes rather than hub
genes, the resulting subnetwork may not reveal the key
upstream regulatory components of the system. Finally,
because of the heterogeneity in tissue samples and the
inherent noise in microarray data (17), reproducibility of
currently identified subnetworks is often low when tested
on independent data sets (18,19).
We propose a novel subnetwork identification method

for network analysis of microarray data with two different
phenotypes. Specifically, we present a bagging Markov
random field (BMRF)-based method for subnetwork iden-
tification. The BMRF approach is built on a framework of
Markov random field modelling and maximum a

posteriori estimation (MRF–MAP) to integrate gene
expression and PPI data. Note that an MRF model has
been applied for network-based analysis to predict protein
function using PPI data and has achieved some degree of
success (20,21). This success was largely attributed to its
flexibility to represent different types of dependency in a
network. A modified simulated annealing search algo-
rithm is further implemented to avoid local maxima and
reduce computational cost. Finally, an aggregation
scheme, called bagging (22,23), is developed to help
identify confident subnetworks from bootstrap versions
of resampled data. Note that a previous study has
applied the bagging scheme to a Bayesian approach to
infer gene regulatory networks and has achieved an
improved performance over other methods (23).
Simulation experiments demonstrate the effectiveness of
the proposed method. Comparing results against several
benchmark methods show that our method consistently
outperforms these other tools in identifying subnetworks
and hub genes. For subnetwork identification in the
clinical setting, we then apply our method to breast
cancer data sets acquired before any drug therapy from
two different conditions as follows: ‘untreated’ (patients
received no systemic drug therapy) and ‘tamoxifen-
treated’ (patients treated only with the anti-oestrogen tam-
oxifen after surgical removal of their primary breast
tumours). Clinical outcome was used to define the
output classes for prediction: ‘early recurrence’ (breast
cancer subsequently recurred within certain years) and
‘late recurrence’ (breast cancer did not return during the
follow-up period within certain years). The results show
that our method can improve prediction performance with
high reproducibility across different data sets and identify
several important subnetworks associated with the devel-
opment of ER+breast cancer and/or tamoxifen resistance.

MATERIALS AND METHODS

We present a new algorithm to identify subnetworks from
gene expression and PPI network data based on an MRF–
MAP framework. The underlying assumption in our
model is that the significance score of one gene in a sub-
network depends not only on its own gene expression
profile but also on the profiles of its neighbours in the
PPI network. Figure 1 shows the framework of our
BMRF-based subnetwork identification method, which
takes a PPI network and gene expression profiles as
input, searches for subnetworks with large MRF-based
network scores and outputs confident subnetworks after
confidence assessment.

Unlike the average activity score in (12), which is the
mutual information between average Z-scores of gene
expression and class labels, we use an MRF-based frame-
work to derive a new network score for subnetwork iden-
tification, taking into account the dependency among the
genes in a subnetwork. The goal of subnetwork identifica-
tion is to find a connected subnetwork or clique that maxi-
mizes the likelihood of posterior probability of the
underlying discriminative scores, given the observed dis-
criminative scores of a subnetwork. This goal can be
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achieved by maximizing a network score of the subnet-
work as described below. A search algorithm based on
simulated annealing is then implemented to identify the
subnetwork for each candidate ‘seed’ gene using PPI
network and gene expression data, to reduce the local
maxima problem that is almost inevitable with the
greedy algorithm adopted in (12). Finally, a bagging pro-
cedure is performed to generate confident subnetworks
that are evaluated using permutation test.

Network score of a subnetwork

We first define a multivariable random vector
f¼ f1, � � � , fm½ �

T, whose component, fi, i ¼ 1, � � � , m, rep-
resents the discriminative score of ith gene (protein)
between two phenotypes, such as ‘early recurrence’ and
‘late recurrence’. In the context of a PPI network, S rep-
resents a gene set of m genes in a network, and Ni repre-
sents the connected neighbours of gene i (a subset within
S). We define a 1-vertex clique C1 as the set of S and
a 2-vertex clique C2 on Ni and S as follows:
C2 ¼ i, i0f gji02Ni, i2Sf g. The random variable vector f
forms a Markov random field on S with respect to Ni

and subject to the following conditions:

P fð Þ > 0,8f2F

P fijfs� if g

� �
¼ P fijfNi

� � ð1Þ

The second criterion is the Markov property of a
random field, where the probability of a certain configur-
ation at gene i is statistically independent of the

configurations of all other genes (j2S) given the configur-
ation of Ni.
Specifying the joint probability P(f) for a Markov

random field is generally intractable. However, the equiva-
lence between MRF and Gibbs distributions (24) provides
an alternative means to specify P(f) using Gibbs distribu-
tion. The possible configuration f of a set of random
variable vector F obeys a Gibbs distribution if the joint
distribution takes the following form:

