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Abstract: The isosteric replacement of C

1 
 

  ═   C by B–N units in conjugated organic systems has recently
attracted tremendous interest due to its desirable optical, electronic and sensory properties. Com-
pared with BN-, NBN- and BNB-doped polycyclic aromatic hydrocarbons, NBN-embedded polymers
are poised to expand the diversity and functionality of olefin polymers, but this new class of materials
remain underexplored. Herein, a series of polymers with BNB-doped π-system as a pendant group
were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization from
NBN-containing vinyl monomers, which was prepared via intermolecular dehydration reaction
between boronic acid and diamine moieties in one pot. Poly{2-(4-Vinylphenyl)-2,3-dihydro-1H-
naphtho[1,8-de][1,3,2]diazaborinine} (P1), poly{N-(4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-
yl)phenyl)acrylamide} (P2) and poly{N-(4-(1H-benzo[d][1,3,2]diazaborol-2(3H)-yl)phenyl)acrylamide}
(P3) were successfully synthesized. Their structure, photophysical properties and application in
metal ion detection were investigated. Three polymers exhibit obvious solvatochromic fluorescence.
As fluorescent sensors for the detection of Fe3+ and Cr3+, P1 and P2 show excellent selectivity and
sensitivity. The limit of detection (LOD) achieved by Fe3+ is 7.30 nM, and the LOD achieved by
Cr3+ is 14.69 nM, which indicates the great potential of these NBN-embedded polymers as metal
fluorescence sensors.

Keywords: NBN-embedded polymers; boron-containing polymers; solvatochromic fluorescence;
metal ion detection

1. Introduction

Although the rapid development of the industry has greatly enhanced the convenience
of our lives, metal ion pollution in the environment is becoming increasingly serious, which
is harmful to the natural environment and human health [1–3]. Therefore, the detection
of metal ions has important practical significance today [4–6]. For example, iron plays
an important role in many biological reaction processes, but its deficiency and excess
can lead to various pathological obstacles [7,8]. Fluorescence sensors are often used in
trace heavy metal ion sensing tools because of their convenient, rapid, and sensitive
analysis [9–13]. Fluorescent probes can interact with metal ions through effects such as
complexation and metal-driven chemical reactions, and at the same time, their fluorescence
properties will also change, thereby achieving the effect of detecting metal ions [14–16].
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For example, in 2019, Safarifard et al. [17]. reported the synthesis of fluorescent Zn-
MOF with azine-decorated pores, an MOF which exhibited a significant quenching effect
on the luminescence intensity after the introduction of Fe3+ ions, with a detection limit
that could reach 200 nM. Feng et al. [18] reported a conjugated polymer composed of 8-
methoxyquinoline and benzene, which exhibited high selectivity and sensitivity to Fe3+

during fluorescence quenching, with a detection limit that could reach 10 nM with strong
anti-interference ability.

Boron-containing π systems have attracted considerable research attention due to their
desirable optical, electronic and sensory properties [19–26]. Organic π-conjugated com-
pounds with novel BN bonds usually have obvious optoelectronic properties/advantages
due to the empty p-orbital in the boron center [27–30]. Pioneering researchers such as White,
Dewar, Ashe, Liu, Schäfer, Braunschweig, and Jäkle have made considerable progress in the
synthesis of BNB-doped π systems with outstanding photophysical properties [31–40]. Re-
cently, we reported the facile and efficient synthesis of NBN-doped conjugated diazaborane
and pyrene-containing NBN-doped polycyclic aromatic hydrocarbons via a catalyst-free
intermolecular dehydration reaction, which has been shown to be a new class of AIEgen
compounds for the sensitive detection of explosives or concentration-dependent sensory
properties [41,42], but NBN-embedded polymers have rarely been studied.

Here, we synthesized three NBN-doped vinyl monomers by catalyst-free intermolec-
ular dehydration reaction. Additionally, corresponding NBN-embedded polymers were
prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization,
which exhibited an apparent solvatochromic fluorescence. The fluorescent NBN-embedded
polymers were quenched in the presence of Fe3+ and Cr3+, thereby realizing the trace detec-
tion and the detection limit reached the nM level. These studies expanded the diversity and
functionality of polymeric materials, and provided a new type of sensitive and selective
fluorescent sensor for metal ion detection.

