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SUMMARY

Preclinical drug candidates are screened for their ability to ameliorate in vitro
neuronal electrophysiology, and go/no-go decisions progress drugs to clinical tri-
als based on populationmeans across cells and animals. However, thesemeasures
do not mitigate clinical endpoint risk. Population-based modeling captures vari-
ability across multiple electrophysiological measures from healthy, disease, and
drug phenotypes. We pursued optimizing therapeutic targets by identifying
coherent sets of ion channel target modulations for recovering heterogeneous
wild-type (WT) population excitability profiles from a heterogeneous Hunting-
ton’s disease (HD) population. Our approach combines mechanistic simulations
with population modeling of striatal neurons using evolutionary optimization
algorithms to design ‘virtual drugs’. We introduce efficacy metrics to score pop-
ulations and rank virtual drug candidates. We found virtual drugs using heuristic
approaches that performed better than single target modulators and standard
classification methods. We compare a real drug to virtual candidates and demon-
strate a novel in silico triaging method.

INTRODUCTION

The high attrition rate of central nervous system (CNS) drugs is often attributed to off-target activity of lead

candidates on neuronal ion channels leading to safety and efficacy concerns. Patch-clamp electrophysi-

ology provides a direct way tomeasure biophysical properties of ion channel activity and effect on neuronal

function. Pharmaceutical companies apply electrophysiology to characterize new leads’ effects on

neuronal ion channel activity and neuronal and network function, and in vitro electrophysiological assays

are being implemented for pharmaceutical safety and efficacy profiling (Dunlop et al., 2008; Bowes

et al., 2012; Obergrussberger et al., 2015). Electrophysiological assays for screening new cardiac drugs

against myocyte ion channel activities and features are routinely performed because altered cardiac

rhythms are readily observed, predictable, and life-threatening (Möller and Witchel, 2011). It is paramount

in CNS drug development to similarly advance preclinical testing strategies of new chemical entities to pre-

vent adverse drug reactions and address efficacy (Accardi et al., 2016).

It is widely acknowledged that successfully estimating the beneficial or harmful outcomes of treatments in

clinical trials is complex and that failures are often attributed to estimating the average effects of the treat-

ment across the population means while not accounting for population heterogeneity (Kravitz et al., 2004).

In the CNS, the need exists to design effective drugs for individual tissues, within which physiological

variability at the cellular level is pervasive (Gouwens et al., 2020; Scala et al., 2020). This need has been ad-

dressed previously through statistical tests of differences among healthy, diseased, and drugged pheno-

types of neuronal populations pooled across individual neurons and across different animals (Beaumont

et al., 2016). Given that a single neural tissue can integrate nonlinearly the dysfunction of a relatively small

neuronal cohort (11) the urgency to optimize a drugs’ total efficacy for a tissue population is acute. To that

end, we employ rigorous theoretical frameworks andmathematical modeling techniques (Prinz et al., 2004;

Marder, 2011; Sarkar et al., 2012; Britton et al., 2013; Gong and Sobie, 2018) and describe here a compu-

tational pipeline for discovering ionic conductance changes at the single neuron level, which together in-

crease efficacy penetrance among target responses of a diverse neuronal population to virtual drugs. Our

approach represents a method for pharmacological design that simultaneously addresses the heterogene-

ity of neuronal responses within a tissue while offering a path toward personalizing neurotherapeutics.
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Huntington’s disease (HD) is an autosomal dominant genetic disorder caused by an expanded trinucleo-

tide CAG repeat in exon-1 of the huntingtin gene. Phenotypic changes at the single neuron electrophys-

iological level within the striatum, a deep forebrain structure within the basal ganglia responsible for motor,

cognitive, and neuropsychiatric co-ordination, are believed to underlie symptomatic changes in motor

function, cognition, and affect during HD manifestation (Ross et al., 2014). Identifying a single therapeutic

mode of recovery for a dysfunctional neural tissue also undergoing neurodegeneration, such as striatum in

HD, is challenging owing to the biophysical diversity of the single neurons comprising the tissue, their

adaptive drivers, electrophysiological set points (O’Leary et al., 2014) and the confounding effects cell

loss can have on normal circuit function (Zheng and Kozloski, 2017). Commonly referred to as medium spiny

neurons (MSNs), the principal neurons of the striatum exhibit varied active and passive properties in healthy

and diseased phenotypes and manifest electrophysiological disease phenotypes (André et al., 2011).

MSNs are also the neuronal population most vulnerable to insult in Huntington’s disease. Here we present

an example of striatal neuron model populations for Huntington’s disease (HD) and for their wild-type (WT)

background population (André et al., 2011).

Prior experimental studies have explored alterations to physiological and morphological measures among

MSNs. Altered active and passive membrane properties such as resting membrane potential, rheobase,

input resistance, and firing rate were quantified among MSNs expressing D1 dopamine receptors

(D1-type) or D2 dopamine receptors (D2-type), and across different HD animal models and healthy and

HD phenotypes (Klapstein et al., 2001; Planert et al., 2013; Goodliffe et al., 2018). MSNs have been central

to studies of pharmacotherapies, such as inhibition of phosphodiesterases (PDEs) of the CAMP and CGMP

pathways, aimed at alleviating the above membrane properties both in vivo and in vitro (West and Grace,

2004; Beaumont et al., 2016). How these pathways engage ion channel proteins via DARPP-32 substrate

modulation (Greengard et al., 1999) and regulate the membrane activity in WT and HD phenotypes has

yet to be fully understood. Prior in vitro and immunofluorescence studies in HD transgenic mouse models

detected decreased K+ channel proteins (Kir2.1, Kir2.3, Kv2.1) in MSNs (Ariano et al., 2005). However, it re-

mains unclear if these membrane protein changes are sufficient to explain the altered electrophysiological

properties and subsequent vulnerability of MSNs in HD.

Here we present a generic modeling framework that enables building populations of models (PoMs) with

characteristics of healthy and diseased neuronal phenotypic categories. We demonstrate parallel ap-

proaches to combine statistical and machine learning methods and uniquely identify virtual drugs, which

target ion channels and rescue the disease population phenotype toward a healthy phenotype. We also

show how scoring these virtual drugs based on their ability to rescue the disease phenotype may be per-

formed based on both heterogeneity and divergence of the neuronal PoMs comprising the phenotype.

Current model-based regulatory evaluations have mainly centered around PK/PD simulations, but with

growing impetus for inclusion of in vitro electrophysiological assays for safety and efficacy screening of

CNS drugs (Accardi et al., 2016), our methods complement triaging strategies to optimize therapeutic

target design, which remains an area of strong interest among the pharmaceutical industry.

RESULTS

Thus far, there have been few drugs approved for treatment of HD, with most treating chorea and move-

ment disorders (Coppen and Roos, 2017). Some antiepileptic drugs are prescribed for various neurolog-

ical disorders (including HD) and target neuronal excitability through modulation of ion channels. The

main mechanisms of action of these drugs, in addition to targeting voltage-gated ion channels, are

modulation of glutamatergic and GABAergic neurotransmission and intracellular signaling pathways (Ro-

gawski and Löscher, 2004). Due to the preclinical success of a PDE10 inhibitor (i.e., the PDE10i known as

PF-230920) in rescuing in vivo and in vitro neurological deficits in HD symptomatic animal models, the

path to clinical trial was taken for this PDE10i, but the drug failed to ameliorate motor and functional

disturbances in HD patients (Beaumont et al., 2016; Rodrigues and Wild, 2017). Therefore, the failure

of the Pfizer Amaryllis trial made clear that finding a drug candidate based on current preclinical criteria

triaging methods does not necessarily predict the successful outcome of subsequent human clinical tri-

als. There exists not only a need for better drug design, but also for a better means of preclinical scoring

and deciding which drugs should enter clinical trial, such that designing drugs and clinical trials that

maximize translatability and ability to mitigate clinical endpoint risk of failure might become possible

(Wehling, 2009).
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Metrics for scoring efficacy of phenotypic recovery

We used the pre-clinical in vitro data from Beaumont et al. (2016), precursors to Pfizer’s Amaryllis trial, in

order to quantify using our multivariate methods how well the drug recovered compromised neuronal

excitability in the Q175 disease phenotype model. To assess the extent of separation in the space of the

measured neuronal phenotypes (single neuron excitability features) we used convex hulls, which provide

the smallest convex set of enclosure of points for a dataset (Eddy, 1977). In Figure 1A, we show convex hulls

that visualize the enclosures of data from the WT (green) and HD (red) phenotypes in a three-dimensional

(3D) feature space, comprising passivemembrane properties of MSNs. The phenotype of MSNs rescued by

the pharmacotherapy of the PDE10i is represented by the convex hull of HD+PDE10i (orange), which inter-

sects the WT convex hull space. We quantified the performance of the drug by extracting two 3D metrics

from the data for the distance between both HD and HD+PDE10i phenotypes and the WT phenotype,

Euclidean distance (ED3) and Wasserstein distance (see STAR Methods), and we report values normalized

to the HD-WT distances for comparison. The resulting HD-WT distances were normalized to 1.0, and for the

drug treated phenotype HD+PDE10i, ED3 was 0.6 and Wasserstein distance was 0.98 (Figure 1B). While an

ED3 reduction of �40% indicates that the HD+PDE10i population mean is closer to the WT mean than the

HD mean was, the lack of reduction in the Wasserstein distance metric despite the closer means indicates

that the covariance among features must be further from theWT feature covariance in the HD+PDE10i case

than the HD case. We conclude that based on these preclinical data, PDE10i was advanced as a viable HD

drug candidate based on a recovery of �40% of the Euclidean distance metric but a mere �2% improve-

ment in Wasserstein distance metric of divergence between the distributions.

