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In recent years, more and more studies have shown that miRNAs can affect a variety of biological processes. It is important for
disease prevention, treatment, diagnosis, and prognosis to study the relationships between human diseases and miRNAs.
However, traditional experimental methods are time-consuming and labour-intensive. Hence, in this paper, a novel
neighborhood-based computational model called NBMDA is proposed for predicting potential miRNA-disease associations. Due
to the fact that knownmiRNA-disease associations are very rare and many diseases (or miRNAs) are associated with only one or a
few miRNAs (or diseases), in NBMDA, the K-nearest neighbor (KNN) method is utilized as a recommendation algorithm based
on knownmiRNA-disease associations, miRNA functional similarity, disease semantic similarity, andGaussian interaction profile
kernel similarity for miRNAs and diseases to improve its prediction accuracy. And simulation results demonstrate that NBMDA
can effectively infer miRNA-disease associations with higher accuracy compared with previous state-of-the-art methods.
Moreover, independent case studies of esophageal neoplasms, breast neoplasms and colon neoplasms are further implemented,
and as a result, there are 47, 48, and 48 out of the top 50 predicted miRNAs having been successfully confirmed by the previously
published literatures, which also indicates that NBMDA can be utilized as a powerful tool to study the relationships between
miRNAs and diseases.

1. Introduction

MiRNAs are one kind of small RNAs with the length of
about 20–24 nucleotides that can regulate the expression of
posttranscriptional genes, and each miRNA may have
multiple target genes that can be regulated by multiple
miRNAs as well [1–4]. Recently, more andmore studies have
shown that miRNAs play important roles in many physi-
ological processes of the human body such as cell growth [5],
proliferation [6], differentiation [7], immune response [8]
embryonic development [5], and so on. In addition,
emerging evidences have implied as well that miRNAs can
affect the occurrence and development of various tumors by
regulating the signaling pathways in which their target genes
are involved and play a role similar to oncogenes or tumor
suppressor genes [9]. For example, miR-203 can inhibit the
formation of esophageal tumors [10], miR-328 is a key

oncogene in hepatocellular carcinoma, and its expression
level will be significantly upregulated and downregulated in
hepatocellular carcinoma tissues [11]. MiR-143 andmiR-145
are expressed at low levels in esophageal cancer and gastric
cancer, which mean that the downregulation of these two
kinds of miRNAs can be considered as a potential biomarker
for related tumors [12]. Hence, the exploration of potential
relationships between miRNAs and diseases will have im-
portant significance for disease prevention, treatment, di-
agnosis, and prognosis [13–15].

Up to now, many human miRNA-disease association
databases such as HMDD [16] and miR2Disease [17] have
been established, in which the stored associations are mainly
collected from previous biological experiments. And with
the rapid growth of known biological information associated
with miRNAs and diseases, known miRNA-disease associ-
ations are becoming far from meeting the needs of modern
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medical researches, since traditional methods of detecting
miRNA-disease associations (e.g., PCR [18] and northern
blotting [19]) are very time-consuming and labour-
intensive. /erefore, in recent years, a large number of
computational models have been proposed [20–22]. For
instance, based on the assumption that similar miRNAs tend
to be related or unrelated with similar diseases [23], Zeng
et al. [24] proposed a model to infer potential associations
between miRNAs and diseases based on the miRNA simi-
larity, disease similarity, and known miRNA-disease asso-
ciations. Yu et al. [25] proposed a model called KATZMDA
to predict potential miRNA-disease associations by mea-
suring the number and length of paths existing between a
pair of miRNA-disease nodes in the miRNA-disease asso-
ciation network. In addition, considering that more and
more biological databases have been established by far, it is
obvious that the prediction performance would be improved
more effectively, if more information collected from more
databases are integrated to predict potential miRNA-disease
associations. For example, Yu et al. [26] proposed a model
called NBCLDA to infer potential associations between
lncRNAs and diseases through integrating known miRNA-
disease associations, miRNA-lncRNA associations, lncRNA-
disease associations, gene-lncRNA associations, gene-
disease associations, and gene-miRNA associations. More-
over, for the past few years, with machine learning gradually
becoming a hot topic in many fields, some machine learning
algorithms have been adopted to predict miRNA-disease
associations as well. For instance, Zhang et al. [27] proposed
a semisupervised model to infer potential miRNA-disease
associations by implementing label propagation algorithms
on the miRNA-disease association network. Chen et al. [28]
proposed a computational model called SDMMDA based on
super-diseases and miRNAs to predict potential miRNA-
disease associations, in which as many as possible similar
diseases or miRNAs would be clustered into super-diseases
or super-miRNAs first, and then the Naive Bayesian scheme
was utilized to infer potential associations between miRNAs
and diseases. Luo et al. [29] proposed a semisupervised
method called KRLSM to identify potential miRNA-disease
associations, in which, due to the sparsity of knownmiRNA-
disease associations, different omics data were integrated to
improve the prediction accuracy of KRLSM first, and then,
the semisupervised classifier of regularized least squares was
adopted to calculate the potential probabilities of associa-
tions between miRNAs and diseases.

