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Abstract
Pathogens usually evade and manipulate host-immune pathways through pathogen–host

protein–protein interactions (PPIs) to avoid being killed by the host immune system. There-

fore, uncovering pathogen–host PPIs is critical for determining the mechanisms underlying

pathogen infection and survival. In this study, we developed a computational method, which

we named pairwise structure similarity (PSS)-PPI, to predict pathogen–host PPIs. First, a

high-quality and non-redundant structure–structure interaction (SSI) template library was

constructed by exhaustively exploring heteromeric protein complex structures in the PDB

database. New interactions were then predicted by searching for PSS with complex struc-

tures in the SSI template library. A quantitative score named the PSS score, which inte-

grated structure similarity and residue–residue contact-coverage information, was used to

describe the overall similarity of each predicted interaction with the corresponding SSI tem-

plate. Notably, PSS-PPI yielded experimentally confirmed pathogen–host PPIs of human

immunodeficiency virus type 1 (HIV-1) with performance close to that of in vitro high-

throughput screening approaches. Finally, a pathogen–host PPI network of human patho-

genMycobacterium tuberculosis, the causative agent of tuberculosis, was constructed

using PSS-PPI and refined using filtration steps based on cellular localization information.

Analysis of the resulting network indicated that secreted proteins of the STPK, ESX-1, and

PE/PPE family inM. tuberculosis targeted human proteins involved in immune response

and phagocytosis.M. tuberculosis also targeted host factors known to regulate HIV replica-

tion. Taken together, our findings provide insights into the survival mechanisms ofM. tuber-
culosis in human hosts, as well as co-infection of tuberculosis and HIV. With the rapid pace

of three-dimensional protein structure discovery, the SSI template library we constructed

and the PSS-PPI method we devised can be used to uncover new pathogen–host PPIs in

the future.
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Introduction
Upon infection by pathogens, various host immune response pathways such as toll-like recep-
tors signaling, NF-κB signaling, phagocytes, and cell-apoptosis pathways are activated. These
pathways then work collectively to recognize, take up, and ultimately kill invading pathogens.
However, pathogens have evolved diverse strategies for survival and replication under hostile
host environments [1–3]. Pathogens usually counteract host immune defense and even acquire
host nutrition through physical protein–protein interactions (PPIs). For example, the Legio-
nella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation [4]. The
VirA protein of Shigella flexneri targets host Rab1 for inactivation and then contributes to Shi-
gella escape from autophagy [5]. Neisseria TbpA binds iron-containing transferrin and extracts
iron directly from serum transferrin in a human host [6]. Therefore, discovery and analysis of
pathogen–host PPIs can enable the determination of pathogen survival mechanisms in hosts.

Pathogen–host PPIs have been screened for several viruses [7–10] and bacteria [11–14]
because they are critical for our understanding of pathogen-survival mechanisms. Information
on such interactions are available though several organism-specific or comprehensive-public
databases, including the Human Immunodeficiency Virus (HIV)-1 Human-Interaction Data-
base [15], VirusMentha [16], and HPIDB [17]. Experimental approaches mostly used to map
pathogen–host PPIs include affinity purification coupled with mass spectrometry [7] and yeast
two-hybrid assay [8–11]. However, reliable experiment-based methods are time-consuming,
expensive, and applicable only in limited species. Computational methods may play important
roles in paving the way for experimental pathogen–host PPI verifications by highlighting high
potential interactions and limiting the experimental scope, which can help to reduce expenses
and accelerate the pace of discovery [18]. Computational methods for pathogen-host PPIs
include the 'interologs' method [19, 20], domain-domain interaction method [20, 21], structure
similarity-based method [22, 23] and machine learning-based method [24].

Tuberculosis (TB) causes two million deaths annually worldwide, and approximately one-
third of the world’s population is asymptomatically infected withMycobacterium tuberculosis,
the main causative agent of this disease. TB infection also activates HIV replication and exacer-
bates HIV infection [25]. Successful intracellular survival ofM. tuberculosis in macrophages
involves modulation of several host-cell processes, including innate immune response and pha-
gosome maturation [26–28]. However, the molecular mechanisms underlying such processes
are unclear, which has been a stumbling block for development of efficient therapeutics.