Population of models for characterizing WT and HD electrophysiological phenotypes

We wondered if a computational model of the MSN (Mahon et al., 2000; Octeau et al., 2019) might allow

further refinement of our characterization of the preclinical data from Beaumont et al. (2016). Creation of

large databases of model neurons can provide insight into how neuronal membrane response properties

are determined by the underlying ionic conductances (Prinz et al., 2004) and help elucidate neuronal pop-

ulation and intersubject variability (Britton et al., 2013). We created a database of WT and HD phenotypes

from different instances of the model, thus creating two PoMs. These PoMs reproduced the empirical

ranges of membrane properties (Figure 2). In Figure 2A, green and red squares represent the original pre-

clinical data from 11 neurons for WT and HD respectively. To create the PoMs, an evolutionary algorithm

described in Rumbell and Kozloski (2019) was used (see STAR Methods) to explore the model’s eleven

dimensional parameter space, with each dimension representing one of eight active ionic conductances

and three specific ion permeability parameters (see Table 1 for details of parameter ranges used for

B A

Figure 1. Efficacy evaluation metrics

(A) Convex hulls enclosing WT, HD and PDE10i treated HD phenotypes in three dimensions representing membrane

properties of MSNs illustrate the location of each phenotype in feature space.

(B) Distance metrics used to score the performance of the PDE10i drug for its ability to recover the HD phenotype in

feature space (right bars), quantified as a proportion of the original Euclidean distance andWasserstein distance between

WT and HD PoMs (left bars; normalized to 1.0).
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sampling). Separate optimization runs targeting each phenotype, WT and HD, generated PoMs with

output features bounded by specified ranges. The WT PoM comprised 1650 different parameter settings

(Figure 2A, light green circles), while the HD PoM comprised 859 (Figure 2A, light red circles). Model in-

stances within the WT and HD categories spanned the range of all three membrane features (Figure 2A).

These three membrane features were specifically chosen because each was available from empirical data

from Beaumont et al. (2016) and together they were used as evidence from preclinical in vitro studies to

determine the effectiveness of the PDE10i drug in alleviating these features of the HD phenotype. From

this large database of models, we sampled models to generate a joint distribution across all three feature

dimensions, comparable to that of the empirical data, using the k-nearest neighbor algorithm (see STAR

Figure 2. Population of models to characterize WT and HD phenotypes

(A) Evolutionary algorithm generated PoMs for WT and HD phenotypes. Light circles show PoMs, solid squares show

experimental data, and the subset of each PoM matched to the empirical data using k-nearest neighbors search are

shown as ‘x’.

(B) Box plots of the threemembrane properties of the matchedmodels and empirical data are similar (two sample K-S test

statistic for WT Vm(p = 0.63), Rm (p = 0.63), and rheobase (p = 0.96); HD: Vm (p = 0.82); Rm (p = 0.96); Rheobase (p = 0.83)).

(C) 50% of matched models exhibit unrealistic spiking behavior. Top and middle example models from the WT PoM

shown in green. Bottom example model from the HD PoM shown in red.

(D and E) Addition of further spiking feature constraints to ensure the PoMs exhibit realistic spiking patterns of WT (D) and

HD (E) phenotypes

(F) F-I curves of WT (green) and HD (red) PoMs show heterogeneity within each PoM, and lowered excitability in HD.

(G) Additional spiking constraints collapsed the feature space for the PoM of the WT phenotype into islands of feature

space when additional optimizations were performed. Multiple islands (modes) of feature space were uncovered through

both multiple random seeds, and optimizations targeting specific empirical data points.
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Methods). The sampled models, comprising the two nearest models for each empirical observation, are

each indicated by ‘3’ among the cloud of all model instances. Box and whisker plots summarize the exper-

imental data from (Beaumont et al., 2016), and the sampled models for both WT and HD phenotypes (Fig-

ure 2B) show good agreement between model outputs and the data (two sample K-S tests for WT Vm: p =

0.63, Rm: p = 0.63, and rheobase: p = 0.96; HD Vm: p = 0.82, Rm: p = 0.96, and rheobase: p = 0.83). We could,

therefore, sample model instance feature values from the same distribution as the experimental data. The

evolutionary search and subsequent sampling methods allowed us to create PoMs in close proximity to the

preclinical data in feature space. This PoM generation framework is robust for creating PoMs representa-

tive of different empirically observed phenotypes by varying the parameters of a single underlying mech-

anistic model.

To examine the spiking properties of the sampled models, we then applied several step current injection

protocols. Our first optimization only targeted three membrane properties (Vm, Rm, Rh), and therefore no

specific features of MSN spiking activity, such as AP height, after-hyperpolarization potential (AHP), coef-

ficient of variation of interspike intervals (ISI CV), time to first spike (TFS; also termed ‘spike latency’) and

firing rate (FR), were optimized. Without constraints on active membrane properties, in some cases our

optimized and sampled models failed to reproduce spiking features characteristic of MSNs. We observed

that �50% of these models entered depolarization block under physiological step current injection.

Because the empirical data reported in Beaumont et al. (2016) did not include raw traces from which to

extract these spiking features, we decided to make the assumption that the empirically sampled neurons

did not enter depolarization block and proceeded to survey the literature to obtain normal measurements

for each spiking feature (Klapstein et al., 2001; Planert et al., 2013), thus establishing their acceptable

ranges for our subsequent refining of the MSN PoMs (See STAR Methods, Table 2).

New optimization runs targeted the 11 features reported in Table 2. The first seven features of this table,

RMP, Rm, Rheobase, AP height, AHP, spike latency and firing rate at Rh+50pA, are crucial to define the

adherence of model behavior to realistic spiking characteristics of MSNs and were used to calculate the

distance metrics later in this study. This optimization found 1219 WT and 1223 HD models constrained

by the complete set of 11 feature ranges and 3 additional features such as firing rate at Rh+100pA within

different time windows. Models had regular firing patterns, and none entered depolarization block when

injected with current stimuli ranges up to rheobase plus 100 pA (Rh+100pA; Figures 2D and 2E). Model out-

puts each showed characteristic spike latencies that were greater in WT models than in HD models, and

each showed higher firing rates with increasing depolarizing stimulation across both phenotypes as

observed in (Klapstein et al., 2001; Planert et al., 2013). Figure 2F shows F-I curves obtained from 20 models

for each phenotype, constructed using step currents in increments of 20pA from Rh-60 pA to Rh+100 pA.

The HD models had a lower rheobase and exhibited hyperexcitability (red in Figure 2E), whereas the WT

models had a higher rheobase (green in Figure 2E). Heterogeneity of F-I curves are seen across both

populations.

Table 1. Parameter ranges explored by the evolutionary optimization algorithm.

Conductance parameters Units Lower bound Upper bound

KDR pS/mm2 0.6 3 10�4 6.0

KIR pS/mm2 1.5 3 10�6 0.15

KAf pS/mm2 9 3 10�7 9 3 10�2

KAs pS/mm2 3.2 3 10�7 0.32

KRP pS/mm2 4.2 3 10�7 0.42

Nat pS/mm2 35 3 10�4 35

NaP pS/mm2 2 3 10�6 2 3 10�2

NaS pS/mm2 1.1 3 10�6 0.11

Permeability parameters

PCLC mm/ms 1e�10 1 3 10�6

PNALCN mm/ms 1e�10 1 3 10�6

PKCNK mm/ms 1 3 10�9 1 3 10�4
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The evolutionary algorithm produced PoMs that conformed simultaneously to the three membrane feature

ranges of WT and HD empirical observations, as well as generic descriptions of MSN active spiking prop-

erties (Figure 2F). However, these new PoMs failed to capture the full range of empirical diversity among

the three properties (Vm, Rm, Rh) to the same extent that the original PoM from our less constrained opti-

mization did (Figure 2A). The new HD PoM (1223 models) was reasonably well spread within the convex hull

of HD empirical data (black boundary in Figure 2F) but, again, not as well as the original HD PoM, and the

newWT PoM (1219models) was clustered at one vertex of the convex hull ofWT empirical data and thus did

not sample the entire WT convex hull. This clustering is a commonly observed phenomenon when gener-

ating populations of biophysical models by evolutionary algorithms, as increasing the number of objectives

tends to decrease the variability in observed feature values (Gouwens et al., 2018). To check for the ability of

the model to access alternate feature values within the model parameter space, we performed several

additional evolutionary optimization runs. We performed the optimization with 5 different random seeds,

which resulted in identification of a second feature mode ofWTmodels, again matching our target features

but occupying a different region of feature space (Mode G in Figure 2G). The two modes of WT feature

space identified by population-based optimization encompassed 2 out of 11 WT data points from the

Beaumont et al. (2016) data. To facilitate coverage of additional empirical population modes, we per-

formed 5 additional optimizations targeting specific empirical data points more precisely, each matching

the target feature values for Rm, Vm, and rheobase to those of a specific empirical data point, and reducing

the feature range for those three features to within 10% of the values specified in Table 2 (see supplemental

information for more details). After simulating a total of approximately 1,530,000 models, these additional

optimizations were unable to find parameter sets resulting in feature values matching all criteria simulta-

neously (i.e., error value of 0), so for each optimization run we relaxed these additional constraints and

allowed for models with non-zero error values. To identify the most appropriate WT model population

for proceeding with our analysis, we down-sampled models to �30,000 that are within zero error ranges

or within close proximity of feature ranges specified above. We calculated the Wasserstein distances in

3 dimensions between the HD population and each WT population and compared these distances

with the empirical Wasserstein distance between HD and WT neurons. The WT population from the first

optimization run gave the largest Wasserstein distance from the HD phenotype among all trials (Figure S4),

so we selected that population for subsequent analyses as the most challenging required target

Table 2. WT and HD feature ranges targeted by the evolutionary optimization algorithm.

