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A novel CHCHD10 mutation implicates a Mia40-
dependent mitochondrial import deficit in ALS
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Nicole Exner3, Henrick Riemenschneider1, Julie van der Zee4,5, Christine Van Broeckhoven4,5,

Patrick Weydt6, Michael T Heneka6,7 & Dieter Edbauer1,2,*

Abstract

CHCHD10 mutations are linked to amyotrophic lateral sclerosis, but
their mode of action is unclear. In a 29-year-old patient with rapid
disease progression, we discovered a novel mutation (Q108P) in a
conserved residue within the coiled-coil-helix-coiled-coil-helix
(CHCH) domain. The aggressive clinical phenotype prompted us to
probe its pathogenicity. Unlike the wild-type protein, mitochondrial
import of CHCHD10 Q108P was blocked nearly completely resulting
in diffuse cytoplasmic localization and reduced stability. Other
CHCHD10 variants reported in patients showed impaired mitochon-
drial import (C122R) or clustering within mitochondria (especially
G66V and E127K) often associated with reduced expression. Trunca-
tion experiments suggest mitochondrial import of CHCHD10 is
mediated by the CHCH domain rather than the proposed N-terminal
mitochondrial targeting signal. Knockdown of Mia40, which intro-
duces disulfide bonds into CHCH domain proteins, blocked mito-
chondrial import of CHCHD10. Overexpression of Mia40 rescued
mitochondrial import of CHCHD10 Q108P by enhancing disulfide-
bond formation. Since reduction in CHCHD10 inhibits respiration,
mutations in its CHCH domain may cause aggressive disease by
impairing mitochondrial import. Our data suggest Mia40 upregula-
tion as a potential therapeutic salvage pathway.
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Introduction

The recent identification of mutations in CHCHD10 implicates mito-

chondrial dysfunction in the pathogenesis of frontotemporal

dementia (FTD) and amyotrophic lateral sclerosis (ALS) (Bannwarth

et al, 2014). CHCHD10 is a small soluble protein with a positively

charged N-terminus commonly referred to as a mitochondrial

targeting signal (MTS), a central hydrophobic domain and a C-term-

inal CHCH domain (Perrone et al, 2017). Mutations have been

reported mainly in the N-terminus and the central hydrophobic

domain. However, the exact molecular function of the protein and

the effect of these mutations remain unknown. Electron microscopy

and biochemical studies suggest that CHCHD10 resides in the mito-

chondrial contact site and cristae organizing system (MICOS) in the

intermembrane space of mitochondria (Bannwarth et al, 2014)

although that has been recently disputed by others (Burstein et al,

2018). In the MICOS complex, CHCHD10 interacts with mitofusin,

CHCHD3, and CHCHD6 and it seems to be required for proper pack-

aging of mitochondrial DNA into the nucleoid structures (Genin

et al, 2016).

Several CHCHD10 mutations were identified in association studies

from ALS/FTD kindreds. The S59L mutation was found in an

extended family with variable clinical presentation including classic

motoneuron disease, cerebellar ataxia, and frontal lobar cognitive

symptoms (Bannwarth et al, 2014). Moreover, S59L patients also

show ragged-red fiber myopathy indicative of mitochondrial disease.

The subsequent identification of a R15L mutation as the causal muta-

tion in several pedigrees of familial ALS by three independent groups

corroborated the link to ALS (Johnson et al, 2014; Muller et al, 2014;

Kurzwelly et al, 2015), while a more cautious interpretation of these

association studies was put forward by others due to incomplete

penetrance (van Rheenen et al, 2014). Later, a G66V mutation was

associated with ALS (Muller et al, 2014), the Jokela type of spinal

muscular atrophy (Penttila et al, 2015), and Charcot-Marie-Tooth

disease type 2 (Auranen et al, 2015). The typical age-of-onset in these

families is in the fifties, and patients show variable clinical presenta-

tion and disease duration (1–12 years). Sequencing studies identified

several other CHCHD10 mutations in ALS/FTD cohorts, but lack func-

tional characterization to support pathogenicity (Chaussenot et al,
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2014; Dols-Icardo et al, 2015; Zhang et al, 2015; Jiao et al, 2016;

Zhou et al, 2017; Blauwendraat et al, 2018).

Functional studies of CHCHD10 variants are largely limited to

the S59L mutation and have so far not revealed a clear mode of

action. Patient fibroblasts with the S59L mutation show an altered

mitochondrial network structure, but as mitochondrial fusion is

normal, this may be secondary to instability of mitochondrial DNA

(Bannwarth et al, 2014). Overexpression of human wild-type but

not R15L or S59L CHCHD10 rescues the shorter lifespan of

Caenorhabditis elegans lacking the CHCHD10 homolog har-1 (Woo

et al, 2017). The reported inhibition of apoptosis by CHCHD10 S59L

(Genin et al, 2016) has not been replicated by others (Woo et al,

2017) and is difficult to reconcile with a neurodegenerative process.

The neuropathological features of CHCHD10 cases have not been

comprehensively characterized, but CHCHD10 was recently linked

to synaptic integrity and nuclear retention of TDP-43 (Woo et al,

2017), although the latter has not been replicated (Brockmann et al,

2018).

Here, we report a novel Q108P mutation in the CHCH domain of

CHCHD10 in a very young patient with rapidly progressing classical

ALS symptoms, which is in sharp contrast to the slow progression

in most CHCHD10 patients. We show that the Q108P mutation

blocks mitochondrial import nearly completely, and examine the

mechanism of CHCHD10 mitochondrial import in detail, including

rescue strategies. In addition, we analyzed the effect of all other

reported missense mutations on protein expression and localization.

Results

Identification of CHCHD10 Q108P in an early-onset ALS patient

A 29-year-old male presented with progressive spasticity, starting in

the right foot and spreading to the other extremities over 2 years. He

reported recurring painful cramps and had recently noticed atrophy

in the hand muscles. Neurologic exam revealed spastic tetraparesis,

diffuse fasciculations, muscle atrophy in all extremities, hyperactive

deep tendon reflexes, a positive Babinski on the right and equivocal

on the left. Motor abnormalities were most severe in the right arm.

Bulbar, sensory and coordination functions were normal.

The CSF showed slightly elevated proteins (530.2 mg/l) but was

otherwise unremarkable. The electrophysiological exam showed

chronic and acute neurogenic changes in the cervical, thoracic, and

lumbar region.

The family history was unremarkable for neurodegenerative

diseases. Both parents are alive and well at 56 and 55 years, respec-

tively. No DNA was available from the parents. Repeat primed PCR

detected no C9orf72 repeat expansion in the index case. Sequencing

using a custom panel with genes linked to ALS/FTD and Alzheimer

revealed a heterozygous Q108P mutation in CHCHD10, but no

mutations in APP, CSF1R, CHMP2B, FUS, GRN, HNRNPA1,

HNRNPA2B1, MAPT, MATR3, NEK1, OPTN, PSEN1, PSEN2, SOD1,

TARDBP, TBK1, TUBA4A, TREM2, or VCP (see Materials and Meth-

ods). Sanger sequencing confirmed a heterozygous Q108P mutation

(Fig 1A). Recently, a nonsense variant (Q108*) was reported at the

same position in a case with FTD and atypical Parkinson’s disease

(Perrone et al, 2017). The Q108P variant was not found in the

60,706 control exomes curated in the ExAc database, and the

residue is highly conserved between species (Lek et al, 2016).