In the present study, we developed a computational method, which we call pairwise struc-
ture similarity-PPI (PSS-PPI) to predict pathogen–host PPIs. PSS-PPI is a structure similarity
based method with improvement compared to previous methods [22, 23], including more
credible templates and a score function that measures similarity of both global structure and
local interaction interface. PSS-PPI uses highly credible complex structures from PDB database
as templates to predict new PPIs and integrates structure similarity with residue contact infor-
mation to score the credibility of each new predicted interaction. Results showed that PSS-PPI
successfully recovered experimentally confirmed pathogen–host PPIs of human immunodefi-
ciency virus type 1 (HIV-1) with performance close to that of in vitro high-throughput screen-
ing. We then constructed a pathogen–human PPI network of human pathogenM. tuberculosis
using PSS-PPI. Network-analysis results indicated that the serine/threonine protein kinase
(STPK) family, the ESAT-6 secretion system (ESX) family, and the PE/PPE family proteins of
M. tuberculosis interact with human proteins involved in immune response and phagocytosis
pathways. Comparison with the HIV-human PPI network indicated thatM. tuberculosis also
targets human proteins involved in HIV infection. These findings can serve as a basis for
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understanding the interaction betweenM. tuberculosis and human host at a molecular level
and can also provide insights into the molecular mechanisms of co-infection by TB and HIV.

Materials and Methods

Construction of SSI template library
The SSI template library was constructed using experimentally resolved, high-quality, three-
dimensional complex structures in the PDB database [29]. At the last data update of the current
study, the PDB database contained a total of ~100,000 structures. By excluding structures of
non-protein polymer (DNA/RNA), as well as monomeric and homomeric proteins, ~17,000
heteromeric protein complex structures were selected. Structures that were not resolved by X-
ray diffraction or NMR-based methods were removed. In addition, structures resolved by X-
ray diffraction with>4.0 Å resolution were removed. Finally, ~16,000 structures were collected
and downloaded from the PDB database. Then, SSIs were identified from these complex struc-
tures by calculating inter-chain residue–residue contacts. Each complex structure was first
split into monomer chains. Residue–residue contacts between monomer chains were then
calculated by measuring atom–atom contacts using 6.05 Å as the cutoff distance [30]. A total
of ~40,000 SSIs with>50 residue–residue contact number were identified from ~16,000 com-
plex structures. Given the redundancy of the PDB database, our current collected SSIs were
also redundant. Each SSI corresponded to a PPI, and corresponding SSIs of a PPI were usually
largely identical with minor differences. At present, structure-similarity alignment is more
computationally intensive than sequence-similarity alignment. Therefore, it is necessary to
remove redundancy in our SSI template library. In the current study, we used a “max RRCN”
strategy to construct a non-redundant SSI template library. That is, if two or more SSIs were
complex structures corresponding to the same PPI, only the SSI with themaximal residue–res-
idue contacts number (max RRCN) was selected as representative SSI. Finally, we obtained a
high-confidence and non-redundant SSI template library containing 3,375 SSIs out of 6,267
structures.

Protein sequences and structures
Proteins sequences of theM. tuberculosis proteome (3982 proteins) and human proteome
(20,272 proteins) were obtained from the UniProt database [31]. The three-dimensional struc-
tures of proteins were identified by sequence-similarity alignment using BLAST+ [32]. First, a
local BLAST database was constructed using protein sequences of structures in the PDB data-
base [29]. Then, BLAST search for query proteins was performed against the database. Match-
ing structures were required to have>90% sequence identity and>80 amino-acid residues. To
minimize redundancy, the matched structures for each protein were grouped according to the
corresponding protein segments. The structure with the highest sequence identity in each
group was selected as the representative structure. If multiple structures had the same sequence
identity, the structure with the best resolution was selected. A total of 443 structures for 423M.
tuberculosis proteins and 5,859 structures for 4,843 human proteins were obtained. The
selected three-dimensional structures were downloaded from the PDB database [29].

Structure–structure alignment
Structure–structure alignment and similarity scoring was performed using the structural super-
imposition program TM-align [33].
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PSS-PPIs and PSS score
We defined sA and sB as the structures of query proteins pA and pB, respectively, and tA and
tB as the structures of a known SSI complex from the SSI template library. Then, a potential
interaction between pA and pB was predicted if sA and sB shared structural similarity with tA
and tB, respectively.