Feature name

WT HD

Target mean Target deviation Target mean Target deviation

Features included in optimization and included in metric distance calculations

Resting membrane potential

RMP (mV)

�84.0 6.0 �76 4

Rheobase

Rh (pA)

245 126 123 53

Membrane resistance

Rm (MU)

102.5 12.5 180 50

Firing rate at rheobase +50pA

FR50 (Spikes/s)

6 4 6 4

AP height (mV) 27 10 27 10

AHP (mV) �50 10 �50 10

Time to first spike

TFS50 (ms)

400 300 400 360

Feature included in optimization but excluded from metric distance calculations

Time to first spike TFS100 (ms) 400 350 400 380

Firing rate at rheobase +100pA

FR100 (Spikes/s)

12 8 12 10

Coefficient of variation of Inter

spike interval ISI_CV*

0 1 0 1

Voltage base variance (mV) 0 0.1 0 0.1
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perturbation. Note that the same analyses described below and applied to the otherWT populationmodes

would not have qualitatively changed the outcome of the study, and results from other random seeds are

discussed in the supplemental information. In general, optimizations of PoMs encounter problems when

adhering to many feature constraints simultaneously. Despite these limitations to sampling, we observed

that both model populations (WT and HD; Figure 2F) were significantly different from each other (one-way

ANOVA, p< 0.0001). This difference is consistent with the statistical differences among the empirical

observations of Beaumont et al. (2016).

In summary, we constructed a large database of models (�2,400), that strictly obeyed the active properties

of MSNs, specifically AP height, AHP, spike latency, firing rates, and ISI CVs. These models also approxi-

mated passivemembrane properties that distinguishedWT and HDMSNs. Furthermore, in our subsequent

analyses, themore narrowly constrainedWTmodels (Figure 2F) presented an evenmore challenging target

than their empirical counterparts for ameliorating HD models using virtual drugs. We propose that pro-

vided the underlying model is a good one, any successful virtual drug identified under these specific,

more stringent criteria for resolving HD phenotypic disturbances, should also in general demonstrate

our methods and be able to recover the WT phenotype from the HD phenotype.

Analysis of parameters reveals ionic conductances associated with phenotypic differences

We further analyzed the parameter distributions underlying our PoMs and created a reverse screen for the

origins of neuronal excitability differences among the HD andWT phenotypes. Box plots of ionic conductance

parameter values comprising theWT (green) andHD (red) phenotype PoMs normalized to themean of theWT

models are shown in Figure 3A. The most significant difference predicted by the PoMs is a downregulation in

KAf conductance, which further corroborates experimental evidence for intrinsic excitability being mediated

by Kv channels (Kang et al., 2014; Carrillo-Reid et al., 2019). The transient Na conductancewas also significantly

downregulated in our HD models, and while to our knowledge no direct evidence of reduced expression of

Nav1.2 channel proteins in HD exists, there is evidence for sodium channel b4 subunit downregulation in HD

transgenic animals, which may underlie neuritic degeneration (Oyama et al., 2006). We calculated a K-S test

statistic between WT and HD model parameters and found those parameters for which the K-S distance

wasR0.7: for Nat, 0.95; for KAf, 1.0; for NaP, 0.73; and for KRP, 0.76.We also note, however, that when consid-

ering multiple PoMs at different modes in WT feature space, alternate hypotheses emerged about which po-

tassiumand sodiumchannels are responsible for deficits in outward and inward conductance betweenWTand

HD neurons (for example with KRP and Nas emerging as the largest differences in modes B and F (Figure S3)).

We also examined correlations among the parameters by constructing a heatmap representing pairwise

correlations between model parameters (Figure 3B). WT model parameter correlations are shown in the

* *

A B

Figure 3. Analysis of parameters of the WT and HD PoMs reveals decreased ionic conductance changes

associated with HD pathology

(A) Box plots of ionic conductance parameter values comprising theWT (green) and HD (red) phenotype PoMs. Values are

normalized to themean parameter values for theWTmodel. Ionic conductance densities that show significant differences

between WT and HD (K-S distance >0.9) are indicated with ‘‘*’’.

(B) Correlation matrix of the ionic conductances within the WT PoM (lower triangle) and the HD PoM (upper triangle).

Diagonal is left blank. Correlations between some conductances (e.g., the subthreshold slow sodium, Nas, and persistent

potassium, KRP) are conserved across the two phenotypes.
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lower triangle of Figure 3B, and HD model parameter correlations shown in the upper triangle. A strong

correlation between Nat and KAf exists (r > 0.8), which is diminished among HD phenotypes (r�0.3). We

next assessed how the ionic conductance parameters were correlated to each of the first 7 features from

Table 2. We applied linear regression methods (Sarkar and Sobie, 2010) (see Figure S5) to uncover the re-

lationships between each of the model’s ionic conductances and the features of model outputs for both

phenotypes. The linear regression coefficients indicate the sensitivity of the perturbation of individual con-

ductances and their influence on the relative model properties against which they were regressed. The

firing rate property was most sensitive to two conductances: NaS and KRP (Figure S5). These two conduc-

tances were highly correlated among bothWT and HDmodels seen in Figure 3B (a correlation also present

in alternate WT modes (Figure S3)). Both of these ionic conductances have long time constants of activa-

tion, which may underlie their ability to maintain subthreshold excitability and alter repetitive firing rates

(Hoehn et al., 1993; Nisenbaum et al., 1996). The coefficients that most influenced rheobase, a critical differ-

entiating feature of the phenotypes, were PKCNK (permeability to K+ ions) in both phenotypes, followed by

KAf conductance. This is not surprising as prior experimental work quantified the effects of potassium leak

on depolarization and rheobase of striatal neurons (Octeau et al., 2019). Overall, most of the features could

be predicted well with linear models (R2 values >0.9; see Supplementary Results) with the exception of

spike latency feature for WT, where the goodness of fit measure was low (R2 = 0.3), but a polynomial regres-

sion fit with order 2 improved the R2 value to 0.6 (not shown).

Virtual drug design

While the methods described above that are useful to characterize parameter sensitivity with respect to

model features, they are insufficient to reveal a coherent target modulation profile, i.e., a set of perturba-

tions of ionic conductance parameters of the model sufficient to rescue excitability phenotypes in HD. We

have termed these unique combinations of ionic conductance perturbations ‘virtual drugs’ and present the

various methodologies we evaluated to efficiently recover the HD phenotypes toward the WT phenotype

feature space. ‘Efficient recovery’ refers to perturbing the model parameters such that the resulting treated

HD models’ output feature distributions are in close proximity to the WT models’ feature distributions

within a multidimensional measurement space, calculated according to our distance metrics. We demon-

strate and present the results of these methodologies in the following sections.

Single target modulation

Fast inactivating potassium conductance, KAf, was significantly downregulated in the HD PoM (Cohen’s

d measure >3). Accordingly, we considered gKAf to be a key parameter, as it was highly correlated to fea-

tures such as TFS, Rheobase, and FR (see Supplementary Results), and was the strongest coefficient of the

first principal component that explained 36% of the variance in the combinedWT and HD PoM’s parameter

space (not shown). Next in importance was the transient sodium current, Nat, which was critical for regu-

lating AP related features together with KAf (Figure S5). For this reason, our first virtual drugs were con-

structed by modulating each of these conductances. We applied these virtual drugs to each HD model

instance in the HD PoM by changing parameters according to the virtual drug and measured the outcome

in the 3D feature space of passive membrane voltage, membrane resistance and rheobase. By way of

example, when Nat was modulated, we first calculated the difference between the means of the WT and

the HD PoM’s ‘Nat’ conductances, which we used as a reference perturbation in constructing the first virtual

drug vd_Nat. The relative magnitude and direction of this reference perturbation is represented in Fig-

ure 4A as the mean conductance of the HD PoM’s parameters after applying (i.e., adding) the reference

perturbation to each. We calculated this mean conductance (1.47 for gNat) by dividing the mean of the per-

turbed HD PoM’s parameters by the mean of the HD PoM’s parameters (virtual drug-modulated parame-

ters are shown relative to the original HD mean parameters). The virtual drug vd_Nat was then applied to

each model in the HD PoM at four fractional doses, i.e., percentages of the full reference perturbation

(100%, 75%, 50%, and 25%; Figure 4C). KAf conductance of the HD PoM was similarly modulated by the

second virtual drug vd_KAf (Figures 4B and4D). The resulting phenotypic recovery in 3D feature space in

response to vd_Nat at these doses is shown in Figure 4C, and in response to vd_KAf in Figure 4D. As shown

in this figure, vd_Nat did not recover the HD phenotype, which was not surprising, since Nat was not iden-

tified as contributing to variation among the membrane excitability features in the PoM. In contrast, vd_KAf

was sufficient to transform the HD PoM toward the WT PoM. We quantified the extent of efficacy and re-

covery of the HD PoM, summarized using four metrics (See STARMethods). vd_Nat performedmore poorly

than vd_KAf in recovering the Euclidean distance in 3D, andWasserstein distance in 3D and 7D. In contrast,

vd_KAf at 100% dose recovered the Euclidean distance by at least 60% across all features and >75% in the
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three passive membrane features, but it failed to address the heterogeneity with the HD PoM and resolve

its divergence relative to the less diverse WT PoM, shown by a smaller reduction in normalizedWasserstein

distance than normalized Euclidean distance in Figure 4F. Also, vd_KAf applied at higher doses under-

standably generated excess risk of altering other membrane properties, to the extent of breaking the

response of the model, such that resulting features could not be measured. We quantified this effect

with an auxiliary measure of the proportion of models retained (i.e., models producing reasonable spiking

activity after virtual drug application), which decreased as vd_KAf dose increased, resulting in retention of

only 40% of models at the reference dosage. It will be interesting to examine this model-based risk’s rela-

tionship to toxicity measures of real CNS drugs in subsequent work.