2. Materials and Methods
2.1. Materials

Azobis(isobutyronitrile) (AIBN, Aladdin-reagent, 98%, Energy Chemical, Shanghai,
China) was recrystallized twice in methanol (Aladdin, Beijing, China). S-1-dodecyl-S-(α,α′-
dimethyl-α”-acetic acid) trithiocarbonate (TTC) as the chain transfer agent was synthesized
according to procedures detailed in the literature [43]. Tetrahydrofuran (THF, Energy Chem-
ical, Shanghai, China) was distilled over Na/benzophenone (Energy Chemical, Shanghai,
China) prior to use. 4-Vinylphenylboronic acid (VPBA, Energy Chemical, Shanghai, China),
(3-Acrylamidophenyl, Energy Chemical, Shanghai, China), boronic acid (APBA, Energy
Chemical, Shanghai, China), 1,8-diaminonaphthalene (Energy Chemical, Shanghai, China),
1,2-phenylenediamine (Energy Chemical, Shanghai, China) and solvents were used as
received without further purification.

2.2. Synthesis of the Monomer
2.2.1. Synthesis of 2-(4-Vinylphenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine (M1)

A mixture of VPBA (1 g, 6.75 mmol) and 1,8-diamino-naphthalene (1.06 g, 6.75 mmol) in
THF (20 mL) was allowed to react at room temperature for 12 h. Then, the residual solvent of
the mixture was evaporated under reduced pressure and the crude product was subjected to
silica gel column chromatography (petroleum ether:ethyl acetate (EA) = 10:1). Additionally,
1.09 g white crystals of M1 was obtained in a yield of 60%. 1H NMR (400 MHz, DMSO-d6,
δ (ppm): 8.27 (s, 1H, –B–NH–), 7.91 (d, 2H, –C6H4–), 7.55 (d, 2H, –C10H6–), 7.08 (t, 2H, –C10H6–),
6.91(d, 2H, –C6H4–), 6.77 (dd, 1H, –CHCH2), 6.60 (d, 2H, –C10H6–), 5.96 (d, 1H, –CHCH2),
5.34 (d, 1H, –CHCH2). 13C NMR (400 MHz, DMSO-d6), δ (ppm): 142.81 (1C, –C6H4–),
139.63 (1C, –CHCH2), 137.14 (1C, –C10H6–), 136.41 (1C, –C10H6–), 133.47 (2C, –C6H4–),
128.12 (2C, –C10H6–), 125.86 (3C, –C6H4–), 120.15 (1C, –CHCH2), 116.70 (2C, –C10H6–), 115.44
(1C, –C10H6–), 106.11 (2C, –C10H6–). 11B NMR (600 MHz, DMSO-d6), δ (ppm): 30.43 (B–NH–).
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2.2.2. Synthesis of
N-(4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)phenyl)acrylamide (M2)

APBA (1 g, 5.23 mmol) and 1,8-diamino-naphthalene (0.83 g, 5.23 mmol) were dissolved
in 20 mL N,N-Dimethylformamide (DMF) and reacted for 12 h at room temperature. Then,
the residual solvent of the mixture was evaporated under reduced pressure and the crude
product was subjected to silica gel column chromatography (petroleum ether:EA = 4:1). Here,
0.933 g white crystals of M2 was obtained in a yield of 57%. 1H NMR (400 MHz, DMSO-d6),
δ (ppm): 10.19 (s, 1H, –NH–), 8.27 (s, 1H, –B–NH–), 7.98 (s, 1H, –C6H4–), 7.78 (d, 1H, –C6H4–),
7.58 (d, 1H, –C6H4v), 7.42 (t, 1H, –C6H4–), 7.09 (t, 2H, –C10H6v), 6.93 (d, 2H, –C10H6–), 6.60
(d, 2H, –C10H6v), 6.50 (dd, 1H, –CHCH2), 6.28 (d, 1H, –CHCH2), 5.77 (d, 1H, –CHCH2).
13C NMR (400 MHz, DMSO-d6), δ (ppm): 163.60 (1C, –C=O), 142.80 (3C, –C10H6–), 138.71
(1C, –C6H4–), 136.39 (1C, –CHCH2), 132.46 (1C, –C6H4–), 128.56 (2C, –C10H6–), 128.11 (1C,
–C6H4–, 1C, –CHCH2), 127.28 (1C, –C6H4–), 124.72 (1C, –C6H4–), 122.15 (1C, –C6H4–), 120.18
(1C, –C10H6–), 116.73 (2C, –C10H6–), 106.14 (2C, –C10H6–). 11B NMR (600 MHz, DMSO-d6),
δ (ppm): 33.49 (B–NH–).