We defined the PSS-score, which integrated structure similarity and residue–residue contact
coverage information to quantify the overall match of the query structures to the correspond-
ing SSI template. PSS-score was calculated as follows:

PSS�score ¼ SIMA� SIMB� COV ð1Þ
where SIMA is the structure-similarity score between query structure sA with template struc-
ture tA. In the current study, structure–structure alignments were performed using TM-align,
which used a TM-score (ranging from 0.0 to 1.0) to quantity similarity between the two struc-
tures. For each pair of structure–structure alignment, the TM-align output of two TM-score
values were normalized by the length (residue number) of the two aligned structures. We
defined SIMA as the average values of two TM-scores from the alignment of sA and tA. In the
same way, SIMB was defined as the average values of two TM-scores from the alignment of sB
and tB. COV is the coverage of residue–residue contacts calculated by

COV ¼ RRCNðsA; sBÞ
RRCNðtA; tBÞ ð2Þ

where RRCN(tA,tB) is the residue–residue contact number of the SSI template. RRCN(tA,tB)
was calculated by measuring atom–atom contacts. A residue–residue contact was defined if the
distance of any heavy atom pair from two residues was shorter than the cutoff value of 6.05 Å
[30]. RRCN(sA,sB) is the residue–residue contact number of the predicted interaction model.
Notably, RRCN(sA,sB) was mapped from residue–residue contacts in SSI template according
to residue-alignment information generated by structure alignment.

Pathogen-human protein–protein interaction data
HIV-1 and human proteins known to regulate HIV-1 replication were obtained from the HIV-
1 Human-Interaction Database [15]. Comprehensive pathogen–host protein interaction data
sets were obtained from the VirusMentha Database [16].

Visualization of protein interactions
Protein interaction data was visualized using Cytoscape software [34]. Each protein was repre-
sented as a node. Two proteins were linked by an edge if they interacted with each other.

Results

Principle of PSS-PPI and PSS score
Structurally similar monomer proteins can share similar interactions even in the absence of sig-
nificant sequence similarity. For example, the GCSF:GCSF-receptor complex structure and
vIL-6:IL6ST complex structure share structurally similar monomer and interaction conforma-
tions (Fig 1A). Structure and sequence alignment indicated that GCSF with vIL-6 and GCSF-
receptor with IL6ST shared 77% and 80% structure similarity, respectively, whereas their
sequence identities were only 16% and 27%, respectively. This observation indicated the possi-
bility that known complex structures can be used to discover potential new protein interactions
using structure similarity as a bridge. In the current example, interaction between vIL-6 and
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IL6ST can be inferred based on pairwise structure similarity (PSS) of vIL-6 and IL6ST mono-
mers to monomers in the GCSF:GCSF-receptor complex.

Based on this observation, we proposed a computational method, which we named PSS-PPI,
to predict pathogen–host PPIs. PSS-PPI is based on the idea that given two proteins pA and pB
with structures sA and sB that shared structural similarity with tA and tB, respectively, from a
known tA:tB complex, then pA and pB are also likely to interact with each other (Fig 1B).

The GCSF:GCSF-receptor complex mentioned in the above example was used as a struc-
ture–structure interaction (SSI) template. In order to apply PSS-PPI, a large number of such
SSI templates were required. Accordingly, we comprehensively explored the experimentally
resolved three-dimensional heteromer complex structures in the PDB database [29]. We
obtained ~22,000 highly credible binary SSIs. After removing redundant SSIs, the final SSI tem-
plate library contained more than 3,000 non-redundant SSIs (Fig 1C, Methods).

Interactions with a high degree of similarity between query structures and template struc-
tures can be reasonably predicted to be bonafide interactions. Therefore, it is important to
establish a method for quantifying the overall similarity of query structures to structures in the
SSI template. Scores from structure alignment may provide the necessary information but may
be insufficient and may lead to false positives when a similar region is not located in the region
that actually mediates the interaction. Therefore, we introduced residue–residue contact cover-
age to quantify the overlap between structural region sharing similarities with regions that
actually mediate interaction. Finally, an integrated score, which we named the PSS score, was

Fig 1. PSS-PPI and SSI template library. (A) An example of PSS. 1CD9 is the complex structure of GCSF (chain A) and GCSF-receptor (chain B). 1I1R is
the complex structure of human herpesvirus 8 protein vIL-6 (chain B) and human interleukin-6 receptor beta subunit IL6ST (chain A). 1I1R and 1CD9 are
structurally similar but have very low sequence similarity. GCSFmeans granulocyte colony-stimulating factor. (B) Schematic of PSS-PPI. (C) Flow chart
showing the approach used for constructing the SSI template library.

doi:10.1371/journal.pone.0147612.g001
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calculated by integrating structure-similarity information and residue–residue contact-cover-
age information to assign a global similarity metric for the newly predicted interaction with the
corresponding SSI template (Methods).

Assessment of PSS-PPI
To examine the capability of PSS-PPI, we applied this method to predict the pathogen–host
PPIs of HIV-1 (Fig 2A). The predicted PPIs were compared with the positive dataset that
included 1,538 HIV-human PPIs obtained from the HIV-1 Human-Interaction Database [15].