P fð Þ ¼
1

W
� e�

1
TUðfÞ ð2Þ

where W is a normalizing constant given by
W ¼

P
f2F e

�1
TUðfÞ, and U(f) is given by

U fð Þ ¼
P

c2C Vc fð Þ, C ¼ C1 [ C2. Note that C is the
union set of 1-vertex clique C1 and 2-vertex clique C2.
U(f) is the prior energy that is determined by a sum of
clique potentials Vc(f) over all cliques. Vc(f) represents the
potential on clique c, and the value of Vc(f) depends on the
local configuration on the clique c; for the mathematical
definition of Vc(f), please refer to Equation (3), which will
be defined later. Clique potentials allow the modelling of
knowledge (a priori) about the contextual interactions
between genes at neighbouring sites. For simplicity, we
usually assign zero potential to all cliques of size >2.
The energy U(f) corresponds to the probability of that
configuration. From Equation (2), we can see that lower
energies correspond to more likely configurations. The
parameter T, often referred to as ‘temperature’, controls
the sharpness of the distribution. Calculation of the par-
tition function W is a formidable task, even for relatively
small problems. However, it is unnecessary to calculate
W in our maximum a posterior (MAP) framework
because it is a normalization constant.
Denote the observed discriminative scores of genes

between two phenotypes as Z ¼ Z1, � � � , Zmf g. Here, we
define Zi as the Z-score of its corresponding P-value Pi

using Zi ¼ ��1 1� Pið Þ where ��1 is the inverse normal
cumulative density function (14). P-value can be obtained
by statistical methods for hypothesis testing, and in this
article, we use student’s t-test to calculate P-value for each
gene between two conditions. We assume that the
observed discriminative score is a result of the addition
of independent zero mean Gaussian noise to the
underlying discriminative score; Z ¼ f+e, e�N 0,1ð Þ. One
possible estimate of the underlying discriminative score f is
the MAP estimate f̂ that maximizes the likelihood of pos-
terior probability logP fjZð Þð Þ. Considering Bayes’ rules
and a Gibbs distribution, the MAP estimate f̂ minimizes
the following posterior potential function:
f̂ ¼ argf min U fð Þ+U Zjfð Þð Þ. The first term in the posterior
potential function is the prior potential given by (25,26):

U fð Þ ¼
X
i2S

V1 fið Þ+
X
i2S

X
i02Ni

V2 fi, fi0ð Þ ¼
�1

m

X
i2S

fi

+
�

k

X
i,i0ð Þ2E

fiffiffiffiffi
di
p �

fi0ffiffiffiffiffi
di0
p

� �2

;

ð3Þ

Figure 1. Framework of BMRF-based subnetwork identification from
microarray gene expression profiles and PPI network.
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where di is the degree of gene i in the PPI network (defined
by the number of edges connected to gene i), k is the
number of interactions (or edges) and l is a trade-off
parameter. The first term in Equation (3) is the average
discriminative score in a subnetwork; the second term in
Equation (3) imposes the smoothness across the subnet-
work while placing more weights on the genes with large
degrees. Note that the posterior potential function is
normalized by the numbers of genes and edges in the sub-
network. Hence, this function is independent of the sub-
network size.
The second term in the posterior potential function is

the likelihood potential given by:

U Zjfð Þ ¼
�

m

X
i2S

Zi � fið Þ
2=2; ð4Þ

where � is a trade-off parameter. The likelihood potential
gives the average square of difference between the
observed and underlying discriminative scores, given the
assumption of a Gaussian distribution of the noise signal
with 0 mean and 1 SD. Several properties of the MAP
estimator for random variable f and two trade-off param-
eters l and � are discussed in Supplementary Material S1.
In our study, we set 1 as the default value for l and �.
Thus, we can define the subnetwork score as the

negative posterior potential function that takes into
account the dependency among the genes of a subnet-
work, which, in the form of estimated discriminative
scores, can be defined as follows:

NetScore Gð Þ ¼ �U f̂jZ
� �

¼
1

m

X
i2S

f̂i �
�

k

X
i,i0ð Þ2E

f̂iffiffiffiffi
di
p �

f̂i0ffiffiffiffiffi
di0
p

 !2

�
�

m

X
i2S

Zi � f̂i

� �2
=2:

ð5Þ

Search algorithm based on simulated annealing

The network score in Equation (8) allows us to properly
evaluate a given subnetwork, but finding the maximally
scoring subnetwork in the full PPI network is an NP-hard
problem. Rather than using an exhaustive search, we use a
bottom-up approach to identify subnetworks by starting
from ‘seed’ genes and growing subnetworks using a search
algorithm based on simulated annealing by considering
the flexibility of a search algorithm and its associated
computational complexity (14). Simulated annealing is a
generalization of Monte Carlo methods for combinatorial
optimization (27,28). We further reduce the computa-
tional complexity of the search algorithm by:
(i) reducing the search space to a local search (i.e. within
two jumps); (ii) generating more heuristic candidate genes;
and (iii) terminating the searching procedure when the
objective cost function is sufficiently small. The search al-
gorithm is described in Supplementary Appendix; a more
detailed description of the strategies to reduce computa-
tional complexity is presented in the Supplementary
Material S2.

Confidence measure of selected genes in subnetworks

Because of the heterogeneity in samples and the noise
intrinsic to microarray data, reproducibility is usually
low for subnetworks identified from different data sets.
To obtain more reliable subnetworks, we implemented a
bagging method with bootstrapping samples to select the
most confident genes in the subnetworks identified (29).
The underlying rationale is that we should be more confi-
dent in genes frequently included in the identified subnet-
works when the data are perturbed. In the non-parametric
bootstrap, we generate perturbations by re-sampling with
replacement from the given data set. We define the confi-
dence (conf) of a gene in a subnetwork as the frequency of
its occurrences within B bootstraps. Furthermore, we test
the credibility of our confidence assessment by randomly
permuting the phenotype labels of data samples (30).
Using 100 random permutations, we can obtain a
baseline distribution of the confidence. We can then cal-
culate the false discovery rate for a given confidence, conf0,
in the observed data. The final subnetwork is composed of
the genes with their corresponding false discovery rates
less than a predefined threshold (5%). More detailed de-
scriptions and illustrations are provided in Supplementary
Material S3.