2.2.3. Synthesis of N-(4-(1H-benzo[d][1,3,2]diazaborol-2(3H)-yl)phenyl)acrylamide (M3)

M3 was prepared by a similar procedure as M2, except using 1,2-phenylenediamine
(0.566 g, 5.23 mmol) instead of 1,8-diaminonaphthalene. Here, 0.757 g light orange crystals
was obtained in a yield of 55%. 1H NMR (400 MHz, DMSO-d6), δ (ppm):10.14 (s, 1H,
–NH–), 9.09 (s, 1H, –B–NH–), 8.11 (s, 1H, –C6H4–), 7.61 (t, 2H, –C6H4–), 7.37 (t, 1H, –C6H4–),
7.06 (d, 2H, –C6H4–), 6.81 (d, 2H, –C6H4–), 6.47 (dd, 1H, –CHCH2), 6.26 (d, 1H, vCHCH2),
5.75 (d, 1H, vCHCH2). 13C NMR (400 MHz, DMSO-d6), δ (ppm): 163.61 (1C, –C=O), 138.94
(3C, –C10H6–),137.61 (1C, –C6H4–), 132.46 (1C, –CHCH2), 129.42 (1C, –C6H4–), 128.78 (1C, –
C6H4–, 1C, –CHCH2), 127.17 (1C, –C6H4–), 125.23 (1C, –C6H4–), 121.50 (1C, –C6H4–), 118.73
(2C, –C6H4–), 111.34 (2C, –C6H4–). 11B NMR (600 MHz, DMSO-d6), δ (ppm): 27.07(B–NH–).

2.3. Synthesis of the Polymer
2.3.1. Synthesis of P1

P1 was synthesized by RAFT polymerization in THF. Here, 0.91 g M1 (3.318 mmol),
12 mg TTC (0.033 mmol), 0.50 mg AIBN (0.003 mmol) and 2.0 mL THF in a feeding molar
ratio of M1/TTC/AIBN = 1000:10:1 were added into a 10 mL Schlenk tube with a magnetic
bar. After three freeze–evacuate–thaw cycles, the tube was sealed under high vacuum and
immersed in an oil bath at 80 ◦C. After stirring for 24 h, the polymerization was stopped by
immersing the Schlenk tube into ice-water and opening the tube to air. Then, the product
was purified by precipitation into excessive petroleum ether, filtration and dried under
vacuum overnight. Here, 0.47 g light yellow solid was obtained in a yield of 52%. The
degree of polymerization (DP) of the P1 chain by 1H NMR analysis was determined to be
60 by comparing the integrated signal of the protons of –NH– (2H, –NH–) at 6.48 ppm and
the protons in the main chain of TTC (3H, –(CH2)10CH3) at 0.82 ppm. 1H NMR (400 MHz,
DMSO-d6), δ (ppm): 7.94 (broad, 4H, –C6H4–), 7.58 (broad, 2H, –C10H6–), 6.85 (broad, 4H,
–C10H6–), 6.48 (broad, 2H, –NH–), 1.71, (broad, 1H, –CHCH2), 1.17 (broad, 2H, –CHCH2),
0.82 (broad, 3H, –(CH2)10CH3). 11B NMR (600 MHz, DMSO-d6), δ (ppm): 23.76 (B–NH–).