Fig 2. Performance of PSS-PPI. (A) Flow chart showing construction of the pathogen–human PPI network of HIV-1 using PSS-PPI. (B) Predicted PPI
number and overlapped positive PPI number vs. PSS score. (C) Venn diagram of overlap between HIV-human PPIs from PSS-PPI (PSS-score cutoff = 0.5),
HIV-human protein-interaction database and high-throughput screening.

doi:10.1371/journal.pone.0147612.g002
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The overlapped PPI number increased with decreased PSS score (Fig 2B). The ratio between
overlapped PPIs with predicted PPIs increased with PSS score (S1 Fig), suggesting that higher
PSS score implied better prediction. This finding indicated the capability of the PSS-PPI
method to discover the pathogen–host PPIs of HIV-1. We further compared the performance
of PSS-PPI with high-throughput experimental screening [7]. At a PSS-score cutoff of 0.5, 14
out of the 187 PPIs predicted by PSS-PPI overlapped with positive PPIs. By contrast, 44 out of
416 PPIs generated from high-throughput experiment overlapped with positive PPIs (Fig 2C).
Notably, the ratio of overlapped PPIs to predicted PPIs from PSS-PPI (14/187 = 0.075) was
close to the ratio of overlapped PPIs to PPIs generated from high-throughput screening (44/
416 = 0.106). Three common PPIs were further identified between PSS-PPI and the high-
throughput experimental screen, which suggested that PPIs obtained from the two approaches
were largely complementary.

To further determine the applicability of the PSS-PPI method for other pathogens, we
applied PSS-PPI to predict pathogen–host PPIs in the scope of the VirusMentha Database.
This database collects literature-curated, credible pathogen–host PPIs that are mostly derived
from small-scale targeted studies [16]. Using 0.5 as a PSS-score cutoff, 51 out of 969 new pre-
dicted PPIs overlapped with positive PPIs in the VirusMentha Database (Fig 2D). These results
demonstrate the capability of the PSS-PPI method to discover pathogen–host PPIs.

Predicting pathogen–host protein interactions ofM. tuberculosis
We used PSS-PPI to predict pathogen–host PPIs of the human pathogenM. tuberculosis (Fig
3A). First, protein sequences ofM. tuberculosis and the human proteome were downloaded
from the UniProt Database. The representative structures for each protein were assigned by
sequence-similarity alignment using BLAST search. A total of 443 structures for 423M. tuber-
culosis proteins and 5,859 structures for 4,843 human proteins were obtained. Using TM-align,
all-against-all structure alignment was performed between all 6,302 query protein structures
(fromM. tuberculosis and human) and 8,776 structures in the SSI template library. Structures
with TM score�0.5 with each query structure were deemed similar [33]. Then, 2,595,537
structure–structure pairs betweenM. tuberculosis and human were used to query the SSI tem-
plate library to identify PSS, which led to the identification of 411,020 matching models. The
PSS score for each model was calculated and assigned to the corresponding PPI. If more than
one model corresponded to a PPI, the maximal score was used. To reduce false-positive inter-
actions, we used two filtration steps to further refine our predictedM. tuberculosis-human
PPIs. The first filter removed PPIs whose structure similarity betweenM. tuberculosis protein
and human protein were greater than 0.6. This filter was based on our analysis of structure sim-
ilarity between pathogen and host protein of known pathogen-host PPIs. More specifically, we
calculated the structure similarity between pathogen protein and host protein of each known
pathogen–host PPI from the VirusMentha database. Then, we analyzed the distribution of
these structure similarity scores. The result indicated that structure similarity between patho-
gen and host protein of almost all known pathogen–host PPIs (1538/1541 = 99.81%) were less
than 0.6 (S2A Fig). This suggested that potential PPIs whose pathogen protein and host protein
have structural similarity score greater than 0.6 were likely to be false-positive PPIs. However,
more than one-third of the predicted PPIs had structure similarity score betweenM. tuberculo-
sis protein and human protein greater than 0.6 in our predictedM. tuberculosis-host PPIs (S2B
Fig). Therefore, PPIs with structure similarity score betweenM. tuberculosis protein and
human protein greater than 0.6 were removed to reduce false-positive predictions.

The second filter removed PPIs according to protein-localization information. Unlike
viruses, bacteria have compartmentalized cell structure. This structure should be considered
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when assessing the feasibility of interactions under in vivo conditions in order to decrease false
positives. Proteins from the secretome of pathogenic bacteria are more likely to interact with a
host. We manually curated culture supernatant proteins and exported proteins ofM. tuberculo-
sis to build the secretome ofM. tuberculosis using data from several publications [35–37]. Sub-
sequently, PPIs in which the pathogen protein was not found in our constructed secretome
were removed.

