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Abstract
Language production experiments with overt articulation have thus far only scarcely been conducted online, mostly due to
technical difficulties related to measuring voice onset latencies. Especially the poor audiovisual synchrony in web experiments
(Bridges et al. 2020) is a challenge to time-locking stimuli and participants’ spoken responses. We tested the viability of
conducting language production experiments with overt articulation in online settings using the picture–word interference
paradigm – a classic task in language production research. In three pre-registered experiments (N = 48 each), participants named
object pictures while ignoring visually superimposed distractor words. We implemented a custom voice recording option in two
different web experiment builders and recorded naming responses in audio files. From these stimulus-locked audio files, we
extracted voice onset latencies offline. In a control task, participants classified the last letter of a picture name as a vowel or
consonant via button-press, a task that shows comparable semantic interference effects. We expected slower responses when
picture and distractor word were semantically related compared to unrelated, independently of task. This semantic interference
effect is robust, but relatively small. It should therefore crucially depend on precise timing. We replicated this effect in an online
setting, both for button-press and overt naming responses, providing a proof of concept that naming latency – a key dependent
variable in language production research – can be reliably measured in online experiments. We discuss challenges for online
language production research and suggestions of how to overcome them. The scripts for the online implementation are made
available.
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Introduction

Reasons for conducting online language production
experiments

Many psychological experiments based on behavioral mea-
sures can be run online. This brings great advantages in com-
parison to lab-based testing. For example, online experiments
facilitate testing larger samples, promoting science to a larger

community, and potentially consuming less resources during
data collection (e.g., Grootswagers, 2020). This greater effi-
ciency in data collection has led to the replication and exten-
sion of many behavioral paradigms in online settings. Even
experiments which require precise measures of reaction times
can reliably be conducted on the web (e.g., Anwyl-Irvine,
Dalmaijer, Hodges, & Evershed, 2020a; Anwyl-Irvine,
Massonnié, Flitton, Kirkham, & Evershed, 2020b; de
Leeuw, 2015; Gallant & Libben, 2019; Hilbig, 2016; Pinet
et al., 2017). Furthermore, there is an increasing awareness
for the need to test more diverse populations in order to raise
the external validity of experimental findings (Speed et al.,
2018). Web-based testing is one of the options to ensure that
our understanding of the human mind extends to the popula-
tion at large. Most recently, the popularity of web-based test-
ing has been gaining additional momentum as the COVID-19
pandemic forces researchers to think of alternatives to lab-
based testing (Sauter, Draschkow, & Mack, 2020).

Within psycholinguistics, language production research is
so far underrepresented when it comes to online-based testing.
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To the best of our knowledge, typical language production
tasks such as picture naming, during which participants’ overt
articulatory responses are acquired in order to determine voice
onset latencies, have so far not been investigated in online
settings. In this study, we provide a proof of principle for
deriving voice onset latencies from recordings of overt artic-
ulatory responses time-locked to pictorial stimuli. To this end,
we implemented the picture–word interference (PWI) task, a
classic paradigm to investigate lexical access during language
production (for a recent review see Bürki et al., 2020), in an
online version. We demonstrate the viability of this approach
by comparing voice onsets computed from short audio record-
ings of overt naming responses with a manual classification
task providing response times depending on manual keyboard
button-press responses. In a direct comparison, we show sim-
ilar interference effects typically observed in lab-based
picture–word interference studies for both overt picture nam-
ing responses and for manual button-press classifications of
the picture names. Furthermore, we provide practical advice
on moving language production research online.

Current challenges when running language
production studies online

There are several challenges to conducting online language
production research relying on overt naming responses.
First, in the lab, the technical equipment (e.g., microphones,
sound shielded booths) ensures a high quality of the acquired
speech data and technical requirements are kept constant with-
in and across participants. In an online study, participants need
a microphone and need to explicitly grant access in order to
record speech as a dependent variable. This approval process
can disrupt the experimental procedures at different time
points – depending on the individual browser’s security set-
tings. Furthermore, recording quality may differ widely be-
tween participants due to technical reasons or background
noise. Second, in the lab, the experimenter would typically
monitor if the participant is complying with the instructions,
e.g., naming the pictures presented on the screen in a correct
manner. However, there is no easy way to monitor the perfor-
mance of participants’ online verbal responses. In an online
language production experiment, recorded verbal responses
can only be checked after completion of the experiment.
Third, lab-based experiments have the option of using voice
keys, special hardware devices for automatically detecting the
onset of vocal responses. Alternatively, or in addition, in the
lab vocal responses can be recorded as audio files, which are
scanned for the start of speech in a subsequent step after the
experiment. Voice onset latencies are a key dependent vari-
able in many language production experiments and result as
the latency between the onset of a picture presentation and the
onset of the naming response. However, none of the available
tools for running online experiments offers the possibility to

determine voice onset latencies instantly and directly log
them, rendering online language production research poten-
tially more laborious after data acquisition.

Lastly, and perhaps the most serious challenge, is to precise-
ly timelock vocal responses to certain events, e.g., the visual
presentation of a picture on a screen, with little or no variation
within and between participants. In the lab, experimenters use
specific hardware and software to control for audiovisual syn-
chrony, ensuring that the timing between stimulus presentation
and voice recording is reliable. Unfortunately, to date, none of
the packages or programs for running online experiments offers
an option for recording overt articulatory responses precisely
time-locked to a (visual) stimulus. Only very recently has there
been some development in this area resulting in beta versions of
experimental software with audio recording possibilities and
there seems to be a lively development process surrounding
these versions (e.g., see the Gorilla Audio Recording Zone, or
the jspsych-image-audio-response-plugin by Gilbert, 2020).
However, none of these versions can, to date, ensure the high
audiovisual synchrony which would be needed in order to test
the typically investigated effects in language production re-
search, which sometimes rely on mean voice onset differences
in the range of a few milliseconds. To date, a published valida-
tion of their timing properties is still missing.

A recent meta-analysis compares a range of experiment
builders concerning the reliability of synchronous presenta-
tion of visual and auditory stimuli, both lab-based and online,
and testing different operation systems and browsers (Bridges,
Pitiot, MacAskill, & Peirce, 2020; Reimers & Stewart, 2016).
These studies demonstrate that the lag between visual and
auditory onset varies considerably. As audio output timing,
i.e., the start of audio recordings, relies on specific hardware
and software properties as well, it can be assumed that it is
likewise difficult to control for a precisely stimulus-locked
onset of an audio recording in online settings where a large
number of participants with different computer and browser
configurations take part. Bridges et al. (2020) conclude that
for online experiments, none of the tested packages can guar-
antee reliable audiovisual synchrony. They argue that
JavaScript technology, which is the basis for most web-
based experiments, would need to be improved in order to
obtain precisely timed audio measures in the millisecond
range. However, precisely timelocking overt articulation to
pictorial stimuli might be an essential prerequisite to ensure
replicability of language production paradigms in an online
setting (Plant, 2016).

For the current study, as a proof of concept, we adopted a
pragmatic approach to these challenges. As Bridges et al.
(2020) point out, solving the problem of poor audio-visual
synchrony in online software technology is not a task for the
scientific user but rather for the community of software devel-
opers working with JavaScript. In the meantime, however, we
aim for a “good-enough” approach, i.e., answering the
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question if the current methods are reliable enough to detect
mean differences in classic paradigms and to replicate classic
effects. Even for measurements made with instruments with
poor resolution, mean differences can be successfully detected
when aggregating over a large enough sample size (Ulrich &
Giray, 1989). Therefore, given a sufficiently large number of
trials and participants, one might be able to detect differences
in naming latencies recorded in online settings in spite of the
multiple challenges and limitations of web technology (Brand
& Bradley, 2012). The same approach applies, to some extent,
more broadly to all experimental research conducted online:
while the data collected in these settings will invariably show
some increased noise due to lack of experimental control and
limitations introduced by variable personal hardware (e.g.,
laptop keyboards), effects should still be, and indeed are, de-
tectable with sufficient power (Mathot & March, 2021; Pinet
et al., 2017).