2.3.2. Synthesis of P2

P2 and P3 were synthesized by RAFT polymerization in DMF. For P2, 0.94 g M2
(3 mmol), 11.6 mg TTC (0.03 mmol), 0.52 mg AIBN (0.003 mmol) and 2.0 mL DMF in a
feeding molar ratio of M2/TTC/AIBN = 1000:10:1 were added into a 10 mL Schlenk tube
with a magnetic bar. Here, 0.404 g light yellow solid of P2 was obtained in a yield of
43%. The DP of P2 chain by 1H NMR analysis was determined to be 48 by comparing
the integrated signal of the protons of –NH– (1H, –NH–) at 9.82 ppm and the protons in
the main chain of TTC (3H, –(CH2)10CH3) at 0.80 ppm. 1H NMR (400 MHz, DMSO-d6),
δ (ppm): 9.82 (broad, 1H, –NH–), 7.96 (broad, 2H, –B–NH–), 7.47 (broad, 4H, –C6H4v), 6.93
(broad, 4H, –C10H6–), 6.50 (broad, 2H, –C10H6–), 2.01, (broad, 1H, –CHCH2), 1.17 (broad,
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2H, –CHCH2), 0.80 (broad, 3H, –(CH2)10CH3). 11B NMR (600 MHz, DMSO-d6), δ (ppm):
24.57 (B–NH–).

P3 was synthesized by the same procedures. 0.371 g of P3 was obtained as an orange
solid in a yield of 47%. The DP of P3 chain by 1H NMR analysis was determined to be 55
by comparing the integrated signal of the protons of –NH– (1H, –NH–) at 9.74 ppm and
the protons in the main chain of TTC (3H, –(CH2)10CH3) at 0.80 ppm. 1H NMR (400 MHz,
DMSO-d6), δ (ppm): 9.74 (broad, 1H, –NH–), 8.84 (broad, 2H, –B–NH–), 7.95 (broad, 2H,
–C6H4–), 7.44 (broad, 2H, –C6H4–), 6.94 (broad, 2H, –C6H4–), 6.50 (broad, 2H, –C6H4–), 2.01,
(broad, 1H, –CHCH2), 1.17 (broad, 2H, –CHCH2), 0.80 (broad, 3H, –(CH2)10CH3). 11B NMR
(600 MHz, DMSO-d6), δ (ppm): 24.01 (B–NH–).

2.4. The Fluorescence Detection of Metal Ion

The polymers solution in THF at a concentration of 0.1 mg/mL were prepared as stock
solution (P3 in DMSO). Then, 20 µL heavy metal aqueous solutions were added to 1mL
stock solution, the metal ion concentration was 50 µM, and its fluorescence curves were
recorded after 10 min standing (Ex = 365 nm). The metal ions included Na+, K+, Mg2+,
Zn2+, Cu2+, Al3+, Y3+, La3+, Ln3+, Ce3+, Fe3+, Cr3+.

2.4.1. The Limit of Detection (LOD)

The polymer solutions in THF at the concentration of 0.1 mg/mL were prepared as
stock solution. Then, different volumes of Fe3+ and Cr3+ aqueous solutions were added to
1 ml stock solution, and its fluorescence curves were recorded after 10 min standing. The
excitation wavelength was 370 nm for P1 and 375 nm for P2.

The corresponding formula was derived by fitting the data to Equation (1):

F
F0

= 1 + KsvC (1)

where F0 was the initial unquenched fluorescence intensity, F was the fluorescence intensity
in the presence of quencher and C was the quencher concentration.

The LOD was calculated by fitting the data into Equation (2):

LOD =
3σ
Ksv

(2)

σ represents the fluorescence intensity standard deviation of blank solution, whilst
Ksv represents the slope of the fitting curves in Figures 6B,D and 7B.

2.4.2. The Time Sensitivity Test

A certain volume of metal aqueous solution containing Fe3+ ion / Cr3+ ion was added
to 1mL stock solution, the metal ion concentration was fixed at 5 µM and the fluorescence
curve was recorded every 15 s. The excitation wavelength was 370 nm for P1 and 375 nm
for P2.

2.5. Characterizations

NMR measurements were performed on a Bruker 400 MHz spectrometer (Billerica,
MA, USA), whilst the 1H NMR spectra was obtained via Bruker 600 MHz spectrometer
(Billerica, MA, USA), and the 11B NMR spectra was obtained by DMSO-d6 using tetramethyl
silane as an internal standard.