After these two filtration steps, we finally obtained 773 predicted PPIs between 59M. tuber-
culosis proteins and 437 human proteins using 0.5 as the PSS score cutoff (Fig 3B and S1
Table). The PSS score distribution of all PPIs can be found in S3 Fig. The degree of a protein in
the PPI network refers to the number of its interacting partners. The degree distribution of pro-
teins in our predicted PPI network approximately followed a power law function (S4 Fig). This
suggested that the network was scale-free, which is a general characteristic of biological net-
works [38].

Fig 3. Pathogen–host PPI network ofM. tuberculosis. (A) Flow chart showing the construction of pathogen–host PPI network ofM. tuberculosis using
PSS-PPI. (B) Graphical representation of predicted pathogen–host PPI network ofM. tuberculosis. Nodes represent proteins ofM. tuberculosis (red) and
human (blue). Edges represent predicted interactions. (C) Overlap betweenM. tuberculosis proteins in predicted PPI network and “survivasome” ofM.
tuberculosis. (D) Overlap between human proteins in the predicted PPI network and human proteins involved inM. tuberculosis infection identified by RNAi
screening.

doi:10.1371/journal.pone.0147612.g003
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We manually curated proteins involved in the infection and survival ofM. tuberculosis in a
host to build the “survivasome” ofM. tuberculosis from several transposon screening studies
[39–41]. We found that 5 out of 59M. tuberculosis proteins in our network overlapped with
the “survivasome” ofM. tuberculosis (Fig 3C). In addition, we collected host factors responsible
forM. tuberculosis infection from genome-wide RNAi screening studies [42]. We obtained 275
proteins that overlapped with 9 out of 437 human proteins in our network (Fig 3D).

To examine the host-cell process targeted byM. tuberculosis, we analyzed human proteins
in theM. tuberculosis–human PPI network in the context of GO terms [43]. We counted the
frequency of involved GO biological processes (S2 Table). The top groups also included pro-
teins involved in small GTPase-mediated signal transduction, protein transport, innate
immune response, and apoptotic process. A considerable number of proteins were also
involved in the regulation of signaling pathways linked to NF-κB and phagocytosis.

M. tuberculosis targeted host immune-response pathways
To analyze the interaction betweenM. tuberculosis and human anti-microbial pathways, we
collected human proteins involved in the NF-κB signaling pathway according to GO annota-
tion and constructed a subnetwork involved in these processes (Fig 4A). The highest connected
node in this local network was the PknB protein ofM. tuberculosis, which interacted with nine
host proteins. The largest group ofM. tuberculosis proteins came from the ESX family, includ-
ing five ESX-family proteins (EsxB, EsxJ EsxK, EsxP, and EsxW). Host proteins included the
inhibitor of κB (IκB) family proteins IκBα and BCL-3, ubiquitin-conjugating enzyme E2, non-
ATPase regulatory subunit 10 of 26S proteasome, and transforming proteins RhoA and RhoC.
To intuitively describe the roles of these target proteins, a schematic of the NF-κB signaling
pathway is shown (Fig 4B). IκBα is the inhibitor of NF-κB, whereas ubiquitin-conjugating
enzyme and proteasome are essential components of the ubiquitin–proteasome pathway,
which is required for degrading IκBα and activating NF-κB [44, 45]. These results suggested
thatM. tuberculosis STPK and ESX-family proteins targeted multiple host regulators involved
in the activation of NF-κB pathways.