RESULTS

Simulation studies

We used two models to simulate microarray gene expres-
sion data under two conditions considering the depend-
ence of genes in a network. First, an MRF model was used
to determine the states of genes as ‘differentially
expressed’ or ‘non-differentially (equally) expressed’
given a ground truth subnetwork. A Gamma–Gamma
model (31) was then used to model the gene expression
levels based on the states of the genes. In the simulation
model, we also used a weight parameter, w, to control the
false-positive rate in any sampled differential subnetwork.
The larger w is set, the lower a false-positive rate is given
(see Supplementary Material S4 for more details).

We conducted simulation studies on an oestrogen
receptor-a (ER) focused network that contains 365 genes
and 1825 interactions, from which an ER-signalling
pathway is considered as the ground truth subnetwork
of 35 genes and 89 interactions (Supplementary Material
S5). We first set the same parameters in the Gamma–
Gamma model as those in Newton et al. (31) (�=10,
�0=0.9 and �=0.5). We then chose w to be 0, 10,
20, . . . , 90, and for each parameter of w, we generated
10 simulated gene expression data sets.

For each data set, we used our BMRF approach for
subnetwork identification. For comparison, we also
applied jActiveModules as proposed in (14), HEINZ
(13) and Chuang et al.’s method (12) onto the same simu-
lation data. jActiveModule is a subnetwork identification
method that scores the subnetwork using an aggregated
Z-score derived from each individual gene’s significance
score (P-value). HEINZ (featuring a module scoring
function) is a decomposition based method using
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mixture models, where integer linear programming is
deployed to find the optimal or suboptimal solution for
the maximally scoring subnetwork. Chuang et al.’s
method scores subnetworks using the mutual information
between aggregated gene Z-scores and sample labels and
performs a greedy search to find local subnetworks.

We used precision-recall curve (32) and percentage of
identified hub genes (with degree >5) as the metrics to
evaluate performance. Precision and recall are defined as
follows:

Precision ¼ jintersect Srecovered,Sground

� �
j=jSrecoveredj

¼
TP

TP+FP
,

Recall ¼ jintersect Srecovered,Sground

� �
j=jSgroundj

¼
TP

TP+FN
;

ð6Þ

where Srecovered indicates the recovered subnetwork after
applying BMRF-based subnetwork identification method
(or any other methods in this comparison study), and
Sground indicates the ground truth subnetwork. As shown
in Equation (6), precision and recall can also be repre-
sented by number of recovered true genes (TP; true
positive), number of recovered unexpected genes (FP;
false positive) and number of unrecovered true genes
(FN; false negative). To generate a precision-recall curve,
we ranked genes in the identified subnetwork according to
their P-values based on a t-statistic and then calculated
precision and recall points by running down genes one by
one on the ranked gene list. Mean average precision
(MAvP) of the precision-recall curve was also calculated
to provide an overall performance assessment. In the
precision-recall space, a good performance is indicated
by a curve close to the upper-right corner, and the ‘area
under the curve’, an overall performance measure, corres-
ponds to the MAvP. Therefore, for any method, the larger
its MAvP value is, the better the performance is achieved.
Note that the MAvP value varies in a range from 0 to 1.
Figure 2 shows the average precision-recall curves of
identified subnetworks by our BMRF-based method
with different weights (w). As MAvP increases with
weight w, the BMRF-based method performs better
when the genes in a subnetwork are more differentially
expressed than background genes.

Performance comparisons for the BMRF-based
method, jActiveModules, HEINZ and Chuang et al.’s
method are shown in Figures 3 and 4. Figure 3 shows
the mean average precision for the four methods at differ-
ent weights. We also calculated the false positive rate of
differentially expressed genes in the simulated gene expres-
sion data as listed in the figure. From the figure we can see
that the BMRF-based method gives the best precision
result, and HEINZ and Chuang et al.’s methods
perform a little better than jActiveModules. Figure 4
gives the comparison of percentage of identified hub
genes for the four methods at different weights. We can
see that the BMRF-based method outperforms other three
methods. Moreover, BMRF can identify 80% of hub
genes when the false-positive rate is as high as 40%.

The network scoring function and simulated annealing
search boost the probability of selecting hub genes in the
BMRF-based method. jActiveModules likely outper-
formed HEINZ because it used simulated annealing
search, whereas integer linear programming in HEINZ
only focused on the optimal solution for maximally
scoring subnetworks, and it may have ignored many hub
genes when they are not significantly differentially ex-
pressed. Chuang et al.’s method is better than
jActiveModules and HEINZ because it searches a local
subnetwork for each gene and then performs significance
tests on the subnetwork; therefore, hub genes (that are not
significantly differentially expressed) have a better chance
to be included in significant local subnetworks.
Note that the structure of a network has an influence on

the performance measure (33). The methods that we
compared may generate different network structures
because of their different searching algorithms. The
current performance measures in Figure 3 and 4 are
only focused on nodes/genes, rather than edges/inter-
actions. The reason of this is that it is difficult to
generate simulated microarray data that can indicate
which edge is of more importance than other edges.
Therefore, more sophisticated simulation experiments
and performance measures are needed in the future study.