Multiple target modulation

There has been a shift away from the ‘‘one drug, one target’’ approach, wherein highly potent and specific

single-target treatments were preferred to polypharmic drugs, as they purported to mitigate off-target

side effects. However, translatability from in vitro drug effects to in vivo efficacy was poor with this approach

(Talevi, 2015; Rodrigues andWild, 2017). While single target strategies appeared reasonable for known dis-

orders controlled by single targets, such as in cardiac arrythmias (Roukoz and Saliba, 2007), neurological

diseases involve disruption of network homeostasis (Ramocki and Zoghbi, 2008) and breakdown of multiple
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Figure 4. Single target modulation performance metrics

(A) Single target perturbation to Na+ transient conductance (Nat) applied to the HD PoM (vd_NAT).

(B) Perturbation of fast inactivating potassium conductance (KAf) applied to the HD PoM (vd_KAF).

(C) Phenotypic recovery in three-dimensional feature space with perturbation vector shown in (A).

(D) Phenotypic recovery with perturbation vector shown in (B).

(E) Four metrics (see color key) score vd_NAT efficacy for recovering the WT PoM’s phenotypes from the HD PoM’s

phenotypes: Euclidean and Wasserstein distance in 3 dimensions, Wasserstein distance in 7 dimensions (see STAR

Methods), as well as Models Retained. ‘‘Models Retained’’ refers to models whose features remain within a permissible

range of realistic behaviors of MSNs (feature values of the model adheres to the ranges for spiking constraints listed in

Table 2, also excluding models for which automated feature extraction failed) after the perturbations are applied at each

of the four intermediate doses.

(F) Same as (E) but scoring vd_KAF.
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contributing underlying biochemical cascades. For this reason, we aimed to augment polypharmic ap-

proaches with our reverse screen and identify highly potent and specific, multi-target treatments to alle-

viate complex phenotypes by the simultaneous modulation of multiple ion channels.

Linear methods sufficient to recover phenotype

Next, we considered whether it might be possible to modulate multiple parameters simultaneously

and more efficiently perturb the HD models toward the WT phenotype to achieve better recovery than

accomplished by our single parameter modulations. Linear regression analysis (see also supplemental in-

formation) provided insights into how multiple conductances regulated different electrophysiological

properties. These linear relationships engaged multiple ionic conductances, supporting the idea that to

regulate a specific feature in a desired manner, multiple conductance parameters should be perturbed

simultaneously. A schematic representation of how this perturbation is determined for the HD PoM is illus-

trated in Figure 5A (See STAR Methods for details on its construction). To explore a second method for

Projection of model parameters onto SVM seperation 
axis

Y - Y=

Estimation of conductance change with linear regression

A B

C

E F

G H

Δx

D

Figure 5. Multiple target modulation performance metrics using linear methods

(A) Linear Regression method used to determine conductance change for expected feature change (Y-Y0).

(B) WT and HD models separated by a hyperplane determined using linear support vector machine method.

(C and D) Modulated conductance by perturbation vectors determined from method described in (A) (vd_LIN) and (B)

(vd_SVM).

(E) and (F) Phenotypic recovery in three-dimensional feature space with perturbation vectors shown in (C) and (D). Note

the difference in dosage for F (see text).

(G and H) Four metrics used for scoring the virtual drug’s perturbation efficacy in terms of its ability to recover the HD PoM

in Euclidean distance and divergence (Wasserstein distance) when applied with vd_LIN and vd_SVM at four intermediate

doses.
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constructing a multiple parameter virtual drug, we employed a linear SVM classifier to define a separating

axis orthogonal to the hyperplane classification boundary. The projection of the PoMs’ parameter vectors

onto the separation axis determined by the SVM classifier then generated a set of values (i.e., ‘scores’ of

arbitrary units), histograms of which together with kernel density estimation results are shown in Figure 5B.

These histograms illustrate the clear separation between the two PoMs. A similar approach using logistic

regression (i.e., the ‘characteristic direction’ method) was used previously to identify similarities and dis-

similarities between gene expression studies from multiple experiments, when the underlying parameter

space is high dimensional (Clark et al., 2014).

First, we calculated a reference perturbation from the linear regression analysis described in STAR

Methods. The conductance vector determined by the regression (the linear solution ‘X’ in Figure 5A) rep-

resents the conductance changes necessary to effect the feature changes from the HD to the WT PoM (the

right hand side ‘Y-Y0’ in Figure 5A). We used this conductance vector’s magnitude and direction as the

reference perturbation for the third virtual drug vd_LIN. The relative perturbation is represented in Fig-

ure 5C as the mean conductances of the perturbed HD PoM after applying (i.e., adding) the reference

perturbation to each HD model. The virtual drug vd_LIN was also applied to each model in the HD PoM

at additional fractional doses, as above. The resulting phenotypic recovery in 3D feature space in response

to vd_LIN at these doses is shown in Figure 5E.

Next, we calculated a reference perturbation along the separation axis of the SVM analysis described in

STAR Methods. This axis is defined by a conductance vector, which is normal to the hyperplane and has

a magnitude (1.12) related to the distance between the Z score normalized parameters of the HD and

WT PoMs. Specifically, the conductance vector represents the conductance changes necessary to trans-

form the HD PoM’s parameters (in the direction of theWT PoM’s parameters), such that the SVM classifier’s

accuracy is reduced by 50%, and to alter the model scores of the HD PoM (xaxis panel 5B) by 0.05 (arbitrary

units), as required to classify them asWT PoM.We used this conductance vector’s magnitude and direction

for the reference perturbation of the fourth virtual drug vd_SVM. The relative perturbation is represented in

Figure 5D as the mean conductance of the HD PoM’s conductance parameters after applying (i.e., adding)

the reference perturbation to each. The virtual drug vd_SVM was then applied to each model in the HD

PoM at fractional doses ranging from 50 to 200%. The resulting phenotypic recovery in 3D feature space

in response to vd_SVM at these doses is shown in Figure 5F.

While vd_LIN at maximum dose only recovered 34% of the Euclidean distance measures of the HD PoM,

vd_SVM at the 150% dose recovered 80% of these measures (Figures 5G and5H). The further incremental

dose (200%) of vd_SVMmoved the PoM away from the WT PoM and worsened the recovery in terms of our

distance metrics. As with single target modulation, both approaches failed to reduce the Wasserstein dis-

tance metric, and therefore suffered from an inability to resolve the full cohort of our HD PoM’s members’

dysfunctions, while resolving only the PoM’s mean response metrics.

Virtual drug with heuristic approaches provided best phenotypic recovery

To address the divergence from the target WT PoM phenotype of the HD PoM phenotype after a virtual

drug treatment was applied, we explored the direct use of differences between individuals for each pair

of members sampled from the WT PoM and HD PoM to construct virtual drugs. We calculated the distri-

bution of parametric differences between each HD model and each WT model, which we reasoned could

supply the necessary modulation needed to yield an effective transformation of the PoM. Our first

approach (Figure 6A) estimated the most frequently occurring difference vector between the two PoMs.

We constructed a multidimensional histogram (illustrated for only 2 parameters in Figure 6A) over all

parameter differences between members of the WT and HD PoMs (top left) and found the mode of this

distribution. We formulated a second related approach by calculating the differences between the

mean WT PoM’s and HD PoM’s parameters for each parameter independently, as shown in Figure 6B.

While the former method estimates the required perturbation based on every possible parameter differ-

ence between all pairs of models across the two PoMs, the latter method estimates a direction in parameter

space from the mean values of the WT and HD PoMs’ parameters. Figures 6C and 6D represent the mean

conductances achieved by the multiple target virtual drugs vd_HIST and vd_DIFF, applied to the HD PoM.

The approaches are similar in their target modulation profile with subtle changes around modification to

NaS, KIR and KCNK parameters. Both altered transient sodium and fast inactivating potassium conduc-

tances in similar relative proportions, along with NaS and KRP, resulting in feature transformations among
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the HD PoM that were remarkably good. Not only did these virtual drugs move the HD PoM to its closest

proximity to the WT PoM, but at intermediate dosages, they effected a progressive decrease in the HD

PoM’s members Wasserstein distance to theWT PoM. This category of virtual drug perturbation was there-

fore unique in its simulated efficacy (Figures 6E and 6F), and thus represents a novel approach to virtual

drug design. Having addressed our most stringent criteria governing efficacy (Figures 6G and 6H), these

drugs performed surprisingly well and therefore warrant further investigation for designing therapeutics

for HD and other disorders with similar cellular disease phenotypes.

Triaging approach using virtual drugs to design efficient target modulation

We further compared performance metrics among all the virtual drugs used in this study. First, we exam-

ined the extent of recovery in the distributions of all features. As illustrated in Figure 7A, feature
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Figure 6. Multiple target modulation performance metrics using heuristic methods

(A) Multidimensional histogram (shown for only two parameters) of all possible parametric differences between WT and

HD PoMs (top left).

(B) Individual parametric differences between the means of the PoMs.

(C and D) Conductance modulations by perturbation vectors determined from method described in (A) (vd_HIST) and (B)

(vd_DIFF).

(E and F)Phenotypic recovery in three-dimensional feature space with perturbation vector shown in (C) and (D).

(G and H) Four metrics used for scoring the virtual drug’s perturbation efficacy in terms of its ability to recover the HD PoM

in Euclidean distance and divergence (Wasserstein distance) when applied with vd_HIST and vd_DIFF at four

intermediate doses.
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distributions of the HD PoM (red) appear disjoint from the WT PoM (green), but appear proximal to the WT

PoM (green) when perturbed with the best virtual drug vd_DIFF (orange). Figure 7B provides a visual rep-

resentation of the rescue ofWT phenotype across all feature pairs. As seen in subplots s, t and u for pairwise

combinations of Vm, IR and Rh, the virtual drug vd_DIFF also addressed the divergence in distributions from

HD to WT. However, for features such as FR50 and TFS50, the vd_DIFF treated HD PoM distributions ex-

hibited a wider resulting spread. These results allude to possible next generation model enhancements

beyond the current single compartment approximation using ionic conductances alone, such as optimizing

ion channel parameters governing activation and inactivation kinetics and time constants. Additional struc-

tural complexity, such as dendritic compartments, may also be required to address these features.