ESX-family proteins targeted host proteins involved in phagocytosis
M. tuberculosis can escape from phagocytosis-mediated antimicrobial activity and survive in a
host [26, 46, 47]. To explore the interaction betweenM. tuberculosis and the host phagocytosis
pathway, we collected host proteins involved in phagocytosis according to GO annotation and
predicted interactions that targeted these proteins (Fig 5A). ThisM. tuberculosis–human PPI
network involved in phagocytosis included 55 interactions between 12M. tuberculosis proteins
and 20 human proteins.M. tuberculosis proteins included six ESX-family proteins (EsxA/
Rv3875, EsxB/Rv3874, EsxJ/Rv1038c, EsxK/Rv1197, EsxW/Rv3620c, and EsxP/Rv2347c), two
PE/PPE family proteins (PE25 and PPE41), and one hypothetical protein Rv1794. Clearly,
ESX-family proteins accounted for almost half ofM. tuberculosis proteins that targeted host
phagocytosis pathways. Host proteins included multiple small GTPases (RAB5, RAB7, and
RAB11), several subunits of phosphatidylinositol 3-kinase PI3K (PIK3R1/P85A, PIK3R2/
P85B, and PK3CA), and a component of the ESCRT (endosomal sorting required for trans-
port) complex (CHMP3). To intuitively describe the roles of these target proteins, a schematic
of the host phagocytosis-signaling pathway is shown (Fig 5B). Functions of human proteins
indicated thatM. tuberculosismay interfere with phagocytosis pathways at multiple stages,
including phagosome formation (Rac1 and Cdc42), phagosome maturation (small GTPases
RAB5, RAB7, and RAB11, as well as PI3K and CHMP3), and regulation of NADPH oxidase
enzyme activity (Rac1) (Fig 5B).
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M. tuberculosis targeted proteins involved in HIV infection
HIV infection increases the risk of latent TB reactivation by 20-fold. TB infections activate
HIV replication and exacerbate the progression of HIV infection [48, 49]. Exploring the molec-
ular mechanisms underlying these effects can facilitate control of both pathogens. Accordingly,
we comparedM. tuberculosis-human PPIs with HIV-human PPIs. We constructed a HIV-
human PPI network using PPI data from the NCBI HIV-1 Human-Interaction Database [15].
Interestingly, 90 human proteins in theM. tuberculosis–human PPI network overlapped with
human proteins in the HIV-human PPI network (Fig 6A and 6B). We also found thatM. tuber-
culosis targeted 53 human proteins involved in regulating HIV replication (Fig 6C). These
results suggest thatM. tuberculosis is likely to affect the function of proteins targeted directly
by HIV, as well as those that regulate HIV replication.

Fig 4. Predicted PPIs betweenM. tuberculosis and human immune response pathways. (A) Local PPIs network betweenM. tuberculosis proteins (red
nodes) and human proteins (blue nodes) involved in the NF-κB signaling pathway. (B) Schematic of the NF-κB signaling pathway. Proteins found to be
targeted byM. tuberculosis are indicated by black stars.

doi:10.1371/journal.pone.0147612.g004
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Discussion
Discovery of new pathogen–host PPIs is essential for understanding the infection and
survival mechanisms of pathogens in a host. In this study, we constructed a comprehensive

Fig 5. M. tuberculosis targets human phagocytosis pathways. (A) Local PPI network betweenM. tuberculosis proteins (red nodes) and human proteins
(blue nodes) involved in phagocytosis. (B) Schematic showing phagocytosis pathways. The RHO family GTPases RAC1 and CDC42 play roles in
phagosome formation. Phagosomes undergo sequential fusion with early endosomes, late endosomes and lysosomes. The small GTPase RAB5A is
involved in the fusion of phagosomes with early endosomes. The small GTPase RAB7A is known to mediate trafficking between phagosomes and late
endosomes or lysosomes. The GTPase RAB11Amediates recycling of endosomes to the plasmamembrane. PI3K (PIK3R1, PIK3R2 and PIK3CA)
regulates metabolism of phosphoinositides, which play essential roles during phagocytosis. CHMP3 is a component of the ESCRT complex. RAC1 is also
involved in stimulation of NADPH oxidase activity in macrophages.

doi:10.1371/journal.pone.0147612.g005
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and non-redundant SSI template library and developed PSS-PPI to uncover new pathogen–
host PPIs. Using an HIV-human model system, we demonstrated that PSS-PPI successfully
predicted pathogen–host PPIs with performance close to that of in vitro experimental high-
throughput screening. In addition, PSS-PPI predicted PPIs that were complementary to those
predicted by experiment-based screening. Given the scarcity of pathogen–host PPI data for
most pathogens, PSS-PPI shows promise for opening new doors to explore the survival mecha-
nism of these pathogens.

All interaction templates known to date have originated mainly from model organisms such
as human, yeast, and Escherichia coli. Therefore, search for target proteins similar to unique
pathogen proteins that are associated with virulence in the interaction template-library have
usually failed. This weakness can be overcome by utilizing structural similarity information.
PSS-PPI is a structure-based PPI prediction method that uses structural similarity between
proteins as a bridge to identify new interactions. Compared with sequence similarity-based
methods, this structure similarity-based approach enabled us to explore new interactions of
proteins that lacked significant sequence similarity with a known interaction-template library.
This advantage is of vital importance in predicting pathogen–host PPIs. Indeed, PSS-PPI
enabled the identification of potential interactions of unique ESX and PE/PPE family proteins
fromMycobacteria in the current study.