Weight-average molecular weight (Mw), number-average molecular weight (Mn) and
the molecular weight polydispersity (PDI) of the polymers were estimated on an Agilent
1260 InfinityIIgel permeation chromatograph (GPC, Santa Clara, CA, USA) equipped with
a G7110B isocratic pump and G7162A refractive index detector. Polystyrene standards
were utilized, and DMF was used as the eluent at a flow rate of 1.0 mL/min at 50 ◦C.
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Fourier transform infrared (FT-IR) data were obtained from NICOLET IS10 (Thermo
Fisher Scientific, Waltham, MA, USA), which were recorded from an accumulation of
32 scans in the range of 4000~400 cm−1.

Fluorescence spectra were performed on RF-5301pc fluorescence spectrophotometer
in a quartz cuvette with a path length of 1 cm. The slit widths of excitation and emission
were 5 nm.

Thermal gravimetric analyses (TGAs) were conducted via analyzer (Q50, TA Instru-
ments, New Castle, DE, USA) to measure the thermal stability of NBN-doped polymers.
Approximately 5 mg of samples were heated from 30 to 600 ◦C with a heating ramp of
10 ◦C/min in an inert atmosphere (N2).

Differential scanning calorimetry (DSC) was used to determine the glass transition
temperature (Tg) of NBN-doped polymers on a TA Instruments Q20 differential scanning
calorimeter (New Castle, DE, USA). The samples (5 mg by weight) were sealed in alu-
minum hermetic pans and subjected to a heat/cool/heat cycle over the temperature range
30~300 ◦C with a linear heating and cooling rate of 10 ◦C /min. The Tg of the polymer was
determined from the second heating curve and analyzed using the commercially available
Universal Analysis software.

2.6. Theoretical Calculations

All molecules were fully optimized by the density functional theory (DFT) method,
where the B3LYP hybrid functional and the 6-31G* basis set were implemented in the
Gaussian 09 package. Calculations used the time-dependent extension of DFT (TD-DFT)
with the same function and basis set to perform vertical excitation and excited state structure
optimization. The environment layer was processed using universal force field (UFF).
Calculations allowed all atoms to relax in the ground state and excited state calculations.

3. Results and Discussion
3.1. Fabrication of NBN-Embedded Polymer
3.1.1. Synthesis of NBN-Containing Monomer

NBN-doped compounds were proven to be attractive as a new type of AIEgen class for
the sensitive detection of explosives or concentration-dependent sensory properties [35,36].
However, to the best of our knowledge, NBN-containing polymers have scarcely been
reported. Herein, a series of polymers with a NBN-doped π system as a pendant group were
first synthesized by polymerizable NBN-doped vinyl monomer and their properties were
investigated. NBN-doped monomers were synthesized by a catalyst-free intermolecular
dehydration reaction between boronic acid and diamine moieties at RT, as shown in
Scheme 1. M1 were synthesized using VPBA with 1.8-diaminonaphthalene through one-
step intermolecular dehydration, as reported in our previous work [42]. As shown in
Figure 1A, the chemical structure of M1 was verified by the appearance of NBN protons at
~8.27 ppm, and by the disappearance of B(OH)2 protons at ~8.04 ppm of VPBA and NH2
protons at ~4.37 ppm of 1,2-diaminobenzene. Moreover, M2 and M3 were also successfully
synthesized, as shown in Figure 2B–D.
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3.1.2. Synthesis of NBN-Embedded Polymers

The NBN-embedded polymers were prepared by RAFT polymerization in THF or
DMF with the feeding molar ratio of monomer/TTC/AIBN = 1000:10:1, as shown in
Scheme 1. For P1, the disappearance of the vinyl proton at 6.77, 5.96 and 5.34 ppm and the
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appearance of broad main chain signals at 1~3 ppm confirmed successful preparation, as
shown in Figure 2A. The 11B NMR spectra also demonstrated the unique presence of the
NBN group at 23.76 ppm as shown in Figure S2 (see Supplementary Materials). Further
verification of the polymers was indicated by FTIR spectra in Figure S3 (see Supplementary
Materials). All GPC curves are unimodal and symmetric in Figure 2D, i.e., Mn,GPC = 45.5k
and PDI = 1.30 for P1, Mn,GPC = 31.3k and PDI = 1.35 for P2, Mn,GPC = 25.6k and PDI = 1.34
for P3. Meanwhile, as shown in Figure S4 (see Supplementary Materials), the temperature
at 5% weight loss (Td5%) of P1 was 349.9 ◦C, the Td5% of P2 was 200.2 ◦C and the Td5% of
P3 was 190.5 ◦C, which indicates that these polymers have good thermal stability. Through
research on the Tg as shown in Figure S5 (see Supplementary Materials), the Tg of P1 was
227.19 ◦C, the Tg of P2 was 170.60 ◦C and the Tg of P3 was 156.80 ◦C. As shown in Scheme 1,
three polymers have pendant NBN-doped π-systems. In P1, π-systems directly connect
with main chain, while π-systems connect to the main chain through an amide group. Thus,
P1 shows better thermal stability and higher Tg.