We note that virtual screening and scoring methods in traditional drug discovery are mostly centered

around estimating ligand-protein binding affinities and energies (McInnes, 2007). Scoring drugs based

on their ability to address recovery in terms of population heterogeneity and divergence has remained un-

explored prior to our study. Here, we have introduced a novel screening method to quantify drugs’ efficacy

not just in terms of recovering singlemodels or a populationmean, but also based on their ability to resolve

a heterogeneous PoM’s multidimensional phenotype, representative of the full contingent of cellular phe-

notypes and their joint distributions occurring in the target tissue.We scored virtual drugs from the average

C D

A

WT seed1
HD
HD + vd_DIFF

B

Figure 7. Validation and performance metrics of virtual drugs

(A) Kernel density estimates show full recovery of the HD PoM (red) when perturbed with the best virtual drug (orange) and

overlap the WT PoM (green).

(B) Pairwise scatterplots of all features. The best virtual drug, vd_DIFF, recovered spiking features that were added in this

study, and which extended previous empirical measures of excitability.

(C) Drug scores calculated from the averages of four metrics (Figures 4, 5, and 6) for each virtual drug at their best dosage

identified in this study.

(D) Drug scores calculated from the average of two metrics (Wasserstein distance in 7 and 3 dimensions) allowing

comparison across each the virtual drugs at best dosage and the real drug, PDE10i.
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of four metrics (See STAR Methods and Figures 4, 5, and 6). The virtual drug vd_DIFF performed best, fol-

lowed closely by vd_HIST, each of which recovered �70% of the total WT-HD distance. We also compared

these drugs in two metrics, Euclidean and Wasserstein distance, for three passive membrane properties

(Figure 1) and found similarly high efficacy.

Lastly, recalling the performance of PDE10i from Figure 1, wherein the drug only recovered 27% of the

Euclidean distance metric constructed from the three passive membrane properties in the empirically

observed WT and HD data, we note that the majority of our virtual drugs performed better in rescuing

the WT phenotypes (Figure 7D).

DISCUSSION

Motivation

In contrast to traditional target-based drug discovery strategies, which identify and validate specific molec-

ular targets, phenotypic drug discovery strategies focus on first collecting physiologically relevant end-

points and then probing for underlying molecular targets in an agnostic manner, thus diminishing target

validation risk (Moffat et al., 2017). With more first-in-class drug discoveries being made from such pheno-

typic drug discovery strategies, a huge opportunity lurks in developing screening tools that enable deci-

sion making on the viability of compounds along their well-known multidimensional paths from disease

and risk to health and safety, and ultimately for fostering successes in the development of therapies for

CNS disorders among the current drug development pipeline.

HD phenotypes

Our study began with the assumption that the underlying variability of neuronal electrophysiological phe-

notypes in HD arises from differential modulation of ion channel conductance densities across principal

neurons in the tissue most affected by HD, the striatum. Evidence also points to other sources of variability

associated withMSNdysfunction beyond somatic ionic conductances, such as morphological alterations of

dendritic topology (Goodliffe et al., 2018) modulation of extracellular K+ levels contributed by K+ channel

dysfunction among astrocytes (Tong et al., 2014), TrkB signaling pathway modification of K+ channel

interacting protein KChIP with Kv4.2 channel subunits (Carrillo-Reid et al., 2019), alterations to synaptic

and receptor function (Raymond et al., 2011). Other theoretical and modeling studies further corroborate

experiments showing disruptions to the balance between excitatory and inhibitory inputs within striatal

networks (Ponzi et al., 2020). Kinetic parameters of ion channel models’ sub-threshold voltage gating

mechanisms were not varied in this study, though the coregulation of channel kinetics provides general

mechanisms for regulating neuronal excitability (McAnelly and Zakon, 2000). Prior immunohistochemical

studies in MSNs from transgenic mice associated the reduction in inward and outward K+ conductances,

and expression of specific K+ channel subunits, to altered active and passive membrane properties in

HD model animals (Ariano et al., 2005). Despite these potentially confounding variables, by varying only

maximum conductance parameters our study produced PoMs that closely matched experimental data

and provided key methods for measuring drug efficacy and designing multi-target virtual drugs. To sum-

marize our findings:

i) Our model-based observations show how reduced K+ channel expression can sufficiently alter

neuronal excitability (Figures 3, 4, 5, 6, 7, S3, and S4) to explain observations that voltage gated

K+ channels influence membrane depolarization and control striatal neuron firing (Hopf et al., 2003).

ii) In our models, fast and slow inactivating A-Type K+ conductances are greatly modified, which

contributed to the difference in somatic excitability among WT and HD PoMs’ phenotypes (Figures

4, 5, and 6). However, prior evidence of fast inactivating K+ channel Kv4.2 dysfunction was localized

to the distal dendrites of D2-type MSNs (Day et al., 2008). Contrary to our findings, in these studies,

Kv4 current was elevated to make the dendrites hypoexcitable, which occurred alongside

decreased cortical drive, through impaired TrkB signaling. We propose that somatic excitability

may be an additional homeostatic response to decreased efficacy of cortical drive. This hypothesis

requires further experimentation to test, wherein the non-homogenous distribution profile of these

ion channels is probed to examine if indeed Kv4.2 are differentially modulated in HD among soma

and distal dendrites.

iii) Our parametric analysis of the PoMs revealed a decrease in slowly inactivating K+ conductance,

which substantiates prior evidence revealing downregulation of Kv2.1 channel expression (Ariano

ll
OPEN ACCESS

14 iScience 24, 103279, November 19, 2021

iScience
Article



et al., 2005). Several types of K+ channel subunits identified, including Kv1.4, Kv4.2, Kv2.1 (Sheng

et al., 1992) give rise to slowly inactivating currents. Most likely, the strongest reduction in A-type

among the HD PoM, fast and slow inactivating K+ and persistent K+ conductances (Figures 3, S4,

and S5), could be attributed to their crucial role in delaying threshold excitation in the model

(TFS feature used in this study) in response to injected current, which captures a key characteristic

of MSNs. We imposed a stricter constraint on WT models to reproduce this feature with

TFS>100ms, which may have caused these currents to be strongly upregulated in the WT PoMs.

Furthermore, channel engagement at the different phases of membrane excitation during sub-

threshold membrane depolarization contributes differentially to this characteristically delayed exci-

tation (Surmeier et al., 1988; Nisenbaum et al., 1996).

iv) In our models, a transient Na+ conductance required upregulation in order to rescue the HD pheno-

type. Though there is no direct evidence to our knowledge of reduced expression of the Nav1.2 chan-

nel in HD, evidence that sodium channel b4 subunit downregulation in HD transgenic animals may

underlie neuritic degeneration does exist (Oyama et al., 2006). In fact, among cultured cerebellar

granule cells, knockdown of Navb4 (Scn4b) revealed the loss of resurgent current, reduced persistent

current, and a downward shift in half-inactivation voltage of transient current, thus altering firing pat-

terns. Though, our findings do not establish a direct link to the upstream genetic pathways, increasing

Na+ currents alone was not sufficient to rescue cell excitability of HD phenotypes (Figure 4C).

v) Our models reveal that KRP and NaS were strongly correlated in both WT and HD phenotypes in

order to maintain targeted firing properties (Figures 3B, S4, and S5). NaS is a TTX insensitive Na+

current and is a known target for modulation of neuronal firing properties (Hoehn et al., 1993), while

persistent components of the total K+ current were pharmacologically heterogeneous, being avail-

able over a broad range of membrane potentials (Nisenbaum et al., 1996). It is not surprising that

these two currents were strongly implicated in maintaining firing rates across the PoMs.

vi) Surprisingly, the KIR conductances in our HD models were upregulated for this model population,

while prior evidence attributed hyperexcitability of D2 MSNs from HD model animals to reduced

KIR currents. We believe this finding was due to the limitations of the protocols we employed for

modeling hyperpolarizing current injections, which may have been insufficient to engage KIR

conductance modulation of membrane properties to the same extent as experimental protocols

(Zhao et al., 2016; Sebastianutto et al., 2017). When using alternate WT populations established

from different seeds (FiguresS4 and S5), we did observe a need to upregulate KIR conductance

to recover the WT PoMs.

vii) We observed differences between the WT and HD model phenotypes with respect to specific leak

components. We note that replacing the original nonspecific linear leak model with a set of specific

nonlinear leak components (see STAR Methods) was appropriate for overcoming a major drawback

of ’Mahon et al., model’ (Mahon et al., 2000), i.e., the use of different reversal potentials (EK or ENa)

for each model channel conductance. Without this modification, biophysical interpretation of the

model would be impossible. Secondly, not separating the leak components would likely have led

the optimization of membrane depolarization toward finding solutions that relied on modulating

this leak component, at which point it would be difficult to interpret the biophysical substrate

and associated targets for such a lumped leak component. In our study, we observed mixtures of

specific leak components within our virtual drug specifications, introducing some degeneracy to

potential solutions for transforming HD models into WT, as potentially different combinations of

specific leak modulations could equally be used. However, these solutions are less degenerate

than if we had performed these simulations with a single leak component, as a single leak conduc-

tance value may correspond to any combination of ion-specific leak conductances. Additionally,

modeling work and concomitant patch clamp recordings in Purkinje neurons revealed that GHK-

based leak models followed a nonlinear I-V relationship and are better at predicting the nonlinear

voltage responses to current injections (Huang et al., 2015).