Subnetworks identified from untreated breast cancer data

For subnetwork identification, we applied the proposed
BMRF-based method to two gene expression data sets
from breast cancer patients (specimens collected at the
time of surgery but before any drug treatment), as previ-
ously reported by van de Vijver et al. (34) and Wang et al.
(35). We focused on oestrogen receptor (ER) positive
patients, which generally have a poorer response to
chemotherapy than ER-negative tumours. Seventy-eight
patients in van de Vijver et al. (34) and 80 in Wang
et al. (35) are reported as having experienced a recurrence
of their breast cancer within 5 years of surgery; these cases
were assigned to the ‘early recurrence’ group. The remain-
ing 217 and 129 cases from the two data sets were labelled
as ‘late recurrence’. From an ER focused network, we
selected 202 genes as ‘seeds’ to identify the subnetworks
by integrating gene expression and network data
(see Supplementary Material S5). Subnetworks were
identified from PPI network data obtained from the
HPRD database (36), which contains �9000 genes and
35 000 interactions. We converted gene expression data
from probe set IDs to Entrez gene IDs. Where multiple
probe set IDs are linked to one Entrez gene ID; we used
the probe set ID with the largest variance across patients’
samples. Mapping the PPI network onto the two data sets
found 7249 genes in 27 885 interactions to be investigated.
We determined the significant subnetworks, according

to network size and network score, from 202
bootstrapping subnetworks. A network is considered to
be significant if its size is >5 and its network score
(normal distribution assumed) is >1.65 (corresponding
to P-value of� 0.05 using one-tailed hypothesis test).
Twenty-seven significant subnetworks were detected on
Wang et al. (35) by the BMRF-based method. Based on
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these subnetworks, we trained and cross-validated a clas-
sifier using network-constrained support vector machine
(netSVM) (37) on the Wang et al. (35) data and independ-
ently tested it using the van de Vijver et al. (34) data.
netSVM is specifically designed for network-based predic-
tion by integrating gene expression data and network
topology information. It can improve the prediction per-
formance and reproducibility across different data sets
(37), based on the assumption that hub genes usually

have little expression change between two phenotypes
(as observed in this study). Receiver operating character-
istic studies were performed to evaluate the performance
of the classifier (see Supplementary Figures S6 and S7 for
detailed results). The mean (standard deviation) of the
accuracy of five-fold cross-validation is 72.58% (2.01%),
with 74.61% (4.85%) sensitivity and 72.09% (5.02%) spe-
cificity. For independent testing, we can achieve 69.14%
accuracy, with 73.13% sensitivity and 60.26% specificity.
Similarly, 14 significant subnetworks were identified from
van de Vijver et al. (34) by the BMRF-based method.
The mean (standard deviation) accuracy of 5-fold cross
validation on van de Vijver et al. (34) is 70.20%
(1.89%), with 72.22% (4.92%) sensitivity and 70.05%
(4.76%) specificity. The independent testing on Wang
et al. (35) gives 63.16% accuracy, with 72.50% sensitivity
and 57.36% specificity (see Supplementary Figures S8 and
S9 for more details). Although the cross-validation results
are comparable with those originally reported by van de
Vijver et al. and Wang et al., our method achieves better
prediction performances on independent data.
The detailed comparison results are shown in
Supplementary Table S1 for cross-validation and
Supplementary Table S2 for independent testing, respect-
ively. Kaplan–Meier analysis of independent testing on
two data sets (Figure 5) also shows a significant difference
(P< 0.0001) in overall survival between two groups pre-
dicted as ‘early recurrence’ and ‘late recurrence’.

We further explored overlap among the genes in
subnetworks as identified from two data sets. Among
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Figure 2. Precision-recall curves of identified subnetworks by the proposed BMRF-based method at different weights.

Figure 3. Comparison of mean average precision for the proposed
BMRF-based method, jActiveModules, HEINZ and Chuang et al.’s
method at different weights.
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128 genes from Wang et al. (35) and 77 genes from van de
Vijver et al. (34) (Supplementary Table S4), 16 genes are
present in both data sets and include many genes that are
known to be related to breast cancer oestrogen signalling.
For example, although the functional role of androgen
receptor (AR) is still unclear, its expression is reported
to be a prognostic indicator in breast cancer (38); steroid
hormones and their receptors (PGR) are involved in the
regulation of eukaryotic gene expression and affect
cellular proliferation and differentiation in target tissues
(39); BCL2 is an independent predictor of breast cancer
outcome and can be useful as a prognostic marker (40).
AR, BCL2, CCNA2 and CCNB2 are involved in subnet-
works identified from Wang et al. (35) (Figure 6a); AR,
CCNA2, CCNB2 and PGR are involved in subnetworks
identified from Vijver et al. (34) (Figure 6b). Although
the genes in these two subnetworks in Figure 6 are not
identical, their enriched pathways and GO functions
annotated by the MsigDB database (11) are similar,
being largely associated with cell cycle and oestrogen
signalling in breast cancer.