Among the species in the ENSEMBL ortholog list, Q108 is fully

conserved apart from yeast (asparagine). While most other reported

CHCHD10 variants lie in the N-terminal region (e.g., R15L) and the

central hydrophobic domain (e.g., S59L and G66V), the novel

Q108P mutation is located in the CHCH domain (Fig 1B).

CHCHD10 Q108P inhibits mitochondrial import nearly completely

CHCHD10 is localized in the intermembrane space of mitochondria,

and several pathogenic mutations are near the putative MTS at the

N-terminus. Therefore, we asked, how the Q108P mutation affects

the localization and function of CHCHD10, and compared it to the

R15L mutation, which was independently discovered in several

ALS/FTD kindreds. In HeLa cells, the levels of R15L and especially

Q108P were reduced in whole cell lysate compared to HA-tagged

wild-type CHCHD10 (Fig EV1A). In immunofluorescence experi-

ments, the wild-type protein showed typical mitochondrial staining

and colocalization with the mitochondrial marker protein ATP5A1

(Fig 1C). In contrast, CHCHD10 Q108P was diffusely localized all

over the cell, without discernible mitochondrial localization,

suggesting that this mutation disrupts the mitochondrial import

and/or impairs protein folding/stability. While CHCHD10 R15L

levels were also reduced, the residual protein still colocalized with

mitochondria similar to the wild-type protein. Line scans confirmed

the lack of correlation of CHCHD10 Q108P and mitochondrial signal

(Fig EV1B).

In addition, biochemical fractionation showed strongly reduced

levels of CHCHD10 Q108P in mitochondria compared to wild-type

despite similar cytosolic levels in a quantitative analysis (Fig 1D and

E). The mitochondrial levels of CHCHD10 R15L consistently

appeared lower than for the wild-type protein without reaching

statistical significance. A C-terminal anti-CHCHD10 antibody showed

comparable expression of exogenous and endogenous CHCHD10,

but poorly detected the Q108P mutant protein. Moreover, transfec-

tion of the mutant and wild-type CHCHD10 had no effect on the

levels and localization of endogenous CHCHD10 arguing against

molecular replacement or dominant negative effects. Next, we trans-

duced primary rat hippocampal neurons with lentivirus expressing

CHCHD10 variants. Similar to the results in HeLa cells, wild-type

and R15L predominantly localized to mitochondria, while Q108P

showed diffuse expression in the soma and neurites (Fig 1F).

Next, we analyzed protein stability, because Q108P and R15L

showed reduced protein levels compared to wild-type CHCHD10.

Therefore, we treated CHCHD10 expressing cells with cyclohex-

imide (CHX) to block protein translation and analyzed the decay of

CHCHD10 over a time course of 24 h (Fig EV1C). Quantification

confirmed rapid degradation of CHCHD10 Q108P compared to the

wild-type (Fig EV1D), which is reflected in an almost fivefold lower

half-life time (Fig EV1E). CHCHD10 R15L showed intermediated

stability. Together, these data suggest that the Q108P mutation

strongly inhibits mitochondrial import leading to enhanced protein

degradation in the cytosol.

CHCHD10 knockdown impairs cellular respiration

Since mitochondrial CHCHD10 levels are likely reduced in the

ALS patient with CHCHD10 Q108P mutation, we addressed the
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functional role of CHCHD10 focusing on cellular respiration in

knockdown experiments using siRNA. CHCHD10 siRNA reduced

expression of CHCHD10 mRNA and protein detected by quantitative

RT–PCR and immunoblotting in HeLa cells compared to control

siRNA (Fig 2A). Using the Seahorse analyzer, we quantified cellular

respiration upon CHCHD10 knockdown in HeLa cells. CHCHD10

knockdown cells showed reduced basal respiration and also reduced

maximal respiration upon uncoupling with FCCP, resulting in a

lower spare respiratory capacity (Fig 2B and C).

Next, we used CRISPR/Cas9 to introduce a frameshift in

CHCHD10 in haploid HAP1 cells near Q108. Deletion of 11

base pairs led to a premature stop codon resulting in the dele-

tion of amino acids 110–142 (p.Leu110HisfsTer5, here called

D10 fs). The frame shift caused significant reduction in the

CHCHD10 mRNA through nonsense-mediated decay (Fig 2D).

While a C-terminal CHCHD10 antibody detected no full-length

protein in the edited cells, an N-terminal antibody still

detected low levels of truncated CHCHD10 (Fig 2D). D10 fs

cells showed reduced spare respiratory capacity (Fig 2E and

F), which is consistent with the knockdown data in HeLa cells

(Fig 2B and C).

Since primary cells of the Q108P patients were unfortunately not

available, we analyzed lymphoblasts from an FTD patient with a

heterozygous Q108* mutation (Perrone et al, 2017). Consistent with

the reported nonsense-mediated decay of the mutant allele and the

findings from the very similar CHCHD10 frame shift allele in HAP1
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Figure 1. CHCHD10 Q108P inhibits mitochondrial import.

A Genomic DNA of an ALS patient was PCR amplified and subjected to Sanger sequencing. The fluorogram revealed a heterozygous Q108P mutation in exon 3 of
CHCHD10.

B Domain structure and known mutations of CHCHD10. R15L is localized in the putative mitochondrial targeting signal (“MTS?”), S59L and G66V in the hydrophobic
region and Q108P in the CHCH domain.

C–F HeLa cells were transfected (C–E) and primary hippocampal neurons were transduced (F) with HA-tagged CHCHD10 (D10-HA) wild-type (WT), Q108P, or R15L. (C, F)
Mitochondrial localization of CHCHD10-HA (D10-HA) was analyzed by co-staining of a mitochondrial ATP synthase subunit (ATP5A1). Cells with similar expression
levels were selected for imaging. Scale bars represent 10 lm. (D) Biochemical fractionation of mitochondria and cytosol from transfected HeLa cells. Immunoblot
using antibodies against HA, CHCHD10 C-terminus (D10-CT), ATP5A1, and actin. (E) Protein quantification of CHCHD10-HA (D10-HA) in mitochondrial (normalized
to ATP5A1) and cytosolic (normalized to actin) fractions. Data are shown as mean � SD. One-way ANOVA (followed by Dunnett’s post hoc test against WT): n = 3
biological replicates, mitochondrial WT versus Q108P: *P = 0.0135.

Source data are available online for this figure.
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cells, Q108* lymphoblasts show reduced CHCHD10 mRNA and

protein levels compared to lymphoblasts from controls with wild-

type CHCHD10 (Fig 2G). Reduced CHCHD10 expression in these

cells is associated with a reduced spare respiratory capacity

compared to the three control lines with wild-type CHCHD10 coding

sequence (Fig 2H and I).
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Figure 2. Partial loss of CHCHD10 reduces spare respiratory capacity.