Testing an online implementation of the picture–
word interference paradigm with verbal and manual
responses

Given the many advantages of online experiments, the aim of
the present study is to test whether a robust and well-replicat-
ed, but relatively small effect in language production can be
replicated in an online implementation of the task including
overt naming responses. In the picture–word interference par-
adigm, participants name pictures while ignoring simulta-
neously presented distractor words. Naming latencies in this
paradigm depend on the semantic relation between the
distractor and the target picture, with increased naming times
for semantically related versus unrelated distractor words
(e.g., Lupker, 1979; Schriefers et al., 1990). This well-
replicated semantic interference effect has been interpreted
as a marker for the cognitive processes underlying lexical
access (Bürki et al., 2020). Analyzing results from 162 studies
with a Bayesian meta-analysis, Bürki et al. (2020) demonstrat-
ed that the semantic interference effect amounts to 21 ms with
a 95% credible interval ranging from 18 to 24 ms. Therefore,
replicating this small but robust effect in an online setting
would demonstrate the viability of running time sensitive lan-
guage production experiments online.

Crucially, semantic interference has not only been demon-
strated for overt naming responses. A comparable effect has
also been observed for a manual button-press classification
task in which participants are asked to identify the last letter
of the picture name as a vowel or a consonant by pressing one
of two response buttons (Abdel Rahman & Aristei, 2010;
Hutson, Damian, & Spalek, 2013; Tufft & Richardson,
2020). The similarity of semantic interference in vocal and
manual naming responses allows us to directly compare
these effects in an online implementation of the paradigm.
While manual responses can more readily be implemented

and recorded in online settings, we can compare the effects
in this response modality directly to the recording of overt
naming responses.

To this end, we adopted the design of the study by Abdel
Rahman and Aristei (2010) in which participants received
both versions of the task with the experimental manipulation
of semantic relatedness as a within-subject factor. In this way,
manual button response times can serve as a benchmark for a
potential effect in the vocal onsets in audio responses. For
naming latencies, we recorded audio files for each naming
trial, time locked to the onset of picture presentation.
Naming latencies were then computed offline. To enable on-
line voice recording, we customized freely available tools for
audio recordings on the web and included them in two differ-
ent experiment builder programs. It was our primary goal to
find a working solution for running language production on-
line. Therefore, we conducted the same experiment in two
different implementations to increase chances for finding a
working solution. The first version was programmed and
hosted in SoSciSurvey (Leiner, 2019), a platform used for
conducting social and behavioral research in Germany in
combination with an audio recording function based on
RecordRTC (Khan, 2020). The second implementation was
programmed using jsPsych (de Leeuw, 2015) with a custom
audio recording plugin relying on Recorderjs (Diamond,
2016) and hosted on JATOS (Lange et al., 2015).Themethods
and predictions of this work have been preregistered on
AsPredicted.com (AsPredicted#: 43871, available for
viewing under https://aspredicted.org/blind.php?x=6ma52w).
Data and analysis scripts are available at OSF (https://osf.io/
uh5vr/?view_only=229679aa33604aa2a5cb400eab62099).
The comparison between the two implementations is an
exploratory analysis which was not preregistered.

Experiment 1

Methods

One version of the experiment was implemented in
SoSciSurvey (Leiner, 2019) and the other version was imple-
mented in jsPsych (de Leeuw, 2015). The two versions of the
experiment (labeled SoSciSurvey and jsPsych1, respectively)
were nearly identical regarding design and procedure. If not
specified otherwise the information applies to both versions.

Participants

In the SoSciSurvey version, a total of 116 native German
speakers between 18 and 35 years were recruited over the
commercial platform Prolific (www.prolific.co.uk) and
completed the experiment. They were included in the final
sample when meeting all inclusion criteria until the final
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sample consisted of 48 participants as determined in the
preregistration (21 females, 18–33 years, Mage = 25.71,
SDage = 4.28) (see also the section on Data Exclusion in
Data Analysis for details on the criteria for inclusion in the
final sample). The sample size was determined via an a priori
power analysis using the simr package (Green & MacLeod,
2016). Simr uses simulation to estimate power, by simulating
data for which the user can define the parameter estimates. We
estimated the power for the overt naming task but needed to
rely on estimates from a study employing the PWI paradigm
(Lorenz et al., 2018) that used LMMs to analyze their data,
which Abdel Rahman and Aristei (2010) did not. The resulting
suggested sample size for a power estimate of 80% was 36, but
we anticipated a need for more power in online studies and had
decided a priori to increase the estimated sample size by one-
third, thus amounting to the sample size of n = 48.

In the jsPsych1 version, a total of 108 native German
speakers between 18 and 35 years were recruited over the
commercial platform Prolific (www.prolific.co.uk) and
completed the experiment. They were included in the final
sample when meeting all inclusion criteria until the final
sample consisted of 48 participants as determined in the
preregistration (24 females, 18–33 years, Mage = 26.06,
SDage = 3.99).1

Participants provided informed consent to their participa-
tion in the study. The study was conducted on the basis of the
principles expressed in the Declaration of Helsinki and was
approved by the local Ethics Committee. Participants received
monetary compensation distributed via the platform Prolific.

Materials

The stimulus set consisted of 40 black-and-white line draw-
ings of common objects, all of which have frequently been
used in lab-based picture-naming studies in our group. Half of
the German words for these objects ended in a vowel, the
other half in a consonant. For the related condition, each draw-
ing was assigned a semantically related distractor word that
was not part of the response set. For the unrelated condition,
the same distractor words were reassigned to different draw-
ings to which they were not semantically related. In both con-
ditions, half of the assigned distractors matched the name of
the drawingwith regards to the type of the last letter (vowel vs.
consonant) and the other half did not. Thus, response compat-
ibility of the distractor and the target regarding the classifica-
tion of the last letter was balanced across the stimulus set. In
the case of a compatible match, the last letters were never
identical, but only matched concerning the type of letter, i.e.,

vowel or consonant. The line drawings were presented togeth-
er with the visual distractor words that were superimposed
without obscuring the visibility of the object. See online
Supplementary Material A for a table of the stimulus set
(https://osf.io/uh5vr/?view_only=229679aa33604aa2a5cb
400eab62099).

Design

The experiment consisted of a 2 x 2 design with the within-
subject factors task (button-press vs. overt naming) and
relatedness (related vs. unrelated distractors). The dependent
measure was response latency (of the button-press and the
overt naming, respectively). The order of the tasks (button-
press – overt naming vs. overt naming – button-press) and the
assignment of buttons to responses (p for vowel, q for conso-
nant vs. p for consonant, q for vowel) was counterbalanced
across participants.

Procedure

At the start of the experiment, participants were given general
instructions and then a preview of all 40 drawings with the
corresponding names (but without distractors) to familiarize
participants with the stimulus set. Instructions for the first task
were then presented including a catch trial to ensure partici-
pants read the instructions carefully, followed by four practice
trials. Each main task consisted of 80 trials showing all 80
stimuli in random order. Each trial started with a 500-ms fix-
ation cross at the center of the screen. The stimulus, a line
drawing with a superimposed distractor word, then appeared
at the center of the screen (200 x 200 pixels) for a total of 2000
ms, followed by a blank screen for another 1000ms before the
next fixation cross appeared. In the button-press task response,
labels (e.g., “Q consonant”, “P vowel”) were shown below the
stimulus to the left and right, respectively. Once a button was
pressed, the corresponding response label was highlighted but
the stimulus remained on screen for the full duration of the
trial. In the overt naming task, audio files were recorded for
each trial starting at stimulus onset, producing 80 recordings
with a predefined duration of 3000 ms for each participant.
There was a short break after the first task before the instruc-
tions of the second part were presented.When both tasks were
completed, participants received debriefing information and
were then linked back to the website of Prolific in order to
validate their participation.

Technical Implementation of audio recording

The technical implementations for both experimental plat-
forms relied on JavaScript. JavaScript is a programming lan-
guage that forms, together with HTML and CSS, the core
technology of the Internet. Importantly, all modern browsers

1 When asked whether German was their native language, one participant
selected “No” while she had given the information of being a German native
speaker on the recruiting platform Prolific. As careful screening of her audio
files did not give any hint that German might not be her native language, we
decided to keep this participant.
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rely on JavaScript and therefore no prior installation of the
language itself is necessary neither on the programmers’ nor
the users’ side. The implementations in our study build on
APIs (application programming interfaces), which can be
thought of as ready-made tool sets allowing for certain func-
tionalities to be used. The access to participants’microphones
and the streaming of their voice input is realized via such APIs
in both implementations.