The experimental results also show that our method can
identify hub genes that may not be significantly differen-
tially expressed between ‘early recurrence’ and ‘late
recurrence’ groups, see DAXX in Figure 6a and TP53
and CDKN1A in Figure 6b. The P-values of these genes
(based on t-test) are >0.05 between two groups (thus, of
low statistical significance); however, they are included in
the subnetwork because their interacting genes are signifi-
cantly differentially expressed.

For the other identified subnetworks, we also conducted
pathway enrichment and functional annotation
analysis based on the MsigDB database. Many
pathways or biochemical activities are identified. Cell
cycle pathway or cell cycle process is highly enriched in
two data sets (Supplementary Figures S13, S15–17 in the
Supplementary Material). Apoptosis (Supplementary
Figure S14) and signalling transduction (Supplementary

Figure S10) are shown in Wang et al. (35). Insulin
receptor pathway is selected in van de Vijver et al. (34)
(Supplementary Figures S15 and S16). More detailed
networks and annotations can be found in the
Supplementary Material.

Subnetworks identified from tamoxifen-treated
breast cancer data

As a follow-up exploration, we also applied our method to
two public microarray data sets (41,42) for tamoxifen
resistance study of breast cancer. The study was
designed to find the oestrogen-related networks or
pathways to help understand the recurrence of breast
cancer after drug treatment (tamoxifen). All samples
have been profiled with Affymetrix GeneChip U133A
Array. Among them, 105 samples in Loi et al. (41) and
107 samples in Symmans et al. (42) were labelled as ‘early
recurrence’ (<6 years), and 76 samples in Loi et al. (41)
and 191 samples in Symmans et al. (42) were labelled as
‘late recurrence’ (�6 years) according to their relapse-free
time. Note that for this study, we opted to use ‘6 years’
instead to divide the samples for ‘early recurrence’ and
‘late recurrence’ groups. This division by ‘6 years’ was
more suitable for this study than that by ‘5 years’, as the
resulting two groups better represented the distribution of
samples in data sets in terms of the survival year (see
Supplementary Figure S19 in the Supplementary
Material), with a more balanced number of samples
between two groups. We used probe logarithmic intensity
error algorithm with quantile normalization to preprocess
the original intensity data for gene expression measure-
ments (43). After preprocessing, we obtained expression
measurements for 22 215 probe sets in each sample. We
used the same seed genes as defined in the previous session
to identify the subnetworks by integrating gene expression
and network data. After mapping the PPI and two gene
expression data sets, there were 7809 genes with 30 621
interactions remained in this experiment.

Figure 4. Comparison of percentage of identified hub genes for the proposed BMRF-based method, jActiveModules, HEINZ and Chuang et al.’s
method at different weights.
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From 202 bootstrapping subnetworks, 20 significant
subnetworks were identified from Loi et al. (41) by the
BMRF-based method. We trained a classifier using
netSVM based on these subnetworks on Loi et al. (41)
and predicted on Symmans et al. (42). The mean
(standard deviation) accuracy of 5-fold cross validation
is 73.45% (2.03%), with 70.93% (5.74%) sensitivity and
76.94% (5.07%) specificity. The classifier achieves 71.14%
accuracy, with 71.96% sensitivity and 70.68% specificity
for independent testing. Similarly, 20 significant subnet-
works were identified from Symmans et al. (42) by our
BMRF-based method. The mean (standard deviation)

accuracy of 5-fold cross validation on Symmans et al.
(42) is 71.14% (1.85%), with 70.09% (5.43%) sensitivity
and 71.73% (4.80%) specificity. The independent testing
on Loi et al. (41) gives 71.82% accuracy, with 70.48%
sensitivity and 73.68% specificity. More detailed results
are shown in Supplementary Table S3. Kaplan–Meier
analysis of independent testing on two data sets
(Figure 7) shows a highly significant difference (P-value
of <0.0001) in terms of overall survival between the
‘early recurrence’ and ‘late recurrence’ groups.

We then focused on the overlapped genes in the subnet-
works identified from two data sets. There are 57 genes in

Figure 6. Subnetworks identified from (a) Wang et al. (2005) and (b) van de Vijver et al. (2002). Subnetworks are merged if more than two genes are
common. Node shape indicates the seed gene (hexagon) or non-seed gene (ellipse). Node color indicates the fold change between ‘early recurrence’
and ‘late recurrence’ groups. Red represents overexpressed in the ‘early recurrence’ group; green reflects overexpressed in the ‘late recurrence’ group.
Enriched pathways and GO functional annotations are: (a) Cell cycle pathway: P=2.91 e-10; breast cancer oestrogen signalling: P=4.3 e-05;
(b) Cell cycle: P=3.18E-15; breast cancer oestrogen signalling: P=4.02 e-07.
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Figure 5. Kaplan–Meier analysis for overall survival of independent test on (a) van de Vijver et al. (34) and (b) Wang et al. (35).
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the network from Loi et al. (41) and 67 genes from
Symmans et al. (42) (Supplementary Table S4). Eight
genes are shown in common from two data sets, which
are ELK1, GRB2, HDAC2, PIK3R2, PPARG,
MAPK1, ZAP70 and TRIM24. Among them, many
genes are members of kinase signalling pathways. For
examples, Figure 8 shows the subnetworks identified
from both data sets with the overlapped genes MAPK1,
PPARG and ELK1. The functional annotations of these
two subnetworks are similar, which include EGF
signalling pathway, MAPK signalling pathway and ErbB
signalling pathway. Of note, the co-repressor NCOR2
is not significantly differentially expressed between the

‘early recurrence’ and ‘late recurrence’ groups, and its
patterns of expression are different in the two data sets.
Nevertheless, our method can identify this gene as a hub
based on the expression pattern of its neighbouring, inter-
acting genes.
We also conducted functional annotation and pathway

analysis for other subnetworks using the MsigDB
database. ‘Protein metabolic process’ is enriched in the
networks from both data sets (Supplementary Figures
S23, S26 and S31, Supplementary Material), so is
‘nucleus’ (Supplementary Figures S23 and S26). ‘Cell
cycle’ and ‘apoptosis’ are shown in the network from
Loi et al. (41) (Figure 8 and Supplementary Figure S24).