A–C HeLa cells were transfected with siRNA targeting CHCHD10 (siD10) or control (siCtrl). (A) Quantitative RT–PCR and immunoblotting (using a C-terminal antibody)
show CHCHD10 knockdown. mRNA levels were normalized to GAPDH and B2M mRNA. Data are shown as mean � SD. Welch’s t-test was used for statistical
analysis: n = 3 biological replicates, *P = 0.0102. (B, C) Mitochondrial respiration was quantified in real-time using the Seahorse extracellular flux analyzer. The
oxygen consumption rate was measured in pmol O2 per minute and normalized to total protein concentration. After measuring basal respiration, oligomycin was
added to inhibit ATP synthase (proton leak), followed by the uncoupling agent FCCP (maximal respiration) and antimycin A/rotenone (non-mitochondrial oxygen
consumption). Statistical analysis was done for the spare respiratory capacity (difference of maximal and basal respiration). Data are shown as mean � SD. T-test:
n = 11 biological replicates, ***P < 0.0001.

D–F CHCHD10 inactivation in haploid HAP1 cells using CRISPR/Cas9 leading to a premature stop codon (p.Leu110HisfsTer5, henceforth abbreviated as D10 fs). (D)
Quantitative RT–PCR and immunoblotting (using C- and N-terminal antibodies) show strong reduction of CHCHD10 mRNA expression and loss of full-length
protein in D10 fs cells. mRNA levels were normalized to GAPDH and B2M mRNA. Data are shown as mean � SD. Welch’s t-test was used for statistical analysis:
n = 3 technical replicates, *P = 0.0125. (E, F) Mitochondrial respiration was analyzed as in (B, C). Statistical analysis was done for spare respiratory capacity
(difference of maximal and basal respiration). Data are shown as mean � SD. T-Test: n = 7 technical replicates, **P = 0.0022. A representative experiment of
several experiments is shown.

G–I Lymphoblasts from an FTD patient with a Q108* mutation were compared to three control cases with wild-type CHCHD10. (G) Quantitative RT–PCR and
immunoblotting (using C- and N-terminal antibodies) show both reduced CHCHD10 mRNA expression and 50% CHCHD10 protein in Q108* patient cells. mRNA levels
were normalized to GAPDH and B2M mRNA. Data are shown as mean � SD. One-way ANOVA (followed by Dunnett’s post hoc test against Q108*) was used for
statistical analysis: n = 3 technical replicates, Q108* versus Ctrl1: ***P = 0.0004, Q108* versus Ctrl2: *P = 0.0338, Q108* versus Ctrl3: *P = 0.0105. (H, I) Mitochondrial
respiration was analyzed 1 h after plating an equal number of lymphoblasts. Statistical analysis was done for spare respiratory capacity (difference of maximal and
basal respiration). Data are shown as mean � SD. One of two independent experiments with similar results was analyzed by one-way ANOVA (followed by Dunnett’s
post hoc test against Q108*): n = 4 technical replicates, Q108* versus Ctrl1: ***P = 0.0001, Q108* versus Ctrl2: **P = 0.0017, Q108* versus Ctrl3: ***P = 0.0001.
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Thus, reduced mitochondrial import of CHCHD10 Q108P may

decrease mitochondrial function in the early-onset ALS case with

only one intact allele.

The CHCH domain is critical for mitochondrial import

In the current literature, the N-terminus of CHCHD10 is widely

referred to as a MTS due to the presence of four interspaced arginine

residues. To decipher the contribution of the respective domain to

the mitochondrial import mechanism of CHCHD10, we generated

truncated CHCHD10 expression constructs and analyzed the mutant

proteins by immunofluorescence and biochemical fractionation

(Fig 3A–C). Similar to the R15L mutation, truncation of the

predicted N-terminal MTS (DNT, aa 1–16) had little effect on the

mitochondrial import. Deleting the C-terminal CHCH domain

(DCHCH, aa D92–142) strongly reduced protein levels and

prevented mitochondrial import nearly completely. Importantly, the

Q108* patient variant inhibited mitochondrial import like the Q108P

mutation. Both CHCHD10 DCHCH and Q108* proteins were retained

in the cytosolic fraction, confirming that an intact CHCH domain is

necessary for mitochondrial import of CHCHD10 (Fig 3B and C).

Deleting the N-terminus from the Q108P did not further impair mito-

chondrial import arguing for a dominant role of the CHCH domain

(Fig 3B and C).

To determine which domains of CHCHD10 are sufficient for

mitochondrial import, we fused the N-terminus (NT-GFP, amino

acids 1–33) or the C-terminus (CHCH-GFP and GFP-CHCH, amino

acids 88–142) to GFP. While conventional MTS is widely used in flu-

orescent mitochondrial reporters, the predicted MTS of CHCHD10

was not sufficient for mitochondrial import when fused to GFP

(Fig 3D). Unexpectedly, the CHCH domain fused to either the N- or

C-terminus of GFP also failed to drive mitochondrial import.
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Figure 3. The CHCH domain is necessary for mitochondrial import of CHCHD10.

HeLa cells were transfected with the indicated CHCHD10 variants (D10-HA) and GFP-fusion proteins.

A–D (A, D) Double immunofluorescence using ATP5A1 as a mitochondrial marker protein. Cells with similar expression level are shown. Scale bars represent 10 lm.
(B, C) Representative immunoblot of biochemical fractionation of mitochondria and cytosol using antibodies against HA, ATP5A1, and actin followed by quantitative
analysis of the respective CHCHD10 truncation mutant. Levels of HA-tagged CHCHD10 (D10-HA) were either normalized to ATP5A1 (for mitochondria) or actin (for
cytosol). Data are shown as mean � SD. One-way ANOVA (followed by Dunnett’s post hoc test against WT): n = 3–4 biological replicates, mitochondrial: WT versus
DCHCH **P = 0.0013, WT versus Q108* **P = 0.0019, WT versus Q108P **P = 0.0030, WT versus DNT-Q108P **P = 0.0020; Cytosolic: WT versus Q108* *P = 0.0428.

Source data are available online for this figure.
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However, fusing GFP to the N- or C-terminus of full-length

CHCHD10 also blocked mitochondrial import of wild-type CHCHD10

(data not shown), indicating that the CHCH domain-mediated

import mechanism may not be compatible with large proteins,

which unfortunately precludes definite interpretation of this experi-

ment. The truncation experiments show that mitochondrial import

of CHCHD10 is predominantly driven by the CHCH domain.

Mutations in the hydrophobic region and the CHCH domain
affect subcellular CHCHD10 distribution

To test, whether impaired mitochondrial import is a common patho-

mechanism, we examined steady state protein levels and localiza-

tion of all reported missense CHCHD10 variants (Bannwarth et al,

2014; Ajroud-Driss et al, 2015; Dols-Icardo et al, 2015; Jiao et al,

2016; Perrone et al, 2017; Zhou et al, 2017). In public exome

sequencing data from ~ 2,000 ALS patients (ALSdb, Cirulli et al,

2015), we discovered two additional CHCHD10 mutations in the

CHCH domain that are rare in the ExAc database (Lek et al, 2016).