The experimental platform SoSciSurvey (Leiner, 2019) is
based mainly on the programming language PHP, but
JavaScript code can be implemented in the functionalities pro-
vided by SoSciSurvey, as we did in our study. For the imple-
mentation of the audio recording, we included a JavaScript-based
function within each audio trial. This function captures the par-
ticipants’ audio input, presents the visual stimulus and starts an
audio recording at the same time. The audio input is then saved in
the browser’s native file format (e.g., .ogg or .webm) and trans-
ferred to the SoSciSurvey server. The JavaScript plugin
RecordRTC.js, which we used for this purpose, is provided by
Khan (2020) who provides and actively maintains a wide range
of readymade JavaScript applications under the open WebRTC
(web real-time communication) standard.

In our jsPsych version, the functionality of the experiment
timeline relies on the experiment library jsPsych (de Leeuw,
2015), while the data are saved via a server specified by the
experimenter, in our case a server based at our institute set up
with JATOS (Lange, Kühn, & Filevich, 2015). For the tech-
nical implementation of audio recording within jsPsych, ac-
cess to participants’ microphones is granted only once at the
beginning of the overt naming part and remains permanently
active during the overt naming task. The recordings are started
within each trial upon stimulus presentation. Then files are
immediately saved in wav format and transferred to the server.
Unlike the SoSciSurvey implementation, the recording in
jsPsych relies on the JavaScript plugin recorder.js provided
by Diamond (2016), which we used to customize a jsPsych
plugin to enable audio recording. Note that even though the
functionality of recorder.js builds the base of RecordRTC.js
(as implemented in the SoSciSurvey implementation de-
scribed above), and also of other audio recording plugins, it
is not actively maintained and therefore might not be working
in the future, e.g., if browser standards change.

The main difference with regard to the implementation of the
audio recording is that our custom jsPsych plugin uses a Web
Worker API during the recording and saving of audio files. Web
Workers allow to run tasks in the background without interfering
with the user’s interface. This should ensure, for example, that
the next trial can start as predefined even if the audio file from the
previous trial has not yet been transferred to the server. For any-
one interested in more details of the technical background, we
recommend consulting the MDN Web Docs site as a starting
point, as this site provides information about Open Web

technologies including JavaScript, HTML, CSS, and APIs
(https://developer.mozilla.org/de/).

Data analysis

Data preprocessing

For the SoSciSurvey data, the recordings were first converted to
wav format from the browser’s default compressed recording
format. For the jsPsych data, the recordings were already in
wav format. To extract the naming latency from the audio re-
cordings in the overt naming task, all audio files were then proc-
essed with the tool Chronset (Roux et al., 2017), which is an
automated tool for the detection of speech onsets from audio
files. Afterwards, the audio files were manually checked using
the software Praat (Boersma & Weenink, 2020) and a custom
script (van Scherpenberg et al., 2020) to ensure that participants
were producing the correct target word and to manually correct
the determined speech onset where necessary.

Data exclusion

Replacement of participants due to prescreening of data
Participants were excluded and replaced in the dataset if more
than 20% of the trials were incomplete or marked as deficient.
Trials were marked as deficient if (1) participants produced an
error (wrong picture name or wrong letter classification ), (2)
the audio files of the naming response did not contain any
sound, or (3) if there were other technical difficulties
concerning the audio files. These difficulties included exces-
sive background noise, an extremely low audio signal, or ir-
regular lengths of the audio file within a participant. In the
SoSciSurvey version of the experiment, irregular file lengths
were so pervasive that we did not consider it practical to re-
place participants on these grounds in this version. See the
Discussion for details on this issue. See also Fig. 1 for an
overview of the exclusion of participants due to the
prescreening criteria.

Data exclusion of single trials In the data of the final 48 par-
ticipants in both versions of the experiment, single trials were
excluded if no response was given, participants made an erro-
neous response, or if participants responded prematurely (i.e.,
reaction times under 200 ms). See Table 1 for an overview of
the data exclusion of single trials.

Data transformation and selection of linear mixed effect
models

To approximate a normal distribution of the residuals of the
dependent variable, the Box–Cox power transformation pro-
cedure was applied to the response latency data (Box & Cox,
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1964). The specific transformation that was performed is not-
ed in the respective section of the Results.

For analysis of the response latency data, we used the pack-
ages lme4(Bates, Mächler, et al., 2015b) and lmerTest
(Kuznetsova et al., 2017) in the statistical software R (R Core
Team, 2019; Version: 3.6.1) to fit linear mixed effect models
(LMMs) of the (transformed) response latency with the fixed
effect predictors task (button-press vs. overt naming task), relat-
edness (related vs. unrelated), as well as their interaction. Both
predictors were coded as sum contrasts (button-press – overt
naming and related – unrelated, respectively). In order to exam-
ine more closely the effect of relatedness in the two tasks, nested
LMMs were also fitted, in which the fixed effect of relatedness

was estimated separately for the two levels of the factor task. The
additional factors repetition (whether a picture was seen for the
first or second time within a task) and task-order (button-press—
naming vs. naming—button-press) were included as separate
fixed effects (both contrast-coded). If their inclusion led to an
increase in model fit, as indicated by a likelihood ratio test, they
remained in the final model.

In specifying the structure of the models’ random effects,
we followed the procedure outlined by Bates and colleagues
(2015a). Initially, a full model with the complete variance-
covariance matrix of the random effects allowed for by the
design (i.e., random effects by subject and by picture) was
fitted. This model was then simplified by first forcing the
correlation parameters between the random effects to zero,
then identifying overfitting of the parameters in the random
effects using principal component analysis and dropping those
random effects that contributed the least to the cumulative
proportion of variance as identified by the principal compo-
nent analysis until dropping a random effect led to a reduction
in the goodness of fit. Correlation parameters between random
effects were then reintroduced and kept in the final model if
their re-inclusion led to an increase in the model fit and did not
lead to non-convergence of the model. Models reported in the
Results section are always final, reduced models.

Results

In the SoSciSurvey data, the mean response latency in the
button-press task was 1161 ms (SE = 7 ms) in the related
condition and 1143 ms (SE = 7 ms) in the unrelated condition.
In the overt naming task, the mean response latency was
875 ms (SE = 7 ms) in the related condition and 859 ms (SE

Fig. 1 The number of individual data sets that had to be collected in order
to obtain the pre-defined sample size and the number of data sets that was
excluded based on our preregistered inclusion criteria in Experiment 1

and 2. For comparison, the figure also depicts the lab-based experiment
fromAbdel Rahman&Aristei (2010). In that study, no data sets had to be
removed

Table 1 Data loss caused by preprocessing the final samples of n = 48
in % of total data in Experiment 1 (SoSciSurvey and jsPsych1) and
Experiment 2 (jsPsych2). Trials were excluded from analysis if
participants did not press a button in the binary button-press classification
task (button-press task – no reaction), classified the last letter incorrectly
(button-press task – error), did not produce an object name in the naming
task (naming task – no reaction), did not produce the correct target word
in the naming task (naming task – error), or if a voice onset of less than
200 ms was registered (naming task – early response)

Exclusion due to Experiment 1 Experiment 2

SoSciSurvey jsPsych1 jsPsych2

button-press task – no reaction 1.89 1.48 2.12

button-press task – error 3.79 3.92 2.90

naming task – no reaction 0.44 0.78 0.20

naming task – error 0.69 2.00 1.39

naming task – early response 0.12 0.72 0.17

data loss 6.93 8.91 6.78
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= 6 ms) in the unrelated condition. In the jsPsych data, the
mean response latency in the button-press task, was 1162 ms
(SE = 7 ms) in the related condition and 1147 ms (SE = 6 ms)
in the unrelated condition. In the overt naming task, the mean
response latency was 1003 ms (SE = 6 ms) in the related
condition and 989 ms (SE = 5 ms) in the unrelated condition.
See Fig. 2 for line plots of mean response latency by task and
relatedness for both versions of the experiment, Fig. 3 for line
plots of mean response latency by task, relatedness and repe-
tition for all online experiments and Fig. 4 for raincloud plots
of the single trial data and their distribution by task and
relatedness for all experiments as well as for the previous
study by Abdel Rahman and Aristei (2010). Note that overall
response latencies are slower in the online experiments com-
pared to the lab. We discuss possible reasons for this in the
General discussion section.