Network effects and dichotomous MSN types

An important additional consideration not included in this modeling study is the distinction between

different classes of MSNs. Previous studies attributed intrinsic excitability differences to dichotomous

D1 and D2-type dopamine receptors (D1Rs and D2Rs), which modulate the corresponding classes of

MSNs and affect how they integrate synaptic inputs differently (Gertler et al., 2008). While dopamine’s
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regulation of KIR channels in D1-type MSNs enhances resonant frequency and reduces resonant imped-

ance, its effect on D2-type MSNs is the opposite. Each receptor type engages different subcellular

biochemical cascades, with D1Rs acting via cAMP-PKA signaling, and D2Rs modulating KIR channels

through PLC-PKC signaling (Zhao et al., 2016). These important considerations will drive future studies

in which D1-type and D2-type MSN phenotypes are represented in PoMs. Also, striatal network connectiv-

ity is greatly disrupted in transgenic animals, including alterations to presynaptic compartments and

network activity. Recent studies highlighting the pre-synaptic sources of dysfunction to alter network dy-

namics and microfluidic platforms to investigate such mechanisms will be very valuable to drug design (Vir-

logeux et al., 2018) in addition to the methods described here.

Virtual drug translation

Ex vivo evaluations supported the notion that dysregulation of cyclic nucleotide signaling can be restored

with PDE10i (Padovan-Neto et al., 2015). In the symptomatic HD mouse models Q175 and R6/2, cyclic

nucleotide dysregulation contributes to neurophysiological dysfunction. PDE10i reversed hyperexcitability

of MSNs, both in vivo and in vitro, while also elevating cAMP levels. One particular compound, PF-

02545920, a selective PDE10A inhibitor (Beaumont et al., 2016), failed to meet the clinical endpoint of alle-

viating motor symptoms despite its success at addressing preclinical HD deficits (Beaumont et al., 2016).

The current study aimed to provide a quantitative measure of how well the drug addressed the recovery

of in vitro electrophysiological properties in the multidimensional measurement space of MSN pheno-

types, as independent statistical comparisons across three features may not have been sufficient to assess

joint distributions and therefore accurately predict the clinical performance of the drug. We introduced the

multidimensional metric, Euclidean distance measured in 3D, and we aimed to recover a heterogeneous

population according to divergence measured in an extended metric space (Figure 1). We set stringent

criteria for recovery of the HD PoM’s phenotype into a narrow heterogeneous WT region of feature space.

Using virtual drugs, we modulated the underlying model parameters and thus introduced novel standards

of defining effective phenotypic recovery for both virtual and real drugs.

Though by no means trivial, identifying ideal drug compounds or drug combinations that target multiple

ion channels, such as those found among our multidimensional targets, is in fact feasible given that

screening methods in medicinal chemistry are capable of testing precise modulation profiles. We have

identified and presented here methods to compare these profiles against ideal virtual drug profiles (Fig-

ures 7C and 7D). We also propose searching known drug interaction databases for potential novel com-

pounds that target proteins whose modulation is correlated with elements of our perturbation vectors

(i.e., ionic conductance modulation ratios). Finding combinations determined by simple vector arithmetic,

a match to the perturbation profile of our best virtual drugs (Figures 7C and 7D) becomes possible. The first

step for accomplishing this is to map required changes for each ionic conductance (i.e., elements of the

perturbation vector) to an equivalent drug dose via the IC50/EC50 responses of drugs targeting each chan-

nel current. In cardiac electrophysiology simulations for pro-arrhythmic safety testing, drug-block within

models is achieved by scaling themaximum conductance of an affected ion channel using IC50/EC50 scaling

factors (Mirams et al., 2012). If these values were well cataloged for neuronal ion channels, our proposed

virtual drugs could potentially be transcribed into sets of multi-compound therapeutics that are predicted

to maximize phenotypic recovery. In the current study we modulate intrinsic membrane conductances of

single neurons, so the conclusions we draw around potential therapeutics are limited to those that have

an effect upon such properties. However, we believe that in extensions of this work, systems at different

scales or involved in other neural processes can be simulated in WT and disease conditions, to match

data from other pre-clinical sources, and the analytical methods proposed here would still be capable of

facilitating the discovery of therapeutics in those related areas using more complex simulations.

Multi-scale extensions

Unlike in cardiac electrophysiology, where ion channel dysfunction sufficiently explains phenotypic vari-

ability (Lawson et al., 2018), in neuronal electrophysiology, evidence points to sources of phenotypic vari-

ability arising from dendritic topologies, network topologies, and subcellular mechanisms. Since striatum

constitutes multiple neuron types, and prior studies showing altered FSI firing is sufficient to disrupt

balanced firing between D1-type and D2-type MSNs (Damodaran et al., 2014), incorporation of these

mechanisms will greatly enhance confidence around the ‘virtual drug’ profile’s ability to target network

phenotypes. Our neuronal optimization framework does not restrict construction of such topologically con-

strained large-scale brain architectures, as its constituent Neural Tissue Simulator is built to handle
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simulations of high order components, for example, a million neurons and a billion synapses (Kozloski and

Wagner, 2011). A preceding study from our group, using the same optimization methods, employed a

model that included dendrites and novel dimensionality reduction techniques to identify metaparameter

controllers of sub-threshold oscillations and spontaneous firing in dopamine neurons from a 36-dimen-

sional parametric space (Rumbell and Kozloski, 2019). Somatic or dendritic conductance changes deter-

mined from single neuron analyses can therefore be easily extended into network architectures to design

future studies targeting network activity as a phenotype (Ponzi et al., 2020). Finally, with highly parameter-

ized models, careful consideration will be made toward uncertainty quantification of the model parameters

in estimating qualitative output behaviors (Eriksson et al., 2019).

Conclusions

We have developed a reverse phenotypic screening method to identify the ‘ideal’ virtual perturbation

underlying ion channel targets to rescue a heterogeneous population of HD models’ neuronal excit-

ability phenotype to WT. Our approach is based on quantitative systems pharmacology principles and

combines mechanistic simulations, generation of populations of models, and statistical screening ap-

proaches for early validation of virtual drug candidates. First, by building databases of neuron models

representing both healthy and disease phenotypes we provided mechanistic insights into how ionic

conductance parameters influence the varied electrophysiological properties that gave rise to distinct

clusters of phenotypes. Second, we described several approaches using statistical and machine learning

methods to perform reverse phenotypic screening and design single target and multiple target

perturbations for rescuing a heterogeneous disease population to the healthy phenotype. We also intro-

duced several metrics to compare the performance of the virtual drug perturbations with a failed phar-

macotherapy using PDE10i in HD. These screening approaches provide novel tools for drug design when

complemented with directed in vitro electrophysiological studies for preclinical validation of drug

targets.

With increasing cost of clinical trial failure in the domain of nervous system disorders and a paradigm shift in

drug discovery toward automated high-throughput screening platforms, our approaches can become an

important part of the evaluation of drug action on underlying physiology. As multi-parametric subcellular

responses are regularly measured using multiple data streams, from gene expression studies to human-

derived iPSC electrophysiological recordings, we anticipate that these concepts and methods will become

even more relevant to drug development and its movement toward provisioning of patient-specific preci-

sion therapies (Mirams et al., 2012).

Limitations of study

The primary limitation of the methods introduced here to identify virtual drug candidates is that they were

designed under the assumption of unimodal parameter distributions within the HD and WT PoMs. For

example, the best performing virtual drug, vd_DIFF, was calculated using the difference between the

means of two PoMs, a measurement that may be largely meaningless if one of the PoMs is highly multi-

modal. Ideally, the PoMs generated for the phenotypic conditions of interest would stem from a broad un-

imodal distribution across the majority of empirically observed feature space. This indeed was the case in

the current study for our initial optimization targeting the 3 empirical features (Figure 2A). However, for our

refined optimization that constrained themodifiedMahon et al. (2000) model (see STARMethods) tomatch

multiple passive as well as spiking membrane potential criteria, across each of several optimization trials

using different random seeds, and targeting specific subregions of feature space, our model samples

were generated from narrow distributions representing disjoint local minima from across the target feature

space (see results section ‘‘Population of models for characterizing WT and HD electrophysiological phe-

notypes’’, and supplemental information for details). Despite downsampling to attempt to match the

empirical distribution as closely as possible (see supplemental information), we were unable to avoid a

highly multimodal WT PoM. Virtual drug generation methods for multi-modal distribution of models is

beyond the scope of this paper. Instead, we show how the methods described are generally applicable

to modes with low error (e.g., Modes B and F). The parameters of models from Modes B and F (Figure S3)

are quite distinct from those fromMode A presented in themain section of the paper (Figure 3). As such, we

instead selected a single optimization trial result to use for analysis and chose the WT PoM with the largest

Wasserstein distance from the HD PoM as the target, thereby taking on the most challenging available un-

imodal phenotypic recovery task. Testing the vd_DIFF method with other WT PoMs, we found comparable

phenotypic recovery to that reported in the results (Figure S5). We conclude that each discovered WT
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unimodal PoM would result in a different optimal virtual drug candidate, and that selection of the most

promising or desirable from among these possible candidates would be based either on user preference,

constraints on drug development, or additional analyses. Additionally, accounting for homeostatic mech-

anisms, and optimization objectives to minimize toxicity risk when adding the virtual drugs to the WT PoMs

will be critical. Finally, pooling populations from multi-objective optimization results could result in highly

multimodal distributions in parameter or feature space, and the handling of such scenarios will therefore

require further development of the methods presented here. In optimization studies, ensuring that all

possible candidate solutions to a problem are found is a known challenge, especially within a high-dimen-

sional and complex parameter landscape, making results of our virtual drug development methods depen-

dent on optimization metaparameters. Therefore, future studies will need to focus on ensuring that all

viable parameter regions are discovered. State-of-the-art advances in solving stochastic inverse problems

for mechanistic models (Parikh and James Kozloski, 2020) may provide a path toward this previously chal-

lenging goal with further development of the methods presented here.