One case had a heterozygous mutation of an essential cysteine

(C122R), and one case had a charge-altering mutation in a highly

conserved residue (E127K) within the CHCH domain, suggesting

that such mutations significantly contribute to ALS pathogenesis. In

addition, this dataset contained novel R6G and G66S variants. To

facilitate site-directed mutagenesis of the highly GC-rich sequence,

we used a codon-optimized synthetic gene encoding human

CHCHD10 (Fig EV2A). The Q108P and R15L mutants had similar

effects on expression and localization, although the synthetic gene

allowed higher expression levels (Fig EV2B and C).

Importantly, the C122R mutant showed diffuse cytoplasmic local-

ization similar to Q108P (Figs 4A and EV2C). Consistent with previ-

ous reports (Woo et al, 2017), CHCHD10 S59L showed small

punctate staining in mitochondria in many transfected cells. Even

stronger clustering was observed for G66V and E127K in nearly all

cells. Other variants in the hydrophobic domain had little (G58R

and G66S) or no effect (V57E) on CHCHD10 localization but may

have subtle effects on mitochondrial morphology similar to reports

for S59L (Bannwarth et al, 2014; Woo et al, 2017). The other vari-

ants showed no gross abnormalities in expression level and localiza-

tion by immunofluorescence (Fig EV3), highlighting the importance

of the hydrophobic region and the CHCH domain.

For a more quantitative analysis, we analyzed CHCHD10 protein

levels 3 days after transfection (Fig 4B). CHCHD10 P23S, G58R,

G66V, Q108P, and C122R levels were significantly reduced

compared to wild-type. Surprisingly, expression of the common

P34S variant and R6G, R15S, A32D, and A35D was enhanced argu-

ing against pathogenicity. Biochemical fractionation confirmed that

C122R strongly inhibits mitochondrial import similarly to Q108P

suggesting that disulfide-bond formation in the CHCH domain is

critical for mitochondrial import (Fig 4C and D).

Mia40 mediates mitochondrial import of CHCHD10

To test whether CHCHD10 is imported into mitochondria via the

Mia40 redox system similar to other CHCH domain containing

proteins, we used siRNA to inhibit this pathway, also including the

FAD-linked sulfhydryl oxidase Erv1 and AIFM1. RT–qPCR and

immunoblotting confirmed the potency and specificity of all siRNAs

(Fig 5A–C). Strikingly, Mia40 knockdown strongly reduced the

levels of endogenous CHCHD10 protein despite unchanged mRNA

levels. Knockdown of AIFM1 and Erv1 also seemed to decrease

CHCHD10 protein levels slightly, however, without reaching statisti-

cal significance (Fig 5C). Immunofluorescence confirmed colocaliza-

tion of endogenous CHCHD10 with mitochondrial cytochrome c

oxidase II (MTCO2; Fig 5D). In contrast to control, Mia40 knock-

down strongly reduced overall CHCHD10 levels and prevented mito-

chondrial targeting. Due to the low CHCHD10 protein levels in

Mia40 knockdown, we speculate that CHCHD10 mislocalized to the

cytosol is degraded rapidly similar to our findings for Q108P

(Fig EV1C–E).

Mia40 mediates import of its substrates by direct binding and

disulfide-bond formation, which traps the target proteins in the

mitochondria (Peleh et al, 2016). Therefore, we analyzed interac-

tion of CHCHD10 with Mia40 in cotransfected HeLa cells. Co-

immunoprecipitation experiments showed interaction of wild-type,

Q108P, and R15L CHCHD10 with Mia40, but no interaction with the

DCHCH construct and only weak interaction with the Q108*

construct (Fig EV4A).

To directly probe Mia40-mediated disulfide-bond formation in

the CHCH domain, we treated cell extracts with 4-acetamido-40-
maleimidylstilbene-2,20-disulfonic acid (AMS), which is covalently

linked to free thiol-groups and thus leads to slower migration in

SDS–PAGE. AMS treatment of non-reduced extracts had no effect on

wild-type CHCHD10 migration indicating that all cysteine residues

are oxidized under basal conditions (Fig 5E). Prior reduction with

DTT increased the apparent molecular weight of wild-type

CHCHD10, particularly upon heating samples to 95°C, presumably

due to increased reduction efficiency. Similar results were obtained

for endogenous CHCHD10 (Fig EV4B). While CHCHD10 Q108P

levels were lower under all conditions, heating the CHCHD10

Q108P extracts during DTT treatment had no additional effect on

AMS accessibility in contrast to the wild-type. Thus, the Q108P

mutant is completely reduced by DTT already at room temperature

indicating that the CHCH domain in the Q108P mutant may be

misfolded. Moreover, treating CHCHD10 R15L extract with AMS

showed results similar to wild-type, suggesting normal formation of

disulfide bonds in the intermembrane space of mitochondria in this

mutant.

Mia40 overexpression restores mitochondrial import of
CHCHD10 Q108P

Since mitochondrial import of wild-type CHCHD10 depends on

the integrity of the Mia40 system, we asked how the patient-

derived variants are affected by this pathway. First, we analyzed

the impact of Mia40 overexpression on the localization of

CHCHD10 Q108P in HeLa cells. Strikingly, Mia40 promoted mito-

chondrial import of CHCHD10 Q108P (Fig 6A). The rescue of

mitochondrial import of CHCHD10 Q108P due to Mia40 overex-

pression was fully replicated in primary neurons (Fig 6B). Addi-

tionally, biochemical fractionation and quantification confirmed

that overexpression of Mia40 increased the levels of wild-type,

Q108P, and R15L CHCHD10 in isolated mitochondria from HeLa

cells (Fig 6C and D, also seen in input of Fig EV4A). Overex-

pressed Mia40 increased also wild-type and mutant CHCHD10 in

the cytosolic fraction, which may be explained by partial
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cytosolic localization of excess Mia40 (Fig EV4C). Importantly,

Mia40 expression also enhanced CHCHD10 Q108P stability

(Fig EV4D and E). Moreover, biochemical analysis of CHCHD10

disulfide-bond formation using AMS treatment confirmed Mia40-

induced oxidation and mitochondrial import of Q108P CHCHD10.

Without Mia40 overexpression, the CHCHD10 Q108P mutant was

poorly expressed (Fig 6E). However, co-expression of Mia40

resulted in higher protein expression and disulfide-bond forma-

tion comparable to wild-type CHCHD10, suggesting that oxida-

tion via Mia40 is crucial for the stability and mitochondrial

localization of CHCHD10 Q108P. Thus, Mia40 overexpression

likely restores mitochondrial import of CHCHD10 Q108P by

promoting disulfide-bond formation.

Discussion

Unusual phenotypes of genetically determined diseases offer an

opportunity to explore molecular pathomechanisms. The known

CHCHD10 mutations are usually associated with slow progress-

ing forms of late-onset motoneuron disease and frontotemporal

dementia. Here, we identified a novel CHCHD10 mutation in a
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Figure 4. Differential effect of CHCHD10 patient variants on localization and expression.

HeLa cells were transfected with HA-tagged CHCHD10 (D10-HA) patient variants.

A Immunofluorescence shows expression pattern of CHCHD10-HA variants compared to the mitochondrial marker ATP5A1. Arrowheads indicate clustering of CHCHD10
within mitochondria. Scale bar represents 10 lm.