Figure 8. Subnetworks identified from (a) Loi et al. (2008) and (b) Symmans et al. (2010). Subnetworks are merged if more than two genes are
common. Node shape indicates the seed gene (hexagon) or non-seed gene (ellipse). Node color indicates the fold change between ‘early recurrence’
and ‘late recurrence’ groups. Red represents overexpressed in ‘early recurrence’ group and green reflects overexpressed in ‘late recurrence’ group.
Enriched pathways and GO functional annotations are: (a) EGF signalling pathway: P=3.35 e-11; MAPKinase signalling pathway: P=7.00 e-08;
ErbB signalling pathway: P=7.00 e-08. (b) MAPKinase signalling pathway: P=7.00 e-08; ErbB signalling pathway: P=7.00 e-08; EGF signalling
pathway: P=1.84 e-04.
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Figure 7. Kaplan–Meier overall survival analysis of independent testing on (a) Symmans et al. (42) and (b) Loi et al. (41).
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The functional annotations and pathways of these
networks are similar to those obtained from untreated
breast cancer data sets (34,35), which may indicate that
the subnetworks are related to the development of breast
cancer. The results from these two data sets show more
signalling pathways than was revealed by analysis of the
untreated data sets. For example, in Figure 8, the MAPK
signalling pathway is significantly enriched in both subnet-
works. In this highly conserved pathway, some genes
located in the cytoplasm and nucleus are identified from
Loi et al. (41), including MAPK1, GRB2, ELK1, FOS
and JUN (Figure 8a); some genes mainly located in the
cytoplasm are identified from Symmans et al. (42),
including MAPK1, MAPK8, MAPK8IP2 and ELK1
(Figure 8b). The results indicate that different data sets
may reveal different active parts of one common
underlying mechanism. Mitogen-activated protein kinase
(MAPkinase) pathway leads to many cellular responses,
including growth, differentiation, inflammation and apop-
tosis. Blocking HER2/MAPK signalling may overcome
anti-oestrogen resistance and enhance tamoxifen action
in human breast cancer (44,45).
More signalling pathways are identified, but they are

more complex and diverse. We can see that transforming
growth factor-b, MAPK, ErbB and EGF signalling
pathways are enriched in the subnetworks from both
data sets (Supplementary Figures S20–22, S26–28 and
S30). Notch signalling (Supplementary Figure S25) is
enriched in the network from Loi et al. (41), whereas
WNT signalling (Supplementary Figure S30) and
Jak-STAT signalling (Supplementary Figure S27) are
enriched in the networks from Symmans et al. (42).
These subnetworks show an important difference
between untreated data and tamoxifen-treated data and
may provide insight into tamoxifen resistance in
breast cancer. More detailed descriptions on these
signalling pathways can be found in Supplementary
Material S6.

Enrichment analysis of subnetworks using breast
cancer cell line data

The subnetworks identified in the untreated and
tamoxifen-treated clinical (tumour) data were further
examined on two breast cancer cell line microarray
profiles. We chose to use the subnetworks rather than
the initial seed genes because subnetworks tend to have
greater reproducibility between data sets (12). The first cell
line study was originally designed to examine how oestro-
gen-induced gene expression patterns observed in vitro
correlate with the expression patterns in breast tumours
in vivo (46). Three oestrogen-dependent breast cancer cell
lines (MCF-7, T47D, BT-474) were treated with 17b-oes-
tradiol (E2) from 0 to 24 h and were then profiled for gene
expression using Affymetrix GeneChip Arrays. The
second cell line study was designed to investigate
acquired resistance to aromatase inhibitors in
postmenopausal women (47). The long-term oestrogen-
deprived (LTED) MCF7 cell model was used for
acquired resistance, where MCF7 cells were cultured in a
medium depleted of E2 for 180 days. Gene expression