3.2. Photophysical Properties

The photophysical properties of the monomers and polymers in the solution were
measured as shown in Figure 3. M1 and M2 did not emitted in the solutions, includ-
ing THF, DMF, EA and DMSO, while their polymers showed strong cyan fluorescence.
In THF, the maximum emission wavelength for P1 is 457 nm with a quantum yield of
0.19% and P2 emits at 472 nm with a quantum yield of 0.21%. Notably, M3 has poor
solubility in THF, but is well soluble in DMF, and it shows faint green emission in DMF
at 505 nm with a quantum yield of 1.60%. P3 in DMF emits at 433 nm and 510 nm
(shoulder peak) with a dark green color, as shown in Figure 3C, and the quantum yield
achieves 7.76%. Thus, P1 and P2 with the six-membered NBN ring show similar cyan
fluorescence, and P3 with the five-membered NBN ring emits green light. In our previous
work, pyrene-B (o-phenylenediamine) with a five-membered NBN ring and pyrene-B (1,8-
diaminonaphthalene) with a six-membered NBN ring also show differing luminescence,
and the same phenomenon appeared in the luminescence of the three NBN-embedded
polymers [42].
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Figure 3. The emission spectra of M1 and P1 (A, Ex = 385 nm, in THF), M2 and P2 (B, Ex = 374 nm, in
THF), M3 and P3 (C, Ex = 365 nm, in DMF) with the concentration of 0.1 mg/mL. The inset images
are photos under UV light at 365 nm.

In addition, P1 and P2 show the polymerization-induced emission (PIE) performance
of non-emissive monomers, and P3 also shows enhanced emission after polymerization.
Density functional theory (DFT) calculations were performed to investigate the emission
mechanism of the polymer, by comparing the monomers (N = 1) and polymers (N = 4).
As shown in Figure 4, all polymers show a lower band gap, resulting in the electron
transition and luminescence as previously reported [44–47]. As shown in Figures S6–S8
and Table S1 (see Supplementary Materials), the band gap decreases with the N increasing
for all polymers.
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Figure 4. Electron cloud distributions and energy levels (eV) of NBN-embedded polymers
(N = 1, 4) in the geometry-optimized S1 state calculated using the TD-DFT B3LYP/6-311G*, Gaussian
09 program.

The luminescence properties of the three polymers in different solvents (THF, EA,
DMF, DMSO) were investigated as shown in Figure 5, revealing the solvatochromism in
their emission bands. The maximum emission of P1 was red-shifted to 460 nm in EA,
472 nm in DMF and 486 nm in DMSO with increasing solvent polarity, accompanied by
an increase in the Stokes shift from 128 nm to 153 nm, as shown in Figure 5, Figure S9
and Table S2 (see Supplementary Materials). It should be noted that Stokes shifts were
calculated from both absorbance and emission maxima wavelengths. The solvatochromism
of P2 is similar with P1, and the emission red-shift to 492 nm in DMSO. P3 shows much
obvious solvatochromism. The P3 solution shows blue fluorescence in THF and EA, dark
green emission at 433 nm and 510 nm in DMF and emerald emission at 515 nm in DMSO.
The quantum yield of P1, P2 and P3 in DMSO is 0.15%, 0.19% and 0.32%, respectively.
As the polarity of the solvent increases, the solution of P3 shows emission with different
colors, suggesting a change in the dipole moment of the molecule in transition from the
ground to excited state due to the intramolecular interactions between the polar solvent
and P3 [48–50].
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3.3. Metal Ion Fluorescence Detection