B Quantification of CHCHD10 levels from immunoblots of whole cell lysates. Data are shown as mean � SD. One-way ANOVA (followed by Dunnett’s post hoc test
against WT): n = 3–6 biological replicates, WT versus R6G: *P = 0.0145, WT versus R15S: ***P = 0.0001, WT versus P23S: *P = 0.0189, WT versus A32D: ***P = 0.0001,
WT versus P34S: ***P = 0.0001, WT versus A35D: **P = 0.0044, WT versus G58R: **P = 0.0029, WT versus G66V: ***P = 0.0001, WT versus Q108P: ***P = 0.0001, WT
versus C122R *P = 0.0146.

C Immunoblot of biochemical fractionation of mitochondria and cytosol from transfected HeLa cells expressing different CHCHD10 patient variants using antibodies
against HA, ATP5A1, and actin.

D Quantification of CHCHD10-HA protein level normalized to mitochondrial ATP5A1. Data are shown as mean � SD. One-way ANOVA (with Dunnett’s post hoc test
against WT): n = 4 biological replicates, Mitochondrial CHCHD10 WT versus Q108P: *P = 0.0156, WT versus C122R: *P = 0.0172.

Source data are available online for this figure.
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young ALS patient with an aggressive disease course and

analyze the consequences for protein function. The Q108P muta-

tion inhibits mitochondrial import of CHCHD10 via the Mia40

system nearly completely. Rescue of mitochondrial import by

Mia40 overexpression suggests that Q108P reduces binding affin-

ity to Mia40 and can be compensated for by excess Mia40. In

contrast, the common R15L mutation had a much smaller effect

on protein levels and subcellular distribution, while several

mutations in the hydrophobic domain cause clustering of

CHCHD10 within mitochondria. Thus, the strong effect of

CHCHD10 Q108P on mitochondrial import may explain the

aggressive disease in the mutation carrier and suggests that

CHCHD10 is important for mitochondrial respiration in motoneu-

rons during healthy aging.

Mitochondrial import of CHCHD10 via Mia40

To address the pathogenicity of the novel Q108P variant in

CHCHD10, we expressed the mutant protein in HeLa cells and

primary hippocampal neurons and noticed diffuse localization all

over the cell compared to predominantly mitochondrial localization

of the wild-type. Our findings suggest that impaired mitochondrial

import is the main pathogenic mechanism for the CHCHD10 Q108P

variant and led us to investigate the mitochondrial import mecha-

nisms of wild-type and mutant CHCHD10 in more detail.

Apart from the 13 proteins encoded on the mitochondrial DNA,

all other ~ 1,500 mitochondrial proteins are synthesized in the

cytosol and require active transport into mitochondria (Wiedemann

& Pfanner, 2017). The vast majority of nuclear encoded proteins
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Figure 5. Mitochondrial import of CHCHD10 depends on Mia40.

A–D HeLa cells were transfected with siRNA targeting CHCHD10, Mia40, AIFM1, Erv1, or control (siCtrl). (A) Quantitative RT–PCR confirm specific knockdown of
CHCHD10, Mia40, AIFM1, and Erv1. mRNA levels were normalized to GAPDH and B2M mRNA. Data are shown as mean � SD. One-way ANOVA (followed by
Dunnett’s multiple comparisons test against siCtrl) was used for statistical analysis: n = 4 biological replicates, siCtrl versus siD10 ***P = 0.0001, siCtrl versus
siMia40 ***P = 0.0001, siCtrl versus siAIFM1 ***P = 0.0001, siCtrl versus siErv1 ***P = 0.0001. (B) Immunoblots with indicated antibodies in siRNA transfected
cells. (C) CHCHD10 protein quantification of siRNA transfected cells normalized to actin. Data are shown as mean � SD. Kruskal–Wallis test: n = 4 biological
replicates, siCtrl versus siD10: **P = 0.0013, siCtrl versus siMia40: **P = 0.0136. (D) Immunostaining of Mia40 knockdown HeLa cells shows overall reduced
expression of CHCHD10 compared to control (siCtrl). An antibody against mitochondrially encoded cytochrome c oxidase II (MTCO2) labels mitochondria. Scale bar
represents 10 lm.

E AMS assay to assess disulfide-bond formation in whole cell extracts of HeLa cells transfected with CHCHD10-HA wild-type (WT) and mutants (Q108P, R15L).
Extracts were treated with the thiol-reactive cross-linker AMS (10 mM, 37°C, 60 min) with or without prior reduction with DTT and heat denaturation (95°C,
10 min), and subjected to immunoblotting to analyze AMS-induced gel shift from oxidized (ox) to reduced (red) forms of CHCHD10. Note that 95°C treatment has
no additional effect on AMS accessibility of CHCHD10 Q108P indicating impaired folding compared to wild-type and R15L. Upper and lower panel show short and
long exposure of the same blot, respectively. Asterisk denotes degradation product.

Source data are available online for this figure.
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have to pass through the translocator of the outer membrane

(TOM). Distinct machinery directs these proteins further to their

final destination in the outer membrane, the intermembrane space,

the inner membrane or the matrix, depending on additional

sequence motifs. The classical import pathway is triggered by an

amphipathic N-terminal MTS recognized by the TOM complex. For

CHCHD10, the NCBI annotation and bioinformatic predictions tools

(e.g., Psort2 and MitoProt II) suggest the presence of a classical N-

terminal MTS with interspaced conserved arginines (amino acids

1–16). So far, the N-terminal region has been interpreted as an

MTS in several papers without rigorous experimental validation

(e.g., Perrone et al, 2017). Disruption of this putative MTS could

potentially explain pathogenicity of the common N-terminal muta-

tions. However, the R15L mutant was still localized to mitochondria

and expression levels and stability of CHCHD10 were only slightly

reduced, which is consistent with previous colocalization data for

this mutant (Woo et al, 2017). Other tested N-terminal variants

(R6G, P12S) did not reduce expression levels noticeable or even

increased expression (R15S). The dramatic reduction of endogenous

CHCHD10 levels in Mia40 knockdown cells suggests that cytosolic

CHCHD10 lacking the characteristic disulfide bonds is misfolded

and rapidly degraded. We therefore cannot exclude that the reduced
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Figure 6. Mia40 overexpression rescues CHCHD10 mutants.

Co-transfection of HeLa cells (A, C, D, E) and co-transduction of primary hippocampal rat neurons (B) with the indicated HA-tagged CHCHD10 (D10-HA) variants and Mia40-
MYC or empty vector (Ctrl).

A, B Immunofluorescence shows colocalization of wild-type CHCHD10 with Mia40. Scale bars represent 10 lm. Overexpression of Mia40 promotes expression and
mitochondrial localization of CHCHD10 Q108P.

C, D Immunoblot and quantification of mitochondrial fraction confirms CHCHD10 stabilization and increased mitochondrial localization upon Mia40 expression
compared to empty vector. Quantification normalized to ATP5A1. Data are shown as mean � SD. Kruskal–Wallis test: n = 4 biological replicates. Q108P Ctrl versus
Q108P Mia40 *P = 0.0126.

E AMS treatment visualizes disulfide-bond formation in CHCHD10 Q108P upon Mia40 expression comparable to wild-type CHCHD10 (with endogenous Mia40
levels). Actin is used as loading control. Note that DTT treatment has no effect on AMS cross-linking of actin, because all its cysteines are reduced in the
cytoplasmic environment. Asterisk denotes degradation product.