levels at eight different time points from 0 to 180 days
were profiled using Affymetrix GeneChip Arrays.
We perform enrichment analysis for identified subnet-
works in two time course microarray data sets.
Specifically, for each time point, we obtain the fold
changes of gene expression compared with the sample at
time 0, and we then calculate the test statistic for each
subnetwork. The test statistic of one subnetwork is
defined as the summation of the fold changes of all the
genes in that subnetwork. We also performed the signifi-
cance test to calculate the P-value, which is defined as the
probability of obtaining a test statistic at least as extreme
as the one that was actually observed under the null hy-
pothesis. To generate the null distribution, we randomly
sampled the genes in the subnetwork (1000 iterations) and
then calculated the test statistic. Finally, an enrichment
score of one subnetwork is defined as the negative of loga-
rithm of P-value to base 10. Figures 9 and 10 show the
heatmaps of the normalized enrichment scores for each
subnetwork across different time points on oestrogen-
stimulated and LTED cell line data, respectively. From
the figures, we can see that some subnetworks (e.g. trans-
forming growth factor-b, MAPK and ErbB signalling
networks) are activated at relatively early times, especially
for those originally identified from tamoxifen-treated
human breast tumour data sets [Symmans et al. (42) and
Loi et al. (41)]. Subnetworks with cell cycle functions are
activated at later times after the signalling subnetworks.
The observation is consistent with our understanding that
the signalling will be altered first and then triggers
many downstream, biological functions in a cell, such as
cell cycle and apoptosis. Note that LTED cells serve as a
model for aromatase inhibitor resistance of breast cancer,
not for tamoxifen resistance directly. Nevertheless, the
result from this enrichment analysis is relevant because
there is at least partial cross-resistance between aromatase
inhibitors and tamoxifen; in clinical studies cross-over
from one to the other gets additional responses, although
not in all cases and for relatively short duration (48).
These cell line studies provide us with preliminary yet im-
portant support for further biological validation of the
subnetworks that we identified from this computational
study.

DISCUSSION

Identification of subnetworks by integrating gene expres-
sion and PPI data is important to inform our understand-
ing of biological mechanisms. Existing methods formulate
network scores based on individual genes, whereas the
dependency among genes is not explicitly considered
(12–14). We have developed a BMRF-based method for
subnetwork identification to address these related issues.
Firstly, the dependency among network member genes is
represented as a second-order potential term in the MRF
formulation. Through the MAP estimation, the signifi-
cance scores of hub genes with a larger number of connec-
tions are enlarged, and these have a greater likelihood to
be selected in the subnetworks. Secondly, the modified
simulated annealing search helps find the optimal or

e42 Nucleic Acids Research, 2013, Vol. 41, No. 2 PAGE 10 OF 13

http://nar.oxfordjournals.org/cgi/content/full/gks951/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks951/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks951/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks951/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks951/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks951/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks951/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks951/DC1


suboptimal solutions within a reasonable computational
time. Finally, confident subnetworks are obtained by a
bagging scheme, which alleviates the discrepancy among
different data sets because of the heterogeneity in micro-
array data.

There are several issues to be further investigated. First,
the BMRF-based subnetwork identification method
searches for subnetworks along a pre-defined PPI
network, where the interactions in the PPI network are
fixed. However, PPI network information is incomplete,
and it includes substantial noise and false-positive
interactions. For example, interactions among genes are
tissue-specific or condition-specific, and this knowledge is
rarely captured in PPI databases. Therefore, it is import-
ant and necessary to address the specificity of interactions
in the PPI network for the subnetwork identification
problem. Second, pathway information provides other
insights to guide pathway analysis. Unlike a
PPI network, pathway maps can be represented as
directed graphs. To incorporate pathway information,
our method needs to be further extended to capture dir-
ectional information. Finally, more sophisticated statis-
tical tests, such as the ones proposed in Chuang et al.

(12), need to be carried out in our experiments for signifi-
cant subnetwork identification, aiming to eliminate some
false-positive subnetworks for further biological
validation.
In conclusion, we have proposed and developed a novel

subnetwork identification method by integrating micro-
array data and PPI data. A network score is formulated
through an MRF–MAP framework. A modified simulated
annealing algorithm is used to search for subnetworks
with maximal network scores and a bagging
scheme based on bootstrapping samples is implemented
to find most reliable subnetworks. The simulation experi-
ments have demonstrated the effectiveness of our
proposed method. Furthermore, we have studied two
types of breast cancer data (‘untreated’ and
‘tamoxifen-treated’); the experimental results have shown
that our method can be successfully used to identify many
biologically meaningful subnetworks, with which an
improved prediction performance can be achieved
when tested across data sets. Importantly, many of
these networks are associated with oestrogen signalling
in the development of breast cancer and/or tamoxifen
resistance.
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Figure 9. Enrichment analysis of identified subnetworks by oestrogen-stimulated cell line data: (a) subnetworks from untreated breast tumour data;
(b) subnetworks from tamoxifen-treated breast tumour data. Note that the heatmap shows the normalized �log10(P-value) across different time
points for each subnetwork.
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COMPUTER PROGRAMS

The BMRF package is made available to the research
community, which can be downloaded at http://www
.cbil.ece.vt.edu/software.htm.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–4, Supplementary Figures 1–31,
Supplementary Material and Supplementary Appendix.
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28. Černý,V. (1985) Thermodynamical approach to the traveling
salesman problem: an efficient simulation algorithm. J. Optim.
Theory Appl., 45, 41–51.

29. Efron,B. and Tibshirani,R.J. (1993) An Introduction to the
Bootstrap. Chapman and Hall, London.

30. Friedman,N., Linial,M., Nachman,I. and Pe’er,D. (2000) Using
Bayesian networks to analyze expression data. J. Comput. Biol.,
7, 601–620.

31. Newton,M.A., Kendziorski,C.M., Richmond,C.S., Blattner,F.R.
and Tsui,K.W. (2001) On differential variability of expression
ratios: improving statistical inference about gene expression
changes from microarray data. J. Comput. Biol., 8, 37–52.

32. van Rijsbergen,C.V. (1979) Information Retrieval, 2nd edn.
Butterworth, London.