One caveat to the interpretation of some of our results from the models is the existence of degenerate

solutions of complex systems (Edelman and Gally, 2001). Such solutions have been demonstrated in prior

experimental and theoretical studies in neurons, where multiple solutions of ion channel conductances

produce similar neuronal excitability phenotypes (Marder and Taylor, 2011; Goaillard and Dufour, 2014).

If one channel is deleted, the excitability can still be maintained by other compensatory mechanisms. It

is therefore likely that using a different biophysical model of the MSN with more dendritic complexity

and ionic conductances contingent upon neuronal topology, such as the Wolf model (Wolf et al., 2005)

would reveal alternate virtual drugs and create a more complete reverse screen for recovery. These predic-

tions require further validation in models constrained by detailed preclinical measurements, but do not un-

dermine the applicability of our methodology to drug design given appropriate models and appropriate

preclinical datasets.
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Raymond, L.A., André, V.M., Cepeda, C.,
Gladding, C.M., Milnerwood, A.J., and Levine,
M.S. (2011). Pathophysiology of Huntington’s
disease: time-dependent alterations in synaptic
and receptor func. Neuroscience 198, 252–273.
https://doi.org/10.1016/j.neuroscience.2011.08.
052.

Rodrigues, F.B., and Wild, E.J. (2017). Clinical
trials corner: September 2017. J. Huntington’s
Dis. 6, 255–263. https://doi.org/10.3233/JHD-
170262.

Rogawski, M.A., and Löscher, W. (2004). The
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for code and data should be directed to James Kozloski (kozloski@us.

ibm.com).

Materials availability

Materials (code and data) are available from the lead author upon request.

Data and code availability

The data and code used to generate key figures is available in the GitHub link provided above. Some

models need to use the IBM Neural Tissue Simulator, which is available from IBM by request to the lead

author.

METHOD DETAILS

Model and simulations

The MSN model used in this study was published in Octeau et al.(2019), having been derived with modifi-

cation from a model published previously by a different group (Mahon et al., 2000). The model comprises a

single compartment with eight active ionic conductance models and three specific ionic leak current

models. The modifications and channel equations are listed and elaborated below.

Neuron model

The model comprised eight conductance parameters, the transient sodium current (gNat), persistent so-

dium current (gNap), the slowly inactivating sodium current (gNas), the delayed rectifier potassium current

(gKDR), the inward rectifying potassium current (gKIR), the persistent potassium current (gKRP), the fast inac-

tivating A-current (gKAf), the slow inactivating A-current (gKAs). The model also included three specific leak

currents for potassium, sodium, and chloride, each based on the Goldman-Hodgkin-Katz (GHK) equation:

4s = Psz
2
s

VmF2

RT

½Si� � ½So�expð � zsVmF=RTÞ
1� expð � zsVmF=RTÞ ; (Equation 1)

where ɸS is the current density flux (amperes per unit area) of ion S, Ps is the permeability of ion S, [Si] is the

intracellular concentration of ion S, [S]o is the extracellular concentration of ion S, and Vm is the membrane

potential. Reversal potentials for each ion species are then calculated once for all currents using the Nernst

equation:

Es =
RT

zF
ln

�
So

Si

�
;

where R is the universal gas constant 8.314 J$K�1$mol�1, T is the temperature 295 K, z is the valence of the

ionic species, and F is the Faraday’s constant 96,485 C$mol�1. We set external and internal ion

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Data and Code This Paper https://github.com/sallam-usc/Study_Data

Software and Algorithms

IBM Neural Tissue Simulator Kozloski and Wagner (2011) Available from IBM by request to the lead author

Python Python Software Foundation https://www.python.org

Evolutionary Algorithm Rumbell and Kozloski (2019) https://github.com/BlueBrain/BluePyOpt

https://senselab.med.yale.edu/ModelDB/ShowModel?model=258643

ll
OPEN ACCESS

22 iScience 24, 103279, November 19, 2021

iScience
Article

mailto:kozloski@us.ibm.com
mailto:kozloski@us.ibm.com
https://github.com/sallam-usc/Study_Data
https://www.python.org
https://github.com/BlueBrain/BluePyOpt
https://senselab.med.yale.edu/ModelDB/ShowModel?model=258643


concentrations to those used for the experiments reported here and in main sections. The calculation of

MSN membrane potential in our revised model then follows:

C
dV

dt
= � �ðV �ENaÞ �gNaT + ðV �EK Þ �gKDR + ðV �EK Þ �gKIR + ðV �EK Þ �gKRP + ðV �EK Þ �gKAf

+ ðV �EK Þ �gKAs + ðV �ENaÞ �gNaS + ðV �ENaÞ �gNaP + ICl;leak + INa;leak + IK ;leak + IInj
�
;

where V is the membrane potential, each g is the conductance of an ion channel current (noted by

subscript). Ion channel currents followed I = gmkhðV � EÞ. The activation m and optional inactivation h

gating variables were as reported in Mahon et al. (2000) followed:

dp

dt
= ap

�
1�p

�� bpp ; p˛ðm;h;nÞ

For channel Nat and KDR, the gating parameters were as follows:

am = 0.1(V-28)/exp((0.1(V-28)) - 1) , bm = 4.0exp(V-53/18),

ah = 0.07exp(0.05(V-51)) , bh = 1/(exp 0.1(V-21) +1)

an = 0.01(V-27)/exp((0.01(V-27)) - 1) , bn = 0.125exp(V-37/80)

The inactivation for currents followed:

tðVÞ = t0
.�

exp
�

�
V�Vt=kt

�
+ exp

�
V�Vt=kt

�
	
;

except for IAs, where thAs(V) = 1790 + 2930exp(-V+38.2/282)((V+38.2)/28), and IKRP, where tKRP(V) = 3*thAs(V).

Ileak for each specific leak for is derived by multiplying current density flux from Equation 1 by the compart-

ment surface area (assumed to be 1 mm2). IInjrepresents injected current.

For numerical integration, we used a time step of 0.01 ms. All datasets were archival at the time they were

shared with researchers from IBM, and no new experiments were suggested, designed, or performed

based on these analyses.

Software

All simulations were performed using the IBMNeural Tissue Simulator (NTS) on IBM’s Cloud. NTS executes

simulations based on model descriptions (written in the Model Description Language) and resource allo-

cation scripts (written in the Graph Specification Language). The software is experimental, and readers are

therefore encouraged to contact the authors if interested in using the tool. The MSN model specification

for running simulations in NTS with the parameter sets used in this study are available upon request. The

parameter sets to run the simulations and reproduce the wild-type and Huntington’s disease electrophys-

iological properties are also available upon request.

Parameter search

Features and stimulation protocols included those to extract membrane resistance from voltage traces eli-

cited by a 5pA depolarizing stimulus for a duration of 200ms. Rheobase was determined using a ramp pro-

tocol with a delay of 500 ms and current gradually increased from 0 to 1000pA over 1000msec, effectively

with a slope of 1pA/ms.

A large proportion of models entered into the depolarization block. Although certain features are calculable,

the results are not deemed accurate, and under further depolarization, not sustainable. Hence, additional

feature constraints such as interspike interval coefficient of variation (ISI_CV) and firing rates were added. We

conducted multiple checks so that the firing rate was also captured within the time window of the last 1000 ms.

To capture firing rate feature values (spikes/s), and in accordance with data from Planert et al. (2013), three

separate protocols were used: firing rates at current injection equal to Rheobase, at Rheobase+50pA
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(FR50), and at Rheobase+100pA (FR100). In addition, ISI_CV within an interstimulus interval, after hyperpo-

larizing potential (AHP), action potential height (AP_height), time to first spike, or spike latency when eli-

cited by Rheobase+50pA and Rheobase+100pA were each targeted as features constrained by the opti-

mization algorithm. Two separate runs of optimizations were performed for WT and HD categories.

It was difficult to find PoMs spanning the complete feature ranges uniformly. We stopped the optimization

when we achieved >1200 zero error models. The WT and HD firing rates were targeted to a mean value of

6 spikes/s and a target deviation of 4 spikes/s. In this way, the optimization algorithmwould accept a model

as a ‘good’ model if it had a firing rate between 2 and 10 spikes/s.

Selection of population of WT models for analysis

The outcome of the evolutionary algorithm is governed by the random seed chosen and the target feature

ranges. We performed 5 optimization trials targeting the entire WT phenotype range using a different

random seed in each trial. This resulted in populations of good models (i.e., with zero error) that were clus-

tered in two regions of feature space, which we termed modes A and G, shown in feature space in Fig-

ure 2G. Two trials converged to sample points from mode A, and three trials converged to sample points

from mode G. The samples from modes A and G, while falling within the high-dimensional hypercube

defined as the zero error region for the optimization, were only proximal to a subset of the empirical

data points. As it appeared our default optimization settings were only likely to generate models from

these two modes, we adjusted the bounds of target features for several additional optimization trials to

encourage sampling of points closer to individual empirical data points (see Results for details). These 5

additional trials used 5 of the empirical data points in Vm, Rm, and Rh as target means, with target ranges

restricted to G10% of the original target feature ranges. This approach required a slight relaxation of the

remaining feature constraints to encourage the algorithm to return models within the missing regions of

entire WT feature space by simply allowing models with non-zero error to be included in the final popula-

tion for each trial. Figure S1, left, shows the error values for each feature across the different optimization

trials (Modes A and G using random seeds and original settings, Modes B-F using feature ranges targeting

specific empirical data points), and Figure S1, right, shows the total error for eachmode. A summed error of

1.0 across all features means that the features were outside the target ranges by a total of half the range

across all features. Modes C and D, with the largest errors, were dominated by errors from the AHP feature,

indicating that the main problem with these models was that they did not repolarize to our specified mem-

brane potential for MSNs. Note that these errors stem from features for which we do not have empirical

data from Beaumont et al. (2016), and instead are based on prior observations from the literature. This

approach enabled us to supplement the dataset gathered using multiple random seeds and led to a larger

number of additional modes in feature space attempting to fill the remaining feature space with models

from additional optimization runs. The resulting distribution of sampled models is compared with the

empirical data distribution in Figure S2. The upper left corner of Figure S2 demonstrates that the combined

distribution is highly multimodal. Our analysis methods were designed to work with distributions as close to

unimodal as possible (see discussion), so we attempted to downsample the combined distribution using

the k-nearest neighbors approach, previously applied in Figure 2B (see results). However, the distributions

after downsampling (not shown) were still highly multimodal, which led to the decision to apply our

methods to PoMs derived from single optimization results, described in STAR Methods and results.