Source data are available online for this figure.
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expression of R15L is due to slightly less efficient mitochondrial

import. Indeed, consistent with other recent reports, CHCHD10

R15L has a shorter half-life time than wild-type (Brockmann et al,

2018). The N-terminal arginine-rich sequence may enhance mito-

chondrial import although it is neither necessary nor sufficient for

mitochondrial import by itself. Truncation of the N-terminus did not

further impair mitochondrial import in Q108P. The more dramatic

effect of the Q108P mutation on mitochondrial import and half-life

time may explain the early age of onset in our patient.

Deletion of the whole CHCH domain completely abolished mito-

chondrial import of CHCHD10. The Mia40 redox system mediates

import of proteins with twin CX3C and CX9C motifs into the inter-

membrane space, including CHCH domain proteins (Mesecke et al,

2005). We show that mitochondrial import of CHCHD10 critically

depends on Mia40. Strikingly, overexpression of Mia40 promotes

import of not only wild-type CHCHD10 but also the Q108P and

R15L mutants. In yeast, Mia40 levels are rate limiting for mitochon-

drial import suggesting it acts as a trans-site receptor for import

(Peleh et al, 2016). In addition, disulfide-bond formation is impaired

in the Q108P mutant, which may be due to disturbed a-helix forma-

tion in the CHCH domain because proline is a strong helix breaker

(Darshi et al, 2012). Interestingly, exome sequencing of ~ 2,000

mostly sporadic ALS cases revealed a mutation (C122R) in one of

the critical cysteines in the CHCH domain that also impaired mito-

chondrial import (ALSdb, Cirulli et al, 2015).

Our analysis of all reported missense CHCHD10 variants suggests

that mutations within the hydrophobic region (G58R, S59L, G66V,

and G66S) might invoke additional pathomechanisms because they

still allow mitochondrial targeting but lead to intra-mitochondrial

clustering. Surprisingly, a similar localization pattern was observed

for the E127K variant, but not for other variants in the CHCH domain.

Recently, partial nuclear localization and transcriptional effects

of CHCHD10 and a homologous protein, CHCHD2, have been

reported (Aras et al, 2015, 2017; Woo et al, 2017), particularly

under stress conditions such as TDP-43 overexpression or oxidative

stress. We detected some nuclear staining (Figs 1B and 3A) for

CHCHD10 Q108P and other variants with strongly impaired mito-

chondrial import, suggesting they might additionally cause a gain of

toxic function.

Relevance of CHCHD10 impairment for ALS/FTD

Mitochondrial dysfunction has long been implicated in the patho-

genesis of ALS (Smith et al, 2017). ALS-causing mutations in SOD1

inhibit respiration and cause mitochondrial damages (Magrane et al,

2009), and poly-Gly-Arg/Pro-Arg translated from the expanded

C9orf72 hexanucleotide repeat induce oxidative stress and disrupt

mitochondrial architecture (Lopez-Gonzalez et al, 2016). Further-

more, pathogenic OPTN mutations impair mitochondrial clearance

by mitophagy (Wong & Holzbaur, 2014). Mitochondrial dysfunction

has been linked to other neurodegenerative diseases and may

explain the broad clinical symptoms associated with CHCHD10

mutations. Interestingly, we noticed reduced spare respiratory

capacity upon CHCHD10 knockdown or CRISPR/Cas9-mediated

truncation consistent with findings in patient fibroblasts with

CHCHD10 S59L (Genin et al, 2016). Importantly, spare respiratory

capacity was also reduced in lymphoblasts showing reduced

CHCHD10 expression due to nonsense-mediated decay caused by a

Q108* mutation in an FTD patient (Perrone et al, 2017). This may

impair ATP synthesis in patient motoneurons or muscle and may be

accompanied by enhanced formation of damaging reactive oxygen

species. Several previous reports of conflicting findings of respira-

tory function in CHCHD10 cellular models (mutant, knockdown,

and overexpression) and the recent finding of impaired respiration

in muscle but not in whole brain of homozygous CHCHD10 knock-

out mice suggest cell type-specific effects are at play (Burstein et al,

2018; Straub et al, 2018). Interestingly, CHCHD10 knockdown in

zebrafish also causes muscle pathology (Brockmann et al, 2018).

Altered metabolism in muscle may promote to ALS pathogenesis

(Loeffler et al, 2016). AIFM1, which is required for mitochondrial

targeting of Mia40, and thus indirectly of CHCHD10, has been linked

to mitochondrial encephalopathy and axonal neuropathy (Ghezzi

et al, 2010; Rinaldi et al, 2012). AIFM1 knockdown appeared to

reduced CHCHD10 levels after 3 days (without reaching statistical

significance), but longer knockdown may be required for a more

severe effect due to its indirect action via Mia40.

Together, our data demonstrate that the Q108P mutation almost

completely prevents mitochondrial import and perturbed mitochon-

drial function may ultimately lead to motoneuron degeneration. The

stronger effect of Q108P on mitochondrial import compared to

previously characterize pathogenic variants may explain the early

onset and aggressive course of ALS in our patient. Our findings have

implications for genetic counseling of novel CHCHD10 variants and

suggest future therapeutic approaches: (i) Variants in conserved

residues of the CHCH domain and nonsense mutations (e.g., the

previously reported Q108*) are likely pathogenic. Variants in the

hydrophobic region primarily alter CHCHD10 distribution within

mitochondria. Thus, analyzing mitochondrial import and clustering

within mitochondria may be used to assess pathogenicity of novel

variants. (ii) Unless the mutant CHCHD10 causes a toxic gain-of-

function phenotype, epigenetic boosting of CHCHD10 expression

may rescue haploinsufficiency by increasing expression of the wild-

type allele. (iii) It may be possible to pharmacologically activate the

Mia40/Erv1 disulfide relay system using small redox-compounds.

Boosting Mia40 activity or expression may promote import of

mutant and wild-type CHCHD10 and thus restore its function within

mitochondrial respiration. Most importantly, our report of a novel

aggressive mutation with clear functional consequences strongly

supports the genetic linkage of CHCHD10 to ALS/FTD pathogenesis.

Materials and Methods

Patient materials, clinical history, and sequencing

All procedures on human subjects were in accordance with the

WGA Declaration of Helsinki and the Department of Health and

Human Services Belmont Report. The Q108P patient consented to

diagnostic DNA testing for ALS mutations. All information was

obtained from the hospital files. No experiments were done on the

patient or using patient material. Genomic DNA was sequenced with

a TruSeq Custom Amplicon kit on a MiSeq (Illumina) according to

the protocol from the manufacturer. The custom gene panel covered

all exons of CHCHD10, CHMP2B, GRN, MAPT, NEK1, OPTN,

PSEN1, PSEN2, SOD1, TARDBP, TBK1, TUBA4A, TREM2 and the

exons with known pathogenic mutations of APP (exons 12–15),
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CSF1R (exon 13–21), FUS (exon 6, 14, 15), HNRNPA1 (exon 9),

HNRNPA2B1 (exon 10), MATR3 (exon 1), VCP (exons 3, 5, 6, 11).