33. Emmert-Streib,F. and Altay,G. (2010) Local network-based
measures to assess the inferability of different regulatory
networks. IET Syst. Biol., 4, 277–288.

34. van de Vijver,M.J., He,Y.D., van’t Veer,L.J., Dai,H., Hart,A.A.,
Voskuil,D.W., Schreiber,G.J., Peterse,J.L., Roberts,C.,

Marton,M.J. et al. (2002) A gene-expression signature as a
predictor of survival in breast cancer. N. Engl. J. Med., 347,
1999–2009.

35. Wang,Y., Klijn,J.G., Zhang,Y., Sieuwerts,A.M., Look,M.P.,
Yang,F., Talantov,D., Timmermans,M., Meijer-van Gelder,M.E.,
Yu,J. et al. (2005) Gene-expression profiles to predict distant
metastasis of lymph-node-negative primary breast cancer. Lancet,
365, 671–679.

36. Mishra,G.R., Suresh,M., Kumaran,K., Kannabiran,N., Suresh,S.,
Bala,P., Shivakumar,K., Anuradha,N., Reddy,R., Raghavan,T.M.
et al. (2006) Human protein reference database—2006 update.
Nucleic Acids Res., 34, D411–D414.

37. Chen,L., Xuan,J., Riggins,R.B., Clarke,R. and Wang,Y. (2011)
Identifying cancer biomarkers by network-constrained support
vector machines. BMC Syst. Biol., 5, 161.

38. Gonzalez,L.O., Corte,M.D., Vazquez,J., Junquera,S., Sanchez,R.,
Alvarez,A.C., Rodriguez,J.C., Lamelas,M.L. and Vizoso,F.J.
(2008) Androgen receptor expresion in breast cancer: relationship
with clinicopathological characteristics of the tumors, prognosis,
and expression of metalloproteases and their inhibitors. BMC
Cancer, 8, 149.

39. Rebhan,M., Chalifa-Caspi,V., Prilusky,J. and Lancet,D. (1997)
GeneCards: integrating information about genes, proteins and
diseases. Trends Genet., 13, 163.

40. Callagy,G.M., Pharoah,P.D., Pinder,S.E., Hsu,F.D., Nielsen,T.O.,
Ragaz,J., Ellis,I.O., Huntsman,D. and Caldas,C. (2006) Bcl-2 is a
prognostic marker in breast cancer independently of the
Nottingham Prognostic Index. Clin. Cancer Res., 12, 2468–2475.

41. Loi,S., Haibe-Kains,B., Desmedt,C., Wirapati,P., Lallemand,F.,
Tutt,A.M., Gillet,C., Ellis,P., Ryder,K., Reid,J.F. et al. (2008)
Predicting prognosis using molecular profiling in estrogen
receptor-positive breast cancer treated with tamoxifen. BMC
Genomics, 9, 239.

42. Symmans,W.F., Hatzis,C., Sotiriou,C., Andre,F., Peintinger,F.,
Regitnig,P., Daxenbichler,G., Desmedt,C., Domont,J., Marth,C.
et al. (2010) Genomic index of sensitivity to endocrine therapy
for breast cancer. J. Clin. Oncol., 28, 4111–4119.

43. Affymetrix. (2005) Guide to Probe Logarithmic Intensity Error
(PLIER) Estimation, Affymetrix, Santa Clara, CA.

44. Giordano,C., Catalano,S., Panza,S., Vizza,D., Barone,I.,
Bonofiglio,D., Gelsomino,L., Rizza,P., Fuqua,S.A. and Ando,S.
(2011) Farnesoid X receptor inhibits tamoxifen-resistant MCF-7
breast cancer cell growth through downregulation of HER2
expression. Oncogene, 30, 4129–4140.

45. Kurokawa,H., Lenferink,A.E., Simpson,J.F., Pisacane,P.I.,
Sliwkowski,M.X., Forbes,J.T. and Arteaga,C.L. (2000) Inhibition
of HER2/neu (erbB-2) and mitogen-activated protein kinases
enhances tamoxifen action against HER2-overexpressing,
tamoxifen-resistant breast cancer cells. Cancer Res., 60,
5887–5894.

46. Creighton,C.J., Cordero,K.E., Larios,J.M., Miller,R.S.,
Johnson,M.D., Chinnaiyan,A.M., Lippman,M.E. and Rae,J.M.
(2006) Genes regulated by estrogen in breast tumor cells in vitro
are similarly regulated in vivo in tumor xenografts and human
breast tumors. Genome Biol., 7, R28.

47. Aguilar,H., Sole,X., Bonifaci,N., Serra-Musach,J., Islam,A.,
Lopez-Bigas,N., Mendez-Pertuz,M., Beijersbergen,R.L., Lazaro,C.,
Urruticoechea,A. et al. (2010) Biological reprogramming in
acquired resistance to endocrine therapy of breast cancer.
Oncogene, 29, 6071–6083.

48. Barrios,C., Forbes,J.F., Jonat,W., Conte,P., Gradishar,W.,
Buzdar,A., Gelmon,K., Gnant,M., Bonneterre,J., Toi,M. et al.
(2012) The sequential use of endocrine treatment for
advanced breast cancer: where are we? Ann. Oncol., 23,
1378–1386.

PAGE 13 OF 13 Nucleic Acids Research, 2013, Vol. 41, No. 2 e42