For the detection of metal ions, the emission characteristics of polymers in the presence
of various metal ions were investigated. Figure 6 shows the fluorescence photos of the
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polymer solution in THF with 50 µM metal ions and their fluorescence intensities. Metal
ions, such as Na+, K+, Mg2+, Zn2+, Cu2+, Co2+, Al3+, Y3+, La3+, Ln3+ and Ce3+, had no
obvious effect on the emission of P1 and P2 solution. However, Cr3+ and Fe3+ quenched
the emission. When the Fe3+ or Cr3+ ion existed, the solution fluorescence intensity (F0)
of the P1 solution was reduced by 97% for Fe3+ and 90% for Cr3+. For P2 solution, the
cyan fluorescence was quenched by 90% in the presence of Fe3+ and by 85% with Cr3+.
Meanwhile, the solution of P3 shows extensively negligible quenching in the presence of
50 µM metal ions, as shown in Figure S10 (see Supplementary Materials). It was observed
that NBN-doped polymers, P1 and P2, are highly selective towards Fe3+ and Cr3+.
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The detection performance of P1 and P2 as a fluorescence sensor for iron and chromium
was further studied. With the increase in the concentration of Fe3+, the fluorescence
emission of the P1 solution at 457 nm gradually decreased in Figure 7A. When the Fe3+

concentration reached 1.0 µM, the fluorescence intensity started decreasing. When the Fe3+

concentration reached 22.05 µM, the fluorescence intensity decreased by 95%, and remained
basically unchanged with the further increase in Fe3+ ion. The fluorescence calibration
curve can be estimated by the Stern–Volmer (SV) equation in Figure 7C. The curve was in
exponential form, indicating that both static quenching and dynamic quenching occurred
during the quenching process. Notably, Fe3+ exhibited good linear correlation under a
narrow concentration range from 1 to 6.5 µM, which indicated the static quenching at
the lower concentration. In addition, the LODs based on the standard Equation (2) were
calculated to be 7.30 nM. As shown in Figure S11A (see Supplementary Materials), the
response time of P1 for Fe3+ was 45 s, which is comparable to other fluorescent materials [51].
The detection performance of P1 solution for Cr3+ was present in Figure 7B,D. Depending
on the plot between the relative fluorescence intensity (F0 − F)/F and Cr3+ concentration,
the LOD was determined to be 14.69 nM. The response time of P1 as the chemosensor for
Cr3+ was 60 s, as shown in Figure S11B (see Supplementary Materials).
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Figure 7. Fluorescence spectra of P1 quenched by various amounts of (A) Fe3+ (ranging from 0 to
22.05 µM) and (B) Cr3+ (ranged from 0 to 25.00 µM) in THF. Additionally, the plots of the relative
intensity of fluorescence ((F0 − F)/F) versus the Fe3+ and Cr3+ concentrations are shown in (C) and
(D), respectively.

By the same method, the LOD of the P2 solution was calculated to be 8.37 nM for Fe3+

and 14.77 nM for Cr3+ as shown in Figure 8, and the response time was 45 s for Fe3+ but 90s
for Cr3+ as shown in Figure S11C and S11D, respectively (see Supplementary Materials).
Therefore, P1 and P2 showed the high sensitivity for the detection of Fe3+ and Cr3+ as the
fluorescence sensor. This is probably because Fe3+ and Cr3+ coordinated with the NBN-
doped six-members ring in P1 and P2, which may facilitate the charge transfer from P1/P2
to metal ions. When 15 µM EDTA was added to the polymer–ions mixture, the fluorescence
intensity increased with the content of EDTA, as shown in Figure S12 (see Supplementary
Materials). As a potent metal chelator, EDTA can easily combine with Fe3+ and Cr3+ to
form a more stable Fe–EDTA/Cr–EDTA complex, thereby releasing the NBN-embedded
polymer and their fluorescence, which confirms the quenching mechanism. The nM-level
LOD demonstrated the great potential of the polymer on the metal fluorescent sensors.