Preregistered analysis

SoSciSurvey For the SoSciSurvey data, the box-cox procedure
suggested a log-transformation of the response latency variable.
In the final model (containing main effects of task, relatedness,
and their interaction) both main effects were significant, while
the interaction task*relatednesswas not significant. The positive
sign of the estimate for task and the coding of the task contrast
show that response latency was slower in the button-press task
compared to the naming task. Likewise, for relatedness the re-
sponse latency was slower in the related than in the unrelated

condition. In the final nestedmodel (i.e. estimating separate fixed
effects of relatedness, for the two levels of task), the nested effect
of relatednesswas marginally significant in the button-press task
and did not reach significance in the overt naming task. See
Table 2 for an overview of the reported models from the
preregistered analysis including model formula, coefficients
and random effect variance parameters.

jsPsych1 For jsPsych1, the Box–Cox procedure suggested
transforming the response latency variable by raising to the
power of – 0.5 (i.e., 1 divided by the square root of the vari-
able). This type of transformation reverses the sign of a
model’s parameter estimates compared to log-transformed or
untransformed data. We therefore transformed using – 1 in the
nominator (– 1/square root of the variable) to maintain the
same sign as in the other (log-transformed) models. In the final
model, both main effects task and relatedness were signifi-
cant, while their interaction was not significant. In the final
nested model, the nested effect of relatedness was significant
in the button-press task and marginally significant in the overt
naming task. See Table 3 for an overview of the reported
models from the preregistered analysis including model for-
mula, coefficients and random effect variance parameters.

Exploratory analyses

While in both versions of the experiment the relatedness ef-
fect was significant in themodels containing the main effect of

Fig. 2 Mean reaction times in ms with standard error of means for
naming and button-press tasks in both implementations of the online
PWI in Experiment 1 (SoSciSurvey and jsPsych1) and Experiment 2

(jsPsych2). Targets presented with a semantically related distractor were
classified and named slower than targets with unrelated distractors
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relatedness across tasks and did not interact with the factor
task, relatedness did not reach significance when examining
the effect separately for the overt naming task. It is plausible to
assume that the overt naming data from an online environment
would suffer from an increased level of noisiness and this is
also evident in the longer tails of the response time data when
comparing the single trial data from Experiment 1 to the data
from Abdel Rahman and Aristei (2010), see Fig. 4. Therefore,
we performed outlier correction employing an approach spe-
cifically tailored to LMMs suggested by Baayen and Milin
(2010). This approach relies on model criticism after model
fitting rather than a priori screening for extreme values, by
removing those data points with absolute standardized resid-
uals that exceed 2.5 standard deviations. Baayen and Milin
demonstrated that this approach proves more conservative
(i.e., excludes fewer data points) compared to more traditional
approaches to outlier correction. For the nested models, this
led to the exclusion of 2.39% of trials for the prescreened
SoSciSurvey data and 1.75% of trials for the prescreened
jsPsych1 data.

Refitting the final nested model with the outlier corrected
SoSciSurvey data, the nested effect of relatedness was signif-
icant in the button-press task but not significant in the overt
naming task. In the refitted final model of the outlier corrected

jsPsych1 data, the nested effect of relatedness was significant
in the button-press task and in the overt naming task. See
Table 4 for an overview of the reported models from the
preregistered analysis including model formula, coefficients,
and random effect variance parameters.

Discussion

The results of the two versions of the first experiment were
promising regarding the demonstration of the semantic inter-
ference effect in an online setting.For both versions, we found
a significant effect of relatedness, with slower response laten-
cies when a picture was accompanied by a semantically relat-
ed written distractor word compared to an unrelated distractor,
replicating the classic picture–word interference effect ob-
served in lab settings. As we did not find an interaction of
the effect of relatedness with the factor task, this effect ap-
pears to be independent of the task.

As the particular focus of the current study was demonstrat-
ing that voice onset latencies could be collected in online
settings, we examined the two tasks separately to investigate
the effect of relatedness specifically in the overt naming task.
When looking at the effect in both tasks separately via nested
models, we found that the effect did not reach significance in
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Fig. 3 Mean reaction times in ms with standard error of means with
pooled data from all online experiments plotted separately for task and
task sequence. The figure can be read columnwise from top to bottom for
comparing the effect of picture repetition within one task sequence. The
left column represents the task sequence 1st button-press trials – 2nd overt
naming trials and the right column depicts the task sequence 1st overt

naming trials – 2nd button-press trials. Furthermore, the figure can be
read rowwise from left to right in the upper row for comparing the effect
of picture repetition (1st to 4th) within the button-press task and rowwise
from right to left in the lower row for comparing the effect of picture
repetition (1st to 4th) within the overt naming task
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the overt naming task when we ran the preregistered analyses
without any outlier correction. When we applied outlier cor-
rection by using model criticism and ran the models on the
corrected data, the relatedness effect in the overt naming task
reached significance in the jsPsych1 version, but not in the
SoSciSurvey version (where the t value of the estimate actually
decreased). An additional model of the overt naming data
from both experimental platforms did not yield a significant
interaction of the factors platform (SoSciSurvey vs. jsPsych)
and relatedness (b = 0.001, t = 0.153, p = 0.878). The absence

of this interaction indicates that it is not possible to conclude
that the relatedness effect is actually stronger in one platform
compared to the other. Even so, the significance of the effect
depended on an outlier correction which, while specifically
tailored to single trial data in the context of LMMs, we had
not planned and therefore not preregistered. It is very likely
and plausible that response latency measurements collected
via the audio recordings employed in our online experiments
suffer from increased random error, i.e. noise, which would
decrease the power to find effects.

Fig. 4 Single trial plots (before model criticism) for the factors task and
relatedness in all three experiments and the lab-based study by Abdel
Rahman & Aristei. Box plots represent the median per relatedness

condition with lower and upper hinges corresponding to the 25th and
75th percentiles and whiskers extending to the most extreme value within
1.5*IQR from the box hinges
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Presumably, one of the factors contributing to this increased
noisiness of the data is the technical implementation of the audio
recordings and the reliability of the recordings’ timing relative to
stimulus onset. This is reflected, for example, in the issue of the
variability of the audio file lengths. Only very few of the partic-
ipants’ audio files were exactly of the anticipated length of 3000
ms. Presumably, deviations from this file length are due to factors
like audio sampling rate, technical variability between the users’

machines, and fluctuation in Internet connection quality. It is
beyond the scope and goal of this study to address the technical
details of the recording process and to solve the problems under-
lying the variable file lengths. As long as the file lengths for a
single participant were homogeneous, we expected the recording
process for that participant to be reliable enough to determine
reliable speech onsets. Importantly, in the majority of datasets
within the jsPsych1 version, the file lengths were homogeneous

Table 2 Table of final models from the preregistered analysis of the SoSciSurvey version of Experiment 1 (SoSciSurvey and jsPsych1). Indexing of
estimate column denotes which transformation was applied to the dependent variable. *** = p < .001; ** = p < .01: * = p < .05

Model Formula

SoSciSurvey full model, no outlier
correction

log(rt) ~ 1 + task + relatedness + repetition + task:relatedness + (1 + task | subject) + (1 + task + relatedness |
picture)

Fixed effects Estimatelog Std. Error t value p value

Intercept 6.87 0.02 316.99 < .001***

Task 0.3 0.03 10.09 < .001***

Relatedness 0.01 0.01 2.06 .046*

Repetition 0.13 0.01 23.96 < .001***

Task x Relatedness – 0.001 0.01 -0.09 .93

Random effects Variance Std. Deviation

Subjects

Intercept 0.02 0.13

Task 0.04 0.19

Pictures

Intercept 0.005 0.07

Task 0.003 0.05

Relatedness 0.001 0.03

Residual 0.05 0.22

Goodness of fit

Log likelihood 371.4

Model Formula

SoSciSurvey nested, no outlier correction log(rt) ~ 1 + task/relatedness + repetition + (1 + task | subject) + (1 + task + relatednessnaming | picture)

Fixed effects Estimatelog Std. Error t-value p-value

Intercept 6.87 0.02 317.09 < .001***

Task 0.3 0.03 10.08 < .001***

RelatednessBP 0.01 0.01 1.80 .07

Relatednessnaming 0.02 0.01 1.50 .14

Repetition 0.12 0.01 23.95 < .001***

Random effects Variance Std. Deviation

Subjects

Intercept 0.02 0.13

Task 0.04 0.19

Pictures

Intercept 0.005 0.07

Task 0.003 0.05

Relatednessnaming 0.002 0.05

Residual 0.05 0.22

Goodness of fit

Log likelihood 375.7
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within any one participant, and only a few participants (ten out of
59 participants) showed considerable variability of file lengths
(i.e., in more than 20% of files). We excluded and replaced these
ten participants, as we could not rule out that in shorter audio files
the recording started later than programmed and thus we might
not be able to infer the correct voice onset timing.