PSS-PPI can be classified into template-based PPI prediction methods that transform
known interactions to predict new interactions. Therefore, high quality of the interaction-tem-
plate library (source interactions), including coverage and credibility, is essential for successful
application of template-based protein-interaction prediction. In the current study, the SSI tem-
plate library was constructed with these goals in mind. First, PSS-PPI used templates generated

Fig 6. M. tuberculosis targets human proteins involved in HIV infection. (A)M. tuberculosis was predicted to target human proteins that are also
targeted by HIV-1. (B) TheM. tuberculosis-HIV-human PPI network. Nodes represent proteins ofM. tuberculosis (red), HIV-1 (yellow), and human (blue). (C)
M. tuberculosis was predicted to target human proteins that regulate HIV replication.

doi:10.1371/journal.pone.0147612.g006
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only from known complex structures and was thus more reliable than templates obtained from
high-throughput screening. Second, to improve coverage, all currently available structures in
the PDB database were considered for identifying SSI templates. In addition, to control quality,
complex structures and SSI templates were strictly filtered according to experimental methods,
resolution, structure length, and residue–residue contact information.

PSS-PPI used precise structure–structure alignment to define structure similarity. Com-
pared with sequence alignment, structure alignment is computationally intensive. Prediction of
new interactions requires the alignment of query proteins to all proteins in the template library.
Therefore, the size of the template library is closely associated with computational cost. In this
study, we used a “max RRCN” strategy for the first time to reduce template-library redundancy.
This strategy reduced the size of the template library while preserving its comprehensiveness
and diversity. This optimized template library then enabled practical application of PSS-PPI.

Taking advantage of precise structure–structure alignment information, PSS-PPI predicted
new interactions and provided a potential three-dimensional complex model for each predicted
interaction. Each potential complex model was generated by superposing two query structures
to the corresponding complex template. Despite being rough, this predicted complex model
could provide useful information regarding the interaction interface, which was helpful for us
to understand interaction mechanisms at residue level and provide information for structure-
based inhibitor design.

Structure is the only required input element of PSS-PPI. Therefore, PSS-PPI can be used to
predict the pathogen–host PPIs of many other pathogens for which structures are available.
Humans are the most important host in pathogen–host studies. A considerable number of
human protein structures are available at present, but availability of structural information for
pathogen proteins differs greatly. Therefore, utility of PSS-PPI is limited when structure infor-
mation is incomplete or absent. This obstacle can be overcome by quickly expanding structural
information in the PDB database. In addition, structures from homologous modeling can be
considered in the future. Nevertheless, our results indicate that the PSS-PPI method can be
used to explore the pathogen–host PPIs of pathogens with available structures.

M. tuberculosis is an obligate intracellular pathogen that can infect and survive in a host.
The prediction and analysis of pathogen–host PPIs ofM. tuberculosis is valuable in exploring
the survival mechanisms ofM. tuberculosis in a host. In the present study, we predicted the
pathogen–host PPIs of the human pathogenM. tuberculosis using PSS-PPI. This network can
serve as a basis for exploring the survival mechanism ofM. tuberculosis within a host.

We found that multiple host factors involved in NF-κB signaling pathways are targeted by
M. tuberculosis. NF-κB family proteins are transcriptional factors that regulate the expression
of immune-response genes. IκBα protein inactivates the NF-κB transcription factor by mask-
ing the nuclear localization signals of NF-κB proteins and keeping them sequestered in an inac-
tive state in the cytoplasm. Upon cellular stimulation by immune and pro-inflammatory
responses, IκB kinase (IKK) specifically phosphorylates IκBα protein. This phosphorylation
results in IκBα ubiquitination and degradation. The dissociation of IκBα from NF-κB enables
NF-κB to translocate to the nucleus and activate the transcription of immune-response genes
[50]. IKK-mediated phosphorylation of IκBα proteins represents a convergence point for most
signal-transduction pathways leading to NF-κB activation [51]. In the present study, we identi-
fied a potential interaction between Ser/Thr protein kinase PknB and IκBα. This interaction
may affect the phosphorylation of IκBα and thereby perturb the activation of NF-κB signaling.
Moreover, IκBα degradation requires the ubiquitin–proteasome pathway. Several subunits of
the host ubiquitin-conjugating enzyme E2 and proteasome were also found to be targeted by
M. tuberculosis (Fig 4A). Interestingly, PknB has been identified by mass spectrometry in a
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culture filtrate ofM. tuberculosisH37Rv [37] andM. tuberculosisH37Rv-infected guinea-pig
lungs [52]. This supports the validity of the predicted interactions under in vivo conditions.