The CHCHD10 Q108P mutation was confirmed by Sanger Sequenc-

ing of genomic DNA (primers GTGGCCCCAGGTTTGAAAC and

CAATCTGGTGTTGTGGTCTGG). Repeat primed PCR for C9orf72

repeat expansion was performed as described previously (van der

Zee et al, 2013).

Epstein–Barr virus (EBV)-transformed lymphoblast cell lines

were established according to standard procedures for previously

reported patients and controls (Perrone et al, 2017). All subjects

had given informed consent.

DNA constructs, siRNA, and transfection

CHCHD10 and Mia40/CHCHD4 were amplified from HEK293T

cDNA and cloned in the FUW3a lentiviral expression vector contain-

ing a C-terminal HA or myc epitope tag. As controls we used the

empty vectors containing only the epitope tag. The following

CHCHD10 truncations were generated: D1–16 (DNT), D108–142
(Q108*), D92–142 (DCHCH). Q108P and R15L were introduced by

standard mutagenesis. For Figs 4 and EV2, we introduced several

patient variants in a codon-optimized synthetic gene with reduced

GC-content encoding human CHCHD10. All constructs were

sequence verified. We used Silencer Select siRNA targeting human

Mia40/CHCHD4 (s43607, Thermo Fisher Scientific), human

CHCHD10 (s53406, Thermo Fisher Scientific), human Erv1/Gfer

(s5704, Thermo Fisher Scientific), human AIFM1 (s17440, Thermo

Fisher Scientific), and the Silencer Select Negative Control No. 1

(#4390844, Thermo Fisher Scientific). HeLa cells were transfected

using Lipofectamine 2000 (Thermo Fisher Scientific).

CRISPR/Cas9 genome editing

HAP1 cells (Horizon Discovery) were transfected with Cas9

(Addgene plasmid #52962) and sgRNA (TCTGAGTGGTGGAA

CAGTCC in Addgene plasmid #41824) using Lipofectamine 3000

(Thermo Fisher Scientific). After 12 h, medium was exchanged for

24 h before splitting into selection medium containing 8 lg/ml blas-

ticidin and 400 lg/ml Zeocin. After 3 days, selection medium was

removed and cultured for 10–14 days till single cell clones were visi-

ble. Individual clones were picked and cultured in 96 wells. For

screening, genomic DNA was extracted with the NucleoSpin Tissue

96 well kit (Macherey-Nagel) according to manufacturer’s instruc-

tions. The region of CHCHD10 targeted by the sgRNA was PCR

amplified (GGTTTGAAACGCACCTCCAG and AGGTGCAAGAGGA

GGGTTG) using the Q5 High-Fidelity Master Mix (New England

Biolabs) and analyzed by Sanger sequencing.

Antibodies

The following primary antibodies were used: anti-HA (clone 3F10,

Thermo Fisher - IF 1:10, WB 1:50), anti-myc (9E10 hybridoma

supernatant, WB 1:15, supernatant of clone 9E10, IF 1:200, puri-

fied), anti-ATP5A1 (WB 1:1,000, IF 1:250, clone 15H4C4, abcam

14748), anti-CHCHD10 (C-terminal WB 1:500, IF 1:100, abcam

121196), anti-CHCHD10 (N-terminal, WB 1:500, abcam ab124186),

anti-MTCO2 (IF 1:100, abcam 3298), anti-actin (WB 1:3,000, clone

A5316, Sigma), anti-calnexin (WB 1:7,000, clone SPA-860, Enzo Life

Sciences), anti-CHCHD4 (Mia40, WB: 1:1,000, Proteintech 21090-1-

AP) anti-AIF (AIFM1, WB 1:1,000, abcam ab32516), anti-Gfer (Erv1,

WB 1:200, Atlas Antibodies HPA041227).

Cell culture, mitochondrial fractionation

HeLa cells were transfected with plasmids and siRNA using Lipofec-

tamine 2000 (Thermo Fisher Scientific) according to the manufac-

turer’s instructions. Three days after transfection, mitochondria

were isolated using the Qproteome Mitochondria Isolation Kit (Qia-

gen). The cytosolic fraction was precipitated with four volumes of

ice-cold acetone and incubated for 15 min on ice. After centrifuga-

tion (10 min, 12,000 g, 4°C), the pellet was washed twice with

acetone and air dried. The cytosolic pellet and the highly purified

mitochondrial pellet were resuspended in RIPA buffer (137 mM

NaCl, 20 mM Tris pH 7.5, 0.1% SDS, 10% glycerol, 1% Triton X-

100, 0.5% deoxycholate, 2 mM EDTA) containing protease inhibitor

cocktails (1:100, Sigma), incubated for 20 min on ice, and sonicated

for 10s. Afterward, the protein concentration was determined using

BCA assay (Interchim). After adding 4× Laemmli buffer (Bio-Rad)

containing 2-mercaptoethanol, samples were denatured (95°C,

10 min) and loaded with the same protein amount on Novex

10–20% Tris-Tricine gels (Life Technologies).

Protein stability and immunoblotting

For protein stability analysis, HeLa cells were treated 2 days after

transfection with 150 lg/ml cycloheximide dissolved in DMSO or

DMSO only for 0, 4, 8, and 24 h.

For immunoblotting of the whole cell lysates, cells were lysed in

RIPA buffer (137 mM NaCl, 20 mM Tris pH 7.5, 0.1% SDS, 10%

glycerol, 1% Triton X-100, 0.5% deoxycholate, 2 mM EDTA) with

protease inhibitor cocktails (1:100, Sigma) and incubated on ice

(20 min). After centrifugation (18,000 g, 15 min), the supernatant

was transferred into a new tube, protein concentration was deter-

mined by BCA assay (Interchim), and 4× Laemmli buffer (Bio-Rad)

containing 2-mercaptoethanol was added. Samples were denatured

at 95°C for 10 min and loaded on Novex 10–20% Tris-Tricine gels

(Life Technologies) or 12.5% SDS–PAGE gels.

Immunoprecipitation

HeLa cells were lysed at 4°C for 20 min in lysis buffer (120 mM

NaCl, 1 mM EDTA, 0.5% NP-40, 20 mM Tris–HCL pH 8) supple-

mented with protease and phosphatase inhibitors and centrifuged at

13,000 g for 10 min. HA-labeled magnetic beads (Thermo Fischer

88836) were washed with 4°C lysis buffer; 5% of the cell lysate was

used as an input control and the rest of the cell lysate was incubated

at 4°C with HA-labeled beads overnight. Beads were washed

three times with 4°C lysis buffer supplemented with protease and

phosphatase inhibitors, boiled in 50 ll Laemmli buffer (Bio-Rad)

containing 2-mercaptoethanol, and analyzed by immunoblotting on

Novex 10–20% Tris-Tricine gels (Life Technologies).

Neuronal cell culture and lentivirus production

Primary hippocampal cultures were prepared from E19 rats as

described previously and plated on glass coverslips coated with
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poly-D-lysine (Guo et al, 2018). Lentivirus was packaged in

HEK293FT cells as described (Guo et al, 2018).