In the SoSciSurvey audio files, the issue was a lot more per-
vasive. In contrast to the jsPsych1 data set, 31 of 48 participants

included in the final dataset of the SoSciSurvey version showed
within-subject variability of file lengths in more than 20% of
files. The issue was present more frequently than absent, which
meant that excluding and replacing these participants would have
further escalated the already large number of participants re-
quired to be collected before reaching the target sample size.
The implementation of audio recordings employed in
SoSciSurvey would therefore seem to be more susceptible to

Table 3 Table of final models from the preregistered analysis of the jsPsych1 version of Experiment 1 (SoSciSurvey and jsPsych1). Indexing of
estimate column denotes which transformation was applied to the dependent variable. *** = p < .001; ** = p < .01: * = p < .05

Model Formula

jsPsych1 full model, no outlier correction -1/sqrt(rt) ~ 1 + task + relatedness + repetition + task:relatedness + (1 + task || subject) + (1 + task +
relatedness || picture)

Fixed effects Estimate-1/sqrt Std. Error t-value p-value

Intercept -0.03 0.0003 119.44 < .001***

Task 0.002 0.0003 6.68 < .001***

Relatedness 0.0002 0.0001 2.23 .031*

Repetition 0.002 0.0001 23.59 < .001***

Task x Relatedness 0.00004 0.0001 0.28 .77

Random effects Variance Std. Deviation

Subjects

Intercept 0.000002 0.001

Task 0.000004 0.002

Pictures

Intercept 0.0000009 0.001

Task 0.0000005 0.001

Relatedness 0.0000002 0.0004

Residual 0.000008 0.003

Goodness of fit

Log likelihood 30889.8

Model Formula

jsPsych1 nested, no outlier correction -1/sqrt(rt) ~ 1 + task/relatedness + repetition + (1 + task || subject) + (1 + task + relatednessnaming || picture)

Fixed effects Estimate-1/sqrt Std. Error t-value p value

Intercept -0.03 0.0003 119.53 < .001***

Task 0.002 0.0003 6.68 < .001***

RelatednessBP 0.0002 0.0001 2.07 .038*

Relatednessnaming 0.0002 0.0001 1.77 .08

Repetition 0.002 0.0001 23.59 < .001***

Random effects Variance Std. Deviation

Subjects

Intercept 0.000002 0.001

Task 0.000004 0.002

Pictures

Intercept 0.0000009 0.001

Task 0.0000005 0.001

Relatednessnaming 0.0000003 0.001

Residual 0.000008 0.003

Goodness of fit

Log likelihood 30888.8
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the variability within any one participant’s technical setup. If the
variability of the audio file length is an indication of the reliability
of the timing of the audio recording within the experiment, the
measurements in jsPsych are more reliable.

An additional issue concerning the reliability of the timing
of audio recordings in both platforms is the overall difference
between the response latencies in the overt naming task of the
two versions: voice onset latencies were quicker in
SoSciSurvey compared to jsPsych1 (M = 867 ms across

relatedness for SoSciSurvey vs. M = 996 ms for jsPsych1).
We cannot account for this difference, as the two versions of
the experiment were nearly identical and therefore interpret it
as a technical issue in the audio recording implementation of
the SoSciSurvey version. This would align with the finding
that the relatedness effect in the jsPsych version could also
be found when looking at the overt naming task separately in
the nested model after exclusion of outliers with a model crit-
icism procedure.

Table 4 Table of final models from the exploratory analysis of outlier corrected data from Experiment 1 (SoSciSurvey and jsPsych1). Indexing of
estimate column denotes which transformation was applied to the dependent variable. *** = p < .001; ** = p < .01: * = p < .05

Model Formula

SoSciSurvey nested, with outlier correction log(rt) ~ 1 + task/relatedness + repetition + (1 + task | subject) + (1 + task + relatednessnaming | picture)

Fixed effects Estimatelog Std. Error t-value p-value

Intercept 6.86 0.02 317.58 < .001***

Task 0.3 0.03 10.29 < .001***

RelatednessBP 0.01 0.01 2.17 .03*

Relatednessnaming 0.01 0.01 1.1 .28

Repetition 0.13 0.01 27.15 < .001***

Random effects Variance Std. Deviation

Subjects

Intercept 0.02 0.13

Task 0.04 0.2

Pictures

Intercept 0.005 0.07

Task 0.003 0.05

Relatednessnaming 0.002 0.05

Residual 0.04 0.2

Goodness of fit

Log likelihood 1140.5

Model Formula

jsPsych1 nested, with outlier correction -1/sqrt(rt) ~ 1 + task/relatedness + repetition + (1 + task || subject) + (1 + task + relatednessnaming || picture)

Fixed effects Estimate-1/sqrt Std. Error t-value p-value

Intercept – 0.03 0.0003 118.11 < .001***

Task 0.002 0.0003 6.86 < .001***

RelatednessBP 0.0002 0.0001 2.17 .03*

Relatednessnaming 0.0003 0.0001 2.07 .045*

Repetition 0.002 0.0001 24.36 < .001***

Random effects Variance Std. Deviation

Subjects

Intercept 0.000002 0.001

Task 0.000004 0.002

Pictures

Intercept 0.0000009 0.001

Task 0.0000006 0.001

Relatednessnaming 0.0000004 0.001

Residual 0.000007 0.003

Goodness of fit

Log likelihood 30854.8
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Nevertheless, even the jsPsych1 version had its difficulties
and the effect in the overt naming task was only marginally
significant in our preregistered analysis. To assess if the effect
in this version was a stable finding or a spurious result, we
decided to conduct a second experiment using the same im-
plementation with jsPsych as experiment builder and JATOS
as server with several minor adjustments.

One apparent problem with both versions of the first ex-
periment was the high number of data sets which had to be
excluded according to our preregistered inclusion criteria. The
majority of the excluded participants made too many errors in
the button-press task, often erroneously classifying the written
distractor words’ last letter instead of the targets’. Adjusting
the instructions in the follow-up experiment to be clearer with
respect to the button-press task, and providing examples of
correct responses to practice trials should improve the error
rates and therefore make data collection more efficient. In
another adjustment to address the problem of participant ex-
clusion rates, we decided to recruit the participants for the
second experiment via the institute’s participant pool instead
of Prolific, as these participants may be more accustomed to
reaction time experiments similar to the current study.

Furthermore, collecting a second dataset using the jsPsych
experiment builder would also allow to pool both datasets in a
separate analysis, thereby increasing the power to find an
effect.

Experiment 2

Experiment 2 was separately preregistered on AsPredicted.
com (AsPredicted#: 49281, available at https://aspredicted.
org/blind.php?x=9q2yf3).

Methods

The second experiment jsPsych2 was identical to jsPsych1
with the exception of a few changes.

Participants

In total, 69 native German speakers were recruited using the
institutes’ participant pool Psychologischer Experimental
Server Adlershof (PESA). They were included in the final
sample when meeting all exclusion criteria until the final sam-
ple consisted of 48 participants as determined in the preregis-
tration (36 females, 18–35 years,MMage = 23.69, age SDage =
4.99). Participants provided informed consent to their partici-
pation in the study. The study was conducted based on the
principles expressed in the Declaration of Helsinki and was
approved by the local Ethics Committee. Participants received
course credit or a monetary compensation.

Procedure

To increase the efficiency of the data collection and to de-
crease the high error rates in the first two versions of
Experiment 1, an explicit instruction to ignore the written
distractor words was included. In addition, each practice trial
was followed by an example of what the correct response
should have been.

Data exclusion

Participants were excluded and replaced based on the same
criteria as in Experiment 1, see Fig. 1 for an overview. Similar
to the jsPsych version of Experiment 1, the issue of irregular
file lengths only occurred in a few participants (six of 69),
which were excluded and replaced. In the data set of the final
48 participants, trials were excluded if no response was given,
participants made an erroneous response, or if participants
responded prematurely. See Table 1 for an overview of the
data exclusion of single trials. For Experiment 2, outlier cor-
rection via model criticism was applied from the beginning
and the models reported in the Results section were fitted to
the outlier corrected data. A further 1.67% of trials were ex-
cluded following the model criticism procedure.