The pathogenicity ofM. tuberculosis is attributed largely to its ability to survive within mac-
rophages [26, 46, 47]. Interestingly, we found that groups of human proteins involved in
phagocytosis were targeted by the ESX-family proteins ofM. tuberculosis. These interactions
highlight the essential roles of ESX-family proteins in the pathogen–host interaction ofM.
tuberculosis, which is highly consistent with the findings of previous genetic-screening studies
[53, 54]. Some of the predictedM. tuberculosis target proteins such as PI3K and CHMP3 were
particularly interesting. PI3K activity is essential for proper phagosomal maturation, and
Mycobacteria have been shown to use Man-LAN to interfere with PI3K signaling pathways
[26, 46]. CHMP3 is a component of the ESCRT complex, and ESCRT has been shown to play
roles in restricting the growth ofM. tuberculosis and to be targeted by another ESX family pro-
tein EsxH [54, 55]. Therefore, these new predicted interactions suggest an alternative strategy
used byM. tuberculosis to interfere with PI3K signaling pathways and phagosomal maturation.
In addition, we found thatM. tuberculosis targeted Rac1, which is involved in activating
NADPH oxidase. NADPH oxidase mediates the phagocytic killing of ingested pathogens by
producing reactive oxygen species (ROS). Therefore, this interaction may contribute to the
observation thatM. tuberculosis is relatively resistant to the microbicidal effects of ROS [56,
57]. Taken together, our results indicate that these interactions are likely to interfere with
phagosomal maturation and ROS signaling and are of interest for further experimental
exploration.

TB and HIV co-infection is a major challenge in the global control of TB [25]. As mentioned
above, HIV infection increases the risk of latent TB reactivation 20-fold. TB infection activates
HIV replication and exacerbates the progression of HIV infection [48, 49]. Interactions of HIV
andM. tuberculosis with the human immune system have already been explored at the cellular
level [48, 49]. However, their interaction at the molecular level is largely unknown. Interest-
ingly, we found thatM. tuberculosis targets host proteins that regulate HIV replication. We
speculate that these interactions may positively regulate the function of host proteins required
for HIV replication or negatively regulate the function of host proteins limiting HIV replica-
tion. In addition, a group of common host proteins targeted by bothM. tuberculosis and HIV
was identified by comparing theM. tuberculosis PPI network constructed here with known
HIV-human protein interactions. We speculate that co-targets ofM. tuberculosis and HIV
enhance the interference effect on host cell pathways and facilitate the infection of both patho-
gens. These findings suggest a concerted attack byM. tuberculosis and HIV on the host
immune system that may contribute to TB-HIV co-infection.

Conclusions
We constructed an optimized SSI template library and developed a structure-based computa-
tional method named PSS-PPI to predict pathogen–host PPIs. We demonstrate that PSS-PPI
can effectively discover pathogen–host PPIs with performance close to that of high-throughput
screening. Specifically, we constructed a pathogen–host PPI network of the human pathogen
M. tuberculosis using PSS-PPI. Analysis of the network indicated thatM. tuberculosis targeted
host immune response and phagocytosis pathways. In addition,M. tuberculosis targeted host
proteins that interact with HIV proteins as well as those that regulate HIV replication. These
PPIs provide a resource for exploring the survival mechanisms ofM. tuberculosis in a host and
TB-HIV co-infection. With continuous increase in the availability of three-dimensional pro-
tein structures in public databases, the SSI template library and the PSS-PPI method reported
here can be used to predict pathogen–host PPIs at a larger scale and for diverse pathogens.
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Supporting Information
S1 Fig. Ratio of overlapped PPIs and predicted PPIs. The ratio between overlapped PPIs and
predicted PPIs increased along with increase in PSS score, suggesting that higher PSS score
implied better prediction.
(TIF)

S2 Fig. Distribution of structure similarity scores between pathogen protein and host pro-
tein in pathogen-host PPIs. (A) PPIs of known pathogen-host PPIs from public databases. (B)
PPIs predicted using the PSS-PPI method in the current study.
(TIF)

S3 Fig. PSS score distribution of predictedM. tuberculosis-human PPIs.
(TIF)

S4 Fig. Degree distribution of theM. tuberculosis-human PPI network. The degree distribu-
tion approximately followed a power law function (y = axb, a = 87.975, b = -1.247, R2 = 0.774).
This suggested that the predicted PPI network was a scale-free network.
(TIF)

S1 Table.M. tuberculosis-human PPI network predicted by the PSS-PPI method.
(XLS)

S2 Table. GO term count of human proteins in predicted pathogen-host PPIs ofM. tuber-
culosis.
(XLS)
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