Immunofluorescence

After washing once with PBS, HeLa cells (2 days after transfec-

tion) and transduced primary hippocampal rat neurons (DIV3 + 4)

were fixed for 10 min at room temperature (4% paraformalde-

hyde and 4% sucrose in PBS). Primary and secondary antibodies

were diluted in GDB buffer (0.1% gelatin, 0.3% Triton X-100,

450 mM NaCl, 16 mM sodium phosphate pH 7.4). For visualizing

the nucleus, cells were stained with DAPI (1:5,000 in PBS,

10 min, RT). After mounting the coverslips with FluoromountTM

Aqueous Mounting medium (Sigma), images were taken with

LSM710 confocal microscope (Carl Zeiss, Jena) using a 63× oil

immersion objective (NA 1.4).

RNA isolation and quantitative RT–PCR

After 3 days of transfection, RNA isolation was conducted with the

RNeasy- and QIAshredder kit (Qiagen) following the manufacturer’s

instructions. cDNA was generated using the TaqMan MicroRNA

Reverse Transcription Kit (Applied Biosystems) with random

hexamer primers according to the manufacturer’s instructions. RT–

qPCR was performed on the CFX384-Real-Time system (Bio-Rad)

using following primers: CHCHD10 (Hs01369775_g1, Thermo

Fisher), Mia40/CHCHD4 (Hs01027804_g1, Thermo Fisher), AIFM1

(Hs00377585_m1, Thermo Fisher), Erv1/GFER (Hs00193365_m1,

Thermo Fisher), B2M (4326319E, Thermo Fisher), GAPDH

(Hs02758991_g1, Thermo Fisher). Signals were normalized to

GAPDH and B2M with the CFX Manager program (Bio-Rad) accord-

ing to the DDCT method.

Analysis of disulfide-bond formation

We used thiol-reactive 4-acetamido-40-maleimidylstilbene-2,20-
disulfonic acid (AMS, Thermo Fisher) to analyze disulfide-bond

formation following the protocol by (Gross et al, 2011). HeLa

cells were lysed in RIPA buffer (137 mM NaCl, 20 mM Tris pH

7.5, 0.1% SDS, 10% glycerol, 1% Triton X-100, 0.5% deoxy-

cholate, 2 mM EDTA) for 20 min on ice. After centrifugation

(18,000 g, 15 min, 4°C), the supernatant was divided and incu-

bated at room temperature or 95°C for 10 min with or without

15 mM dithiothreitol (DTT). Afterwards, proteins were precipi-

tated with trichloroacetic acid (TCA). Here, one volume of a

8 M TCA stock solution was added to four volumes of protein

sample, incubated at 4°C for 10 min, and centrifuged (18,000 g,

5 min, 4°C). After removing the supernatant, the pellet was

washed with ice-cold acetone and again centrifuged (18,000 g,

5 min, 4°C). These washing steps were repeated twice, and the

remaining pellet was dried at 95°C for 5–10 min. After acetone

evaporation, the pellet was resolved in buffer (2% SDS,

100 mM Tris pH 8, 100 mM NaCl, 10 mM EDTA) and 10 mM

AMS or distilled water was added. The samples were incubated

for 60 min at 37°C in the dark. After adding 50 mM iodoacetic

acid (IAA), Laemmli buffer (Bio-Rad) was added and the

proteins were analyzed by immunoblotting using 12.5% SDS–

PAGE gels.

Quantitative analysis of respiration

Oxygen consumption rate (OCR) was measured using the Seahorse

XF96 extracellular flux analyzer (Agilent). The day before,

siCHCHD10 knockdown or control siRNA transfected HeLa cells

were plated in growth medium in 96-well plates (Agilent). For OCR

measurements, growth medium was replaced with pre-warmed XF

assay medium (Agilent) supplemented with 10 mM glucose and

10 mM pyruvate, and cells were incubated at 37°C without CO2 for

60 min. To measure OCR in patient lymphoblastoid cells, 96-well

plates (Agilent) were coated with 30 ll of poly-D-lysine (50 lg/ml)

in 0.1 M borate buffer (pH 8.5) for 2 h and washed twice with

cell culture-grade water. One hour before the measurement,

The paper explained

Problem
Several mutations in CHCHD10 have been reported in familial and
sporadic cases of amyotrophic lateral sclerosis (ALS), frontotemporal
dementia (FTD), spinal muscular atrophy, and mitochondrial myopa-
thy, but their mode of action is unclear. Since disease progression in
mutation carriers is usually slow and penetrance is incomplete, some
geneticists raised concerns, whether CHCHD10 mutations are truly
pathogenic. CHCHD10 is a small protein localized to the intramem-
brane space of mitochondria. It is involved in organizing cristae
morphology and has been linked to stability of mitochondrial DNA.
Loss-of-function and gain-of-function pathomechanisms have been
discussed. Several patient mutations, including R15L, are located in
the proposed N-terminal mitochondrial targeting signal (MTS), but
the mitochondrial import mechanism of CHCHD10 has not been care-
fully analyzed experimentally, although restoring mitochondrial
import of CHCHD10 may be a therapeutic strategy.

Results
We discovered a novel CHCHD10 mutation (Q108P) in a highly
conserved residue within the coiled-coil-helix-coiled-coil-helix (CHCH)
domain in a young ALS patient with aggressive disease progression
and analyzed its pathogenicity in transfected heterologous cells and
primary rat neurons. The Q108P mutation blocked mitochondrial
import nearly completely suggesting a loss-of-function mechanism.
Moreover, reduced CHCHD10 expression in heterologous and patient
cells inhibited mitochondrial respiration. The R15L mutation had only
a small effect on overall protein levels, but largely spared mitochon-
drial localization. Several other CHCHD10 variants reported in ALS/FTD
patients showed diffuse cytoplasmic localization (C122R) or dot-like
clustering within mitochondria (G58R, S59L, G66V, G66S, E127K) and
reduced stability and/or expression (R15L, P23S, G58R, G66V, Q108P,
Q108*, C122R). Mitochondrial import of CHCHD10 is predominantly
driven by Mia40-dependent disulfide-bond formation in the CHCH
domain rather than the putative N-terminal MTS. Overexpression of
Mia40 strikingly boosts mitochondrial import of CHCHD10 Q108P.

Impact
The identification of a novel CHCHD10 mutation resulting in aggres-
sive ALS and a clear loss-of-function phenotype in vitro strongly
supports the genetic role of CHCHD10 in ALS pathogenesis. This
unusual mutation revealed Mia40-dependent mitochondrial import of
CHCHD10 and suggests that activation of the Mia40-dependent mito-
chondrial import pathway could be a novel therapeutic strategy. Our
data supports the pathogenicity of several previously uncharacterized
CHCHD10 variants found in ALS/FTD patients via a loss-of-function
mechanism (R15L, P23S, G58R, G66V, Q108P, Q108*, C122R) and/or
gain-of-function mechanism (G58R, S59L, G66V, G66S, E127K).
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lymphoblasts were plated (1.1 × 105cells/well) in pre-warmed XF

assay medium (Agilent) and incubated at 37°C without CO2. Oligo-

mycin (final concentration 1 lM), FCCP (0.75 lM), and rotenone

and antimycin A (10 lM each) were diluted with pre-warmed assay

medium and loaded into injector ports. Assay cycles included 4 min

of mixing, followed by 4 min of measurement.

Expanded View for this article is available online.
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