Results

Preregistered analysis

In the button-press task, the mean response latency was
1188 ms (SE = 7 ms) in the related condition and 1168 ms
(SE = 7 ms) in the unrelated condition. In the overt naming
task, the mean response latency was 978 ms (SE = 6ms) in the
related condition and 960 ms (SE = 6 ms) in the unrelated
condition. See Fig. 2 for a depiction of the impact of task
and relatedness on response latencies for all three versions
of the experiment and see Fig. 4 for raincloud plots of the
single trial data and their distribution by task and relatedness
for all experiments as well as for the previous study by Abdel
Rahman and Aristei (2010).

The Box–Cox procedure suggested the same transforma-
tion as for the jsPsych1 data: – 1 divided by the square root of
the response latency variable. In the final model of the outlier
corrected data, both main effects task and relatedness were
significant, while there was no significant interaction. In the
final nested model, the nested effect of relatedness was sig-
nificant in the button-press task and in the overt naming task.
This indicates that it takes longer to classify and name a target
picture if it is presented together with a semantically related
distractor. See Table 5 for an overview of the reported models
of Experiment 2 including model formula, coefficients and
random effect variance parameters.
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Discussion

The results of Experiment2 (jsPsych2) confirmed the results
from the jsPsych1 version of Experiment 1. The effect of
relatedness was significant in the full model as well as in both
tasks separately in the nested model, replicating the semantic
interference effect in the PWI in general, and the findings from

Abdel Rahman and Aristei (2010) in particular. The imple-
mentation of audio recordings in the online environment of-
fered by jsPsych and JATOS seems to be able to provide
stable measurements of verbal response latencies.

The adjustments to the procedure in jsPsych2 also improved
the efficiency of the online data collection. Whereas in jsPsych1,
datasets from a total of 108 participants needed to be collected to

Table 5 Table of final models from the preregistered analysis of Experiment 2 (jsPsych2). Indexing of estimate column denotes which transformation
was applied to the dependent variable. *** = p < .001; ** = p < .01: * = p < .05

Model Formula

jsPsych2 full model, with outlier correction -1/sqrt(rt) ~ 1 + task + relatedness + repetition + task:relatedness + (1 + task || subject) + (1 + task +
relatedness || picture)

Fixed effects Estimate-1/sqrt Std. Error t-value p value

Intercept – 0.03 0.0003 118.44 < .001***

Task 0.003 0.0003 10.89 < .001***

Relatedness 0.0002 0.0001 2.73 < .01**

Repetition 0.002 0.0001 28.78 < .001***

Task x Relatedness 0.00003 0.0001 0.24 .81

Random effects Variance Std. Deviation

Subjects

Intercept 0.000002 0.001

Task 0.000003 0.002

Pictures

Intercept 0.0000009 0.001

Task 0.0000004 0.001

Relatedness 0.0000002 0.0004

Residual 0.000007 0.003

Goodness of fit

Log likelihood 31715.2

Model Formula

jsPsych2 nested, with outlier correction – 1/sqrt(rt) ~ 1 + task/relatedness + repetition + (1 + task || subject) + (1 + task + relatednessnaming || picture)

Fixed effects Estimate-1/sqrt Std. Error p-value p-value

Intercept – 0.03 0.0003 118.47 < .001***

Task 0.003 0.0003 10.84 < .001***

RelatednessBP 0.0002 0.0001 2.67 .008**

Relatednessnaming 0.0003 0.0001 2.18 .035*

Repetition 0.002 0.0001 29.02 < .001***

Random effects Variance Std. Deviation

Subjects

Intercept 0.000002 0.001

Task 0.000003 0.002

Pictures

Intercept 0.0000009 0.001

Task 0.0000004 0.001

Relatednessnaming 0.0000003 0.001

Residual 0.000006 0.003

Goodness of fit

Log likelihood 31702.3
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reach the desired sample size of 48, only 69 participants were
required in experiment jsPsych2 to reach the same goal. While
the main reason for exclusion was still participants’ error rate in
the button-press task, the number of participants with an error
rate above 20% decreased from 43 participants in jsPsych1 to 13
participants in jsPsych2. Furthermore, most of these 13 partici-
pants had an error rate only slightly above our predefined thresh-
old indicating that they did not misunderstand the task and clas-
sified the distractor instead of the target, which had been the case
for jsPsych1.

Pooled analysis and post hoc analyses of power

To increase the power of the analysis, the data from jsPsych1
and jsPsych2 was pooled. The model criticism procedure for
the pooled data resulted in the exclusion of an additional
1.71% of trials, compared to the pooled data of the two exper-
iments without any outlier correction.

The Box–Cox procedure suggested the same transforma-
tion as for the jsPsych1 and the jsPsych2 data: – 1 divided by
the square root of the response latency variable. In the final
model, both main effects of task and relatedness were signif-
icant, in the absence of an interaction. In the final nested mod-
el, the nested main effect of relatedness was significant in the
button-press task and in the overt naming task. See Table 6 for
an overview of the reported models from the pooled analysis
including model formula, coefficients and random effect var-
iance parameters.

As expected, the effect of relatedness in both tasks was
more stable when pooling the data from two experiments
and thus increasing the power of the analysis. To determine
to what extent this pooled analysis might have been
‘overpowered’ and to find a balance between sufficient power
on the one hand and sensible sample sizes on the other hand,
we performed a post hoc power analysis with the package
simr(Green & MacLeod, 2016) using the parameter estimates
derived from a separate model of only the overt naming task
from the pooled data.2

For the post hoc power analysis, we calculated a power
curve, which relies on 1000 simulated data sets based on pa-
rameters from our pooled data set. These simulated data sets
were then analyzed with the proportion of significant results
relative to all simulations indicating the respective power
(Kumle, Võ, & Draschkow, 2021). Figure 5 displays the esti-
mated power for increasing sample sizes and increasing num-
ber of trials.

The observed power to find a significant effect of
relatedness increased with growing sample sizes as expected.

At a sample size of 96 (i.e., the actual sample size of the
pooled analysis) and 40 trials as in this experiment the simu-
lated power is 72% for the button-press task and 60% for the
overt naming task. These values are notably lower than the
80% power with a sample size of 36 participants that we
determined via an a priori power analysis (see Methods sec-
tion of Experiment 1). A possible reason for these differences
is the fact that for the a priori analysis we relied on estimates
from a lab-based study and only included random intercepts,
whereas the model estimates used in the post hoc analysis
included a random slope parameter for item as well as a
correlation parameter of the random intercept and slope by
item, as determined empirically by our model selection
process. This resulted in an increase in the number of
parameters between the models from four in the a priori
analysis to six in the post hoc analysis. Matuschek et al.
(2017) point out that fitting more complex models with more
random effect parameters comes at a cost of power.
Furthermore, it is notable that the increase in power with in-
creasing sample sizes is not very large, especially for the overt
naming task. However, increasing the number of items seems
to be more beneficial and important than increasing the obser-
vations within each subject in order to reach an estimated
power of 80%. Indeed, when running simulations increasing
both sample size and the number of items, we see that the
power strongly increases from 40 to 80 items. For example,
a study with 60 participants and 80 items or with 36 partici-
pants and 120 trials would yield an expected power of 80% .
Thus, under some conditions, future experiments may profit
more from an increase in items rather than an increase in
subjects. However, see our recommendations in the General
discussion for possible drawbacks to this approach.

General discussion

In the present study, we introduced three online
implementations of the PWI task and replicated the well-
known semantic interference effect. To the best of our knowl-
edge, this is the first time stimulus-locked voice recordings
from an online experiment have been used to successfully
measure voice onset latencies as a dependent variable, provid-
ing a proof of concept that language production experiments
relying on overt naming can be moved online.

In our implementations of an online PWI task, we present-
ed pictures with visually superimposed distractor words that
were either semantically related or unrelated to the target pic-
ture. Participants were asked to name the picture (overt nam-
ing) or, as a control task, classify the last letter of the picture
name as a vowel or consonant (button-press). Our goal was to
find the typically observed semantic interference effect with
longer response latencies if a distractor word and a picture are
semantically related (vs. unrelated). Given the poor

2 Researchers wishing to analyze data of future experiments with ANOVAs
can find the results of F1/F2within-subjects ANOVAs including effect sizes in
the online SupplementaryMaterial B to use for a priori power analyses (https://
osf.io/uh5vr/?view_only=229679aa33604aa2a5cb400eab62099).