We constructed two separate databases of PoMs representing the WT and HD phenotypes. To construct

the PoMs, we used an evolutionary optimization algorithm, described in detail below.

Population modeling

The optimization employed the non-dominated sorting (NS) differential evolution (DE) algorithm (NSDE)

(Deb et al., 2002; Price, 2013) previously used to search parameter space of compartmental neuron models

in Rumbel et al. (Rumbell et al., 2016; Rumbell and Kozloski, 2019). To run the algorithm, we used amodified

version of the BluePyOpt (Van Geit et al., 2016) Python framework for single neuron optimization. Trial and

error was used to assess optimization metaparameters such as population size and number of generations.

A single optimization of �500 generations of a population of �100 models took �12 hours of computing

time on an X86_64 Intel architecture (2 GHz, 64 bit, 56 cores, 128 Gb of RAM). A neuron model error score

for each target feature was calculated by extracting feature measures and subtracting them from the exact

target values based on empirical measures and dividing the absolute value of this quantity by a deviation

variable based on variability of the experimental measures. Dominance ranking according to the NS
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algorithm was used as the first criterion for model selection, and total error was used to sort models within

dominance ranks.

The optimizations accessed and varied 11 parameters: ionic conductances gNaT ;gNaP ;gNaS ;gKDR ;gKRP ;gKIR ;

gKAf , and gKAs adapted fromMahon et al.(2000), and GHK based permeability coefficients PCl, leak, PNa, leak,

and PK, leak. The optimization algorithm (Rumbell and Kozloski, 2019) was configured using a modified

version of the BluePyOpt python package (Van Geit et al., 2016) to produce models whose features fell

within either the WT or HD feature ranges specified (Table 1). Additionally, we added a penalty to models

that enter depolarization block by using the firing rate features (FR50, FR100) within the time window of

1500 to 2500 ms, to filter out models that did not maintain stable firing activity throughout the stimulation

protocol. The parameter conductance ranges (minimum and maximum) were constrained identically for

both the WT and HD phenotype-targeted optimizations (Table 2).

We performed multiple optimization runs targeting the entire WT empirical range, with different random

seeds and several optimization runs targeting specific individuals in empirical feature space, to identify

populations that matched every empirical observation (see Results and Supplementary material for full de-

tails of this process). Selection of the final PoMs to represent the WT and HD phenotypes for analysis was

based on the individual optimization run with results that most closely matched the empirical targets

according to the Wasserstein distance metric (described below).

For the final analysis and virtual drug design presented in the main section of this paper, we selected only

models that had zero error score (i.e., had feature values within the target ranges (Table 1) for all features),

which we therefore considered ‘good models’. In addition, we ensured by inspection that every model

within the databases of phenotypes exhibited realistic spiking behavior of MSNs by verifying against

several stimulation protocols (see Results).

Virtual drug construction

To identify a coherent target modulation to rescue neuronal excitability in the HD PoM (population of

models), we designed virtual drugs (i.e., a set of ion channel parameter perturbations of the HD models)

using several statistical and machine learning methods:

1. Single target perturbation method used the difference between the mean parameter values of tran-

sient sodium conductance and fast inactivating A-type potassium conductance of WT and HD PoMs

to construct virtual drugs vd_Nat and vd_KAf.

2. Linear regression method used the parameter coefficients calculated from regressing the HD PoM’s

features against model parameters within a system of linear equations that is solved to compute

conductance parameter changes predicted by the regression to transform the mean HD feature

values into the mean WT feature values and construct the virtual drug vd_LIN.

3. Support Vector Machine method determined the classification boundary between the two pheno-

types using a support vector machine (SVM) classifier. SVM is a supervised machine learning algo-

rithm that finds data points closest to a boundary that separates datasets and uses them to help

define a linear decision boundary (hyperplane) between data categories. The Python sklearn-SVC

package was then used to compute the vector that is normal to the hyperplane separating the

two PoMs in parameter space. This vector was then used to effect desired phenotype changes

from the HD to the WT PoM and to construct the virtual drug vd_SVM.

4. n-dimensional histogrammethod is a heuristic that took the differences between parameters of each

of M members of the WT PoM and parameters of each of N members of the HD PoM’s phenotype to

construct M3Ndifference vectors. Difference vectors were binned in the vector space, according to

the size of the differences in each parameter. The mode of this multidimensional histogram was then

used to effect desired phenotype changes from the HD to the WT PoM and to construct the virtual

drug vd_HIST.

5. Difference of means method applied the difference between the parameter value means from

Single target perturbation method to all 11 model parameters to compose a difference vector

used to effect desired phenotype changes from the HD to the WT PoM and to construct the virtual

drug vd_DIFF.
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For each virtual drug, treated HD PoM’s parameter vectors were modulated uniformly by adding the vec-

tors obtained for each of the above virtual drug construction methods and are termed HD+virtual drug.

Virtual drug validation on different WT population of models

We applied the difference of means method to attempt the rescue of the HD PoM using the WT Mode B

PoM and WT Mode G PoM (shown in Figure S3) in the place of the WT PoM used to calculate the vd_DIFF

virtual drug. Figure S5 shows the result of applying the vd_DIFF virtual drug at 4 intermediate doses, com-

parable with the results shown in Figure 6. The ED3 metric is reduced by 99% (Mode B) and 76% (Mode F),

and Wasserstein distance metrics are reduced by 40–80%, indicating good recovery of the HD population

toward different WT phenotypes. These results suggest that the difference of means method is a reliable

method to identify candidate virtual drug profiles that work well in simulation. However, each region of

parameter space occupied by WT models provides a slightly different ionic conductance modulation pro-

file, which suggests that candidate virtual drugs should be viewed as a distribution of possible ionic

conductance modulators. Selection among these candidates then becomes an additional consideration

for a user of these methods.

QUANTIFICATION AND STATISTICAL ANALYSIS

Scoring metrics

We used the following metrics to quantitatively compare the performance of each of the above virtual

drugs’ effects in rescuing the neuronal excitability of the HD PoM’s features:

1. Euclidean Distance 3D measures the distance between centroids of two populations of data using

three membrane properties: Vm, Rm and Rheobase.

2. Wasserstein Distance 3D measures the distance between two probability distributions within the

same three-dimensional space of membrane properties. Note this metric is also known as the Earth

Mover’s Distance. We used this metric to quantify how well the virtual drug minimized the distance

between the distributions for two phenotypes.

3. Total Scoremeasures the mean of normalized Euclidean Distance 3D and Jensen–Shannon Distance

metrics. We used this score to quantify the efficacy of different virtual drugs for recovering the WT

PoM from the HD PoM.

4. Wasserstein Distance 7Dmeasures the distance between the probability distributions of theWT and

HD population data phenotypes derived from seven of the membrane properties listed in Table 1

(excluding FR100 and TFS100, defined below).

5. Models Retained counts the number of models within the HD PoM that satisfied the feature con-

straints of WT ranges listed in Table 1 in order to adhere to the realistic spiking behavior of MSNs

after virtual drug perturbations. Models that do not follow the spiking behavior as highlighted in Fig-

ures 2C and 2D are models whose features fall outside the pre-defined set of feature range objec-

tives of the evolutionary algorithm or those models where automated feature extraction fails.

Sample size selection

To ensure a fair comparison of Wasserstein distance metric values in the 3-dimensional feature space be-

tween empirical data and simulated data, we performed a comparison of Wasserstein distance calculations

with different sample sizes. There were 11 samples available in the empirical data, so we performed random

sampling from the larger population of simulated models at different samples sizes to check variability in

the calculatedmetric scores. We found only a small change in standard deviation across even very low sam-

ple sizes, as shown in Figure S4, for all virtual drug populations. Therefore, we used a sample size of 11 for

calculatingWasserstein distance between theWTMode A and virtual drug PoMs in Figures 7C and 7D, and

reported the standard deviations to make a fair comparison with PDE10i.

Other visualization and statistical methods

For analysis of the resulting HD+virtual drug PoM, we employed the following:

1. Convex hull method used the Python scipy.spatial convex hull package to calculate the hull vertices

and edges bounding the 11 data points from each category of WT, HD and HD+PDE10i obtained
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from Beaumont et al. (Beaumont et al., 2016), by means of the quick hull algorithm (http://www.qhull.

org). This hull is illustrated in Figure 1 for the three categories WT, HD and HD+PDE10i.

2. K-nearest neighbor search applies a method for finding a predefined number of points closest in

distance to the new point based on standard Euclidean distance. We set nearest neighbors to 2 in

order to derive at least two ‘matched models’ for every real empirical data point in Figure 2A. We

used the same approach to identify multiple PoMs closest to empirical observations as shown in Fig-

ure 2G.

3. Statistical methods to calculate p-values between the empirical and matched models were

calculated using the Python scipy.stats package’s Kolmogorov-Smirnov (K-S) statistic applied to

two samples.
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