The selectivity of P1 and P2 towards Fe3+ and Cr3+ was further tested as shown in
Figure 9. Different competitive metal ions (50 µM, including Na+, K+, Mg2+, Zn2+, Cu2+, Co2+,
Al3+, Y3+, La3+, Ln3+ and Ce3+) were introduced into the polymer solutions, followed by the
addition of Fe3+ and Cr3+ solution. As expected, the fluorescence of polymer solutions could
not be quenched by these competitive anions, but with the introduction of Fe3+ or Cr3+, the
fluorescence emission was almost completely quenched. In general, the results demonstrate
the high selectivity of NBN-embedded polymers towards Fe3+ and Cr3+.
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FL ((F0 − F)/F) versus the (C) Fe3+, and (D) Cr3+ concentrations are shown.
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and (D) for Cr3+) against various interferents (Cpolymer = 0.1 mg/mL, Cions = 50 µM, Ex = 365 nm).

4. Conclusions

In summary, we synthesized a series of NBN-embedded styryl and acrylamide poly-
mers. P1, styryl polymer with a five-membered NBN ring, showed better thermal stability
and higher Tg. P1 showed blue fluorescence in the organic solvent. As acrylamide poly-
mers with six-membered NBN ring, P2, showed blue emission in solution and P3 with
five-membered NBN ring shows green emission in solution, which indicates that the fluo-
rescence is influenced by the structure of NBN rings. All NBN-embedded polymers show
polymerization-induced emission from non-emissive monomers. In addition, the polymers
showed the solvatochromism dependence on the polarity of the solvent. P1 and P2 were
applied as probes for the detection of metal ions. The rapid fluorescence detection of the
heavy Fe3+ and Cr3+ with high selectivity and sensitivity was realized. The LOD reached
7.30 nM for Fe3+ and 14.69 nM for Cr3+ by P1, and 8.37 nM for Fe3+ and 14.77 nM for
Cr3+ by P2 with excellent anti-interference ability. Therefore, as a new class of polymeric
materials, NBN-embedded polymers have the advantages of being easy to synthesize and
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possessing admirable optical properties and sensitive detection performance, showing
great prospects in polymer science.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14102025/s1, Figure S1: 13C NMR of NBN-doped monomers:
(A) M1, (B) M2 and (C) M3; Figure S2: 11B NMR of NBN-embedded polymers: (A) P1, (B) P2 and (C)
P3; Figure S3: FT-TR spectra of NBN-embedded polymers: (A) P1, (B) P2 and (C) P3; Figure S4: TGA
curve of NBN-embedded polymers: (A) P1, (B) P2 and (C) P3; Figure S5: DSC curves of NBN-doped
polymers: (A) P1, (B) P2 and (C) P3; Table S1: The Eg with different DP of NBN-embedded polymers;
Figure S6: Electron cloud distributions and energy levels (eV) of P1 in the geometry-optimized S1
state calculated using the TD-DFT B3LYP/6-311G*, Gaussian 09 program; Figure S7: Electron cloud
distributions and energy levels (eV) of P2 in the geometry-optimized S1 state calculated using the
TD-DFT B3LYP/6-311G*, Gaussian 09 program; Figure S8: Electron cloud distributions and energy
levels (eV) of P3 in the geometry-optimized S1 state calculated using the TD-DFT B3LYP/6-311G*,
Gaussian 09 program; Table S2: Properties of three polymers in different solvents; Figure S9: The
absorption spectrum of NBN-embedded polymers in different solvents; Figure S10: The fluorescence
photos of P3 solution (0.1 mg/mL) with various metal ions (5.0 × 10−5 mol/L) in THF by 365 nm UV
lamp; Figure S11: The response time of P1 for Fe3+ (A), Cr3+ (B), and P2 for Fe3+ (C) and Cr3+ (D)
(Cpolymer = 0.1 mg/mL, Cions = 5 µM, Ex = 375 nm for P2); Figure S12: Fluorescence spectra of
polymer–ions systems with EDTA addition: (A) P1– Fe3+, (B) P1-Cr3+, (C) P2-Fe3+ and (D) P2-Cr3+

(Cpolymer = 0.05 mg/mL, Cions = 10 µM, Ex for P1 was 370 nm and Ex for P2 was 375 nm); Figure S13.
Fluorescence intensity evolution of probe P1 and probe P2 towards Cr3+ cation, Fe3+ cation and the
mixture of Cr3+ and Fe3+ cations (Cpolymer = 0.1 mg/mL, Cions = 50 µM, Ex = 365 nm).
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