1968 Behav Res (2022) 54:1954–1975

https://osf.io/uh5vr/?view_only=229679aa33604aa2a5cb400eab62099
https://osf.io/uh5vr/?view_only=229679aa33604aa2a5cb400eab62099


audiovisual synchrony reported for different web experiment
builders, browsers, and hardware configurations (Bridges

et al., 2020) in combination with the small size of the semantic
interference effect of around 20 ms, this was not a trivial

Table 6 Table of final models from the preregistered analysis of the pooled analysis (jsPsych1 +jsPsych2). Indexing of estimate column denotes which
transformation was applied to the dependent variable. *** = p < .001; ** = p < .01: * = p < .05

Model Formula

Pooled (jsPsych1 + jsPsych2) full model, with outlier correction – 1/sqrt(rt) ~ 1 + task + relatedness + repetition + task:relatedness + (1 + task ||
subject) + (1 + task + relatedness || picture) + (0 + task || experiment)

Fixed effects Estimatelog Std. Error t-value p value

Intercept – 0.03 0.0002 144.97 < .001***

Task 0.003 0.0003 7.83 .007**

Relatedness 0.0002 0.0001 2.45 .008**

Repetition 0.002 0.00004 35.24 < .001***

Task x Relatedness 0.00006 0.0001 0.75 .49

Random effects Variance Std. Deviation

Subjects

Intercept 0.000002 0.001

Task 0.000004 0.002

Pictures

Intercept 0.000001 0.001

Task 0.0000005 0.001

Relatedness 0.0000002 0.001

Experiment

Task 0.0000001 0.0003

Residual 0.000007 0.003

Goodness of fit

Log likelihood 62624.9

Model Formula

Pooled (jsPsych1 + jsPsych2) nested, with outlier correction – 1/sqrt(rt) ~ 1 + task/relatedness + repetition + (1 + task || subject) + (1 + task +
relatednessnaming || picture)

Fixed effects Estimate-1/sqrt Std. Error t-value p-value

Intercept -0.03 0.0003 145.03 < .001***

Task 0.003 0.0003 7.84 .01*

RelatednessBP 0.0002 0.0001 2.22 .008**

Relatednessnaming 0.0003 0.0001 2.1 .02*

Repetition 0.002 0.0001 35.24 < .001***

Random effects Variance Std. Deviation

Subjects

Intercept 0.000002 0.001

Task 0.000004 0.002

Pictures

Intercept 0.000001 0.001

Task 0.0000005 0.001

RelatednessBP 0.0000001 0.0002

Relatednessnaming 0.0000003 0.001

Experiment

Task 0.0000001 0.0003

Residual 0.000007 0.003

Goodness of fit

Log likelihood 62624.9
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endeavor. Despite these challenges, we replicated the seman-
tic interference effect in both tasks, classification and overt
articulation in three pre-registered experiments, and the
effect closely resembles in size the effect reported by Bürki
et al. (2020) in their recent metastudy on semantic interference
in the PWI task. We conclude that running language produc-
tion experiments online is feasible.

Data quality in our implementation of online
language production experiments

Data loss

Comparing the amount of data loss over the course of the three
experiments with studies run in the lab it is evident that a
higher number of participants had to be tested in order to reach
our predefined goal of collecting 48 valid data sets. In the first
two runs of the study, more than double the number of data
had to be collected in order to obtain at least 80% of trials per
task and participant for analysis. The reasons for this high loss
of data sets are two-fold.

One source of error are the participants themselves. We
found that many participants did not read the instructions
carefully enough and hence had a high error rate when classi-
fying the last letters. This was especially pronounced in the
first experiment where many participants classified the
distractor word instead of the target. However, this problem
was minimized in experiment jsPsych2 where we used a par-
ticipant pool that might be more accustomed to lab settings
and by giving more explicit instructions as well as providing
performance feedback by giving the correct response in the
practice trials. Although the number of participants with an

error rate above 20% was still non-negligible, the number of
participants always classifying the distractor word was re-
duced substantially by these measures. The second reason
for loss of data sets can be subsumed under technical prob-
lems. We encountered cases with empty audio files, differing
file lengths within participants, noise on audio files, as well as
files of poor audio quality. Note, that there were no empty
audio files in Experiment 2, indicating that empty files might
be a result from non-compliant participants muting their mi-
crophones (we presume our participants were more compliant
in Experiment 2).

Noisiness of data

In our experience, data collected online was noisier than data
collected in the lab with longer tails in the distribution of
response time data compared to the lab experiment by Abdel
Rahman and Aristei (2010) and longer overall response times.
This has also been found by other groups running online lan-
guage production studies recently (Fairs & Strijkers, 2021).
We deem it likely that the lack of a controlled testing environ-
ment when testing online is the reason for these relatively long
reaction times. However, as can be seen from Fig. 3, we do
find classic repetition effects with participants getting faster
with repeated stimulus presentations. This underlines our con-
clusions that online testing is a suitable approach for using
language production paradigms relying on the estimation of
voice onset latencies.

Still, even though we accounted for the potential greater nois-
iness of online data a priori by raising the number of participants
by a third after running a power estimation for the effect from a
previous lab experiment, the interference effect for naming was

Fig. 5 Results of the post hoc power simulations for the fixed effect of
relatedness in both tasks based on estimates from the pooled analysis with
an increase in both sample size (on the x-axis) and number of items
(different panels). The big dots represent power plotted by different
sample sizes. For each sample size, the number of simulations to

estimate power was n = 1000. The small dots represent the resulting
p values for each of the 1000 simulations. Increases in power result
from higher proportions of runs with p values below the threshold of p
= .05. The dashed grey line represents the threshold for reaching a power
of 80%.
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only marginally significant in Experiment jsPsych1. To counter
noise in the data, we performed an outlier screening by applying
model criticism. This improved the quality of the obtained data
but has not been necessary to obtain interference effects in lab-
based experiments. Furthermore, pooling data from both jsPsych
experiments and thus increasing sample size made the interfer-
ence effect more stable. Therefore, it seems likely that we
underestimated the noisiness of online language production data
in our first experiment.

Efficiency

In contrast to data collected in the lab using a voice key, the
data generated online were not ready for analysis after their
collection. First voice onset latencies were determined by
using Chronset (Roux et al., 2017) and these were manually
corrected as latencies were not computed reliably in all cases
by this software tool. This procedure consumes time and re-
sources, but could maybe be optimized in future.

In summary, contrary to other fields of behavioral psychol-
ogy, running language production experiments online is not
(yet) less resource consuming than research in the lab in order
to obtain data sets of sufficiently high quality. We hope that
future work might help to reduce these efforts. In the follow-
ing, we provide recommendations based on our experiences
that will likely improve the quality of the data.

Recommendations for running online language
production experiments

1. Take an informed decision on which web experiment
builder you use

The choice of a web experiment builder may have a strong
impact on the quality of the data in a web experiment (Bridges
et al., 2020). Based on our data, we can strongly recommend
using jsPsych (de Leeuw, 2015) for experiments in which
audio responses are recorded – either implementing the
audio-response-plugin which is provided in a beta version
(Gilbert, 2020) or by using our custom script available on
OSF (https://osf.io/uh5vr/?view_only=229679aa33604
aa2a5cb400eab62099).

We tested different ways to implement online audio record-
ings using two web experiment builders for online experiments
– SoSiSurvey (Leiner, 2019) and jsPsych (de Leeuw, 2015).
Overall, we encountered less technical problems for jsPsych in
comparison with the other experiment builder. Less audio files
had to be discarded due to low quality and thus data loss was
minimized to a substantial degree using jsPsych in combination
with a custom audio-record plugin. We therefore advocate the
use of jsPsych, a non-commercial and open-source software
library for building web-based experiments with a proven record
in a wide range of behavioral experiments. Many experimental

tasks can easily be built by using the experimental plugins pro-
vided and evenwith little experience in JavaScript programming
there are almost infinite possibilities to fine-tune them to cater to
the needs of the experimenter. Furthermore, there is a very active
and committed helper community available for questions that
might arise during the process of developing the experiment.
Presumably, using an audio recording option provided by other
web experiment builders (e.g., LabVanced, Gorilla, Finding
Five) would have led to similar results. However, no recording
options for these experiment builders were available when pre-
paring this study and a thorough examination of their timing
reliability is still outstanding.

Custom audio recording implementation in jsPsych As none
of the available web experiment builders offered an audio re-
cording option ensuring that audio recordings would be precise-
ly time-locked to other stimuli, we customized a jsPsych plugin
to our needs. With this plugin the experiment proceeds in the
following way: When starting the experimental block, partici-
pants have to grant the browser access to their microphones once
and microphone access remains active over the whole naming
part. Within the naming part, the custom audio record plugin
enables recording of short audio files of a predefined duration (in
our case, 3 s) timelocked to the presentation of another stimulus
(in our case a picture). The experiment then proceeds as defined
in the experiment timeline, e.g., by presenting a fixation cross or
the next trial. In the background, the audio files are transferred to
the server where the experiment is hosted. We chose to transfer
the files to a server using JATOS (Lange et al., 2015), an open-
source tool for running online studies on your own server.
Furthermore, JATOS also offers the option to structure the ex-
periment in different components that are executed one after the
other – a feature that we used in order to only have microphone
access enabled in the naming part of the experiment but not
during the following or preceding button-press task. However,
the custom plugin should in principle be compatible with any
other server that might best serve a researcher’s needs when
hosting the experiment and saving the data. After the experi-
ment, the audio files and log files can be downloaded and saved.
Voice onset latencies can be extracted from the audio files and
the onset latencies can be merged with the logfile from the
experiment.

2. Limit noise stemming from technical side

It is essential to limit potential sources of noise stemming from
the technical side. Noise can be introduced by variation in
participants’ choice of browsers, their specific hardware and
software. While it is not possible to have full control over the
technical equipment of participants in an online experiment, it
is possible to account for some of their potential influence. For
example, we monitored which browser participants used in
order to control whether data collected in one browser might
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be more or less reliable. We did not find evidence for specific
browser-related differences in the reaction time data in the
jsPsych experiment. However, during pretesting we found
that the experiment was not working for Edge and sometimes
not for Safari users. Therefore, we advised participants to run
the experiment on a personal computer using Firefox or
Chrome, thereby also minimizing the potential influence of
different devices and browser types.

Furthermore, we strongly suggest to only use within-
participant designs, which may reduce variability due to par-
ticipants’ hardware and software setups and can help to min-
imize the influence of audiovisual synchrony problems on the
experimental manipulation.

While future work on web experiment builders might help
to reduce these technical problems, we deem it important to
thoroughly screen the data gained from a web-based language
production experiment and in case of doubt, rather exclude
participants than keep participants with deficient data. To pro-
vide transparency to these decisions, we suggest
preregistering sample size and data-exclusion criteria.

3. Limit noise stemming from participants

Samples reached via online testing may not be as cooperative
and accustomed to the prerequisites of experiments as the
standard lab population. Therefore, it is also essential to limit
potential noise stemming from participants. For example,
noise can be reduced by thoroughly instructing participants
using catch questions to test their understanding of the task
(Oppenheimer et al., 2009) and by giving ample feedback
during practice trials. Furthermore, the pool from which par-
ticipants are recruited may have an impact on data quality, as
evident by the reduced number of data sets that had to be
excluded in Experiment 2 for which we recruited participants
from our institute’s subject pool.

Note that screening procedures and sampling strategies
may ensure higher data quality while potentially minimiz-
ing the advantage of testing more diverse samples than in
the lab. The chosen selection criteria may induce a sam-
pling bias as e.g., stable Internet connections, well-set
hardware, or the willingness to grant access to a micro-
phone are not equally distributed. Therefore, researchers
should be aware of the fact that online testing does not
entail more representative samples than typical samples in
the lab per se. Researchers should aim for a balance be-
tween high data quality and minimal sampling bias when
planning online experiments.

4. Account for increased noise by increasing sample size

We suggest estimating a sample size based on previous data
and to increase the estimated sample size by at least 33% to
account for noise due to online testing. Not all sources of noise

can be totally controlled and minimized by the experimenter.
Therefore, the amount of data needed to be able to draw sound
statistical inferences is likely higher compared to lab settings.
Researchers might as well choose to increase the number of
trials in their experiment. However, it is advisable to keep on-
line studies short because long, and possibly boring, tasks may
lead to an attrition of participant’s attention or increase the rate
of participants who abort the study (Sauter et al., 2020).

5. Carefully check quality of data after the experiment

After the experiment, it is important to carefully check the
recorded audio files, e.g., by listening to the files to check
the audio quality and to control whether participants answered
correctly. Additionally, researchers should inspect the files for
differing file lengths within any one participant. Furthermore,
we suggest checking the estimated voice onsets and to use an
outlier screening procedure before analyzing the data. Of
course the best way to check the quality of your data is to
replicate your basic effect first.

Open issues

Differing file lengths

We lost several data sets before data analysis due to different
audio file lengths within single participants. In most cases the
audio files stemming from the same participant had the same
duration. However, there were cases where we encountered
different file durations within the data stemming from the
same participant. We thoroughly investigated this issue and
did not find any correlation between differing file length and
any of the software or hardware configurations we had logged
(browser used, operating system used). We were not able to
clarify whether recordings started late (which would be fatal to
an accurate estimation of response time), or were cut in the
end (which would be less problematic). We therefore took a
conservative approach and replaced participants for whom
differing file lengths occurred in more than 20% of the audio
files. We hope that future research and software development
will help to tackle this problem and thus make the online
collection of precisely timed naming responses necessary for
many language production paradigms more efficient.

Potentially poor audiovisual synchrony

Lack of audiovisual synchrony is a documented challenge for
web-based experiments (see also Bridges et al., 2020; Reimers
& Stewart, 2016). We cannot quantify to what degree the prob-
lem of poor audiovisual synchrony, a lag of differing duration
between presentation of a picture and start of the audio file
creation, existed in our experiment, too. The trial duration itself
is predetermined via the specific parameters set while
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programming the experiment. It is logged in the respective
logfiles and has a high reliability, i.e., the actual trial duration
corresponds to the predefined trial duration. However, within
each trial, several events need to be executed by the browser: a
visual stimulus needs to be presented and an audio recording
needs to be started. Therefore, audiovisual synchrony can be
poor for two reasons. First, there may be delays between when
the visual stimulus onset is requested and when it actually ap-
pears on screen and second, there may be delays between the
recording request and when it actually starts. While there exist
technical solutions to minimize the first problem, it is still a task
for JavaScript developers to minimize the delays between the
recording request and its start (Bridges et al., 2020). Without
special technical equipment it is not possible to log how long it
takes for a request to be executed and thereby to quantify the
problem of audiovisual synchrony for each and every partici-
pant. One way to potentially quantify the problem of audiovi-
sual synchrony would be to externally monitor participants’
screens for the appearance of a stimulus, displaying an audio
signal like a beep immediately upon stimulus appearance from
an external device which will then be recorded on the audio file.
Later, a comparison of the latency difference between requested
stimulus onset and audio file offset with the beep signal onset
on the audio file in relation to the audio file offset needs to be
done. Obviously, this is not possible when running experiments
online. Therefore, a careful examination of the relative timing
of events within a single trial is beyond the scope of this article
while it may in principle be done (Gilbert & Minors, 2020).
However, given our replication of a small effect of 20 ms we
deem it reasonable that the problem of audiovisual synchrony
can be neglected and reaction times can be estimated to a degree
of accuracy that was sufficient for our purpose. For the future,
we recommend monitoring the developments tackling the issue
of audiovisual synchrony. For the time being, it should be kept
in mind that even though options for voice recording are avail-
able and the software allows to define when and for how long
an audio file is recorded, this does not necessarily guarantee that
the timing is sufficiently well controlled for in order to draw
inferences from voice onset latencies.

Future avenues

One of the biggest advantages of conducting language pro-
duction experiment online is that language production re-
search will become less dependent on available lab space
and thereby become more accessible. This will not only be
helpful in midst of the COVID-19 pandemic with researcher
having to move their experiments online. Furthermore, under-
graduate students might be able to run their own small studies
without using lab space. Participants from bigger and more
diverse samples, even in remote areas, can be accessed more
easily as long as they have Internet access. Hitherto
understudied populations could be more readily featured in

language production research – making the field less reliant
on the classic WEIRD (= Western, educated, industrial, rich,
Democratic) population (Henrich et al., 2010). Data from
more diverse samples will be essential to test the validity of
empirical findings in the language production literature.

With this study we provide a hands-on solution for running
language production experiments online. With this proof of
concept and alongside our suggestions that were derived from
our experiences with implementing the experiments, we are
confident that also other types of language production exper-
iments, for example semantic blocking or the cumulative nam-
ing task, can be implemented online (Fairs & Strijkers, 2021;
Stark, van Scherpenberg, Obrig, & Abdel Rahman, 2021).
This will help to address many of the hitherto open questions
in language production research (e.g., Abdel Rahman &
Melinger, 2019; Bürki et al., 2020).
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