In this paper, different from above mentioned models, a
novel neighborhood-based computational model called
NBMDA was developed to infer potential miRNA-disease
associations, in which, due to the fact that known miRNA-
disease associations are quite sparse and there are a variety of
diseases (or miRNAs) associating with only one or few
miRNAs (or diseases), the K-nearest neighbor (KNN)
method would be utilized as a recommendation algorithm to
improve the prediction accuracy of NBMDA first, and then,
according to two kinds of newly constructed miRNA-disease
association networks and the original miRNA-disease as-
sociation network, the possibilities of potential associations
between miRNAs and diseases would be calculated based on

the concept of common neighbors. Finally, in order to
evaluate the prediction performance of NBMDA, global
leave-one-out cross validation (global LOOCV) and 5-fold
cross validation (5-fold CV) were implemented simulta-
neously, and simulation results demonstrated that NBMDA
could achieve reliable AUCs of 0.8983/0.8153 and 0.8975
under the global LOOCV and 5-fold CV, respectively, which
were higher than several state-of-the-art computational
models. In addition, we further implemented the case studies
of esophageal neoplasms, breast neoplasms and colon
neoplasms on NBMDA, and simulation results illustrated
that there were 47, 48, and 48 out of the top 50 predicted
miRNAs having been successfully confirmed by the pre-
viously published literatures separately, which also dem-
onstrated that NBMDA has good performance in predicting
potential miRNA-disease associations. Hence, it is obvious
that NBMDA can be further applied to predict both diseases
without any known related miRNAs and miRNAs without
any known related diseases.

2. Materials and Methods

2.1. Human miRNA-Disease Associations. In order to eval-
uate the performance of our proposed NBMDA, we use two
datasets. /e first dataset (denoted as dataset1) was
downloaded from the HMDD v2.0 database, which con-
sisted of 5430 experimentally validated human miRNA-
disease associations including 495 different miRNAs and
383 different diseases [16]. /e second dataset (denoted as
dataset2) was downloaded from the miR2Disease database
and the HMDD database, which consisted of high-quality
experimentally verified microRNA-disease associations
[14, 30]. As for the dataset2, after deleting 13 miRNAs that
could not be found in the website http://www.cuilab.cn/files/
images/cuilab/misim.zip, we finally obtained 250 miRNA-
disease associations including 105 different miRNAs and 52
different diseases. And for convenience, we adopted an
adjacency matrix A to represent the miRNA-disease asso-
ciations, in which, for any given disease d(i) and miRNA
m(j), if there is a known association between them, then the
value ofA(i, j) will be set to 1, otherwiseA(i, j) will be set to 0.
/erefore, the ith row ofA denotes the interaction profiles of
the disease d(i) with each of these collected miRNAs, and the
jth column of A indicates the interaction profiles of the
miRNA m(j) with each of these collected diseases. And
moreover, the number of diseases and miRNAs collected in
this paper will be represented by Nd and Nm, respectively.
Hence, based on the adjacency matrix A, we can obtain an
original miRNA-disease association network MDA.

2.2. miRNA Functional Similarity. /e miRNA functional
similarity network can be established based on the as-
sumption that functionally similar miRNAs are always as-
sociated with similar diseases [31]. In this section, in order to
construct the miRNA functional similarity network, we
downloaded the functional similarity scores between
miRNAs collected in this study from the website http://www.
cuilab.cn/files/images/cuilab/misim.zip and then, for
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convenience, we use FS to represent the miRNA functional
similarity matrix, in which, the value of FS(i, j) represents the
similarity score between the miRNA m(i) and the miRNA
m(j).

2.3. Disease Semantic Similarity. /e association between
diseases can be represented by an directed acyclic graphs
(DAGs), in which, a diseaseD can be described as DAG(D) �

(D, T(D), E(D)), where T(D) represents a set of nodes in-
cluding theD itself and its all ancestor nodes and E(D) is a set
consisting of direct edges that connect parent nodes and
child nodes in T(D). And moreover, the contribution of a
disease d to the semantic value of D can be calculated
according to the following formula:

DD(d) � 1, if d � D,

DD(d) � max Δ∗DD d′( 􏼁 d′
􏼌􏼌􏼌􏼌 ∈ children of d􏽮 􏽯􏽮 􏽯, if d≠D.

⎧⎨

⎩

(1)

Additionally, the semantic value of disease D can be
obtained as follows:

DV(D) � 􏽘
d∈T(D)

DD(d). (2)

Here, ∆ is a semantic contribution factor between 0 and
1, which will be set to 0.5 in this paper according to related
works [32, 33]. And according to the above Formula (1), it is
easy to see that the contribution of the disease D to the
semantic value of itself is 1 and the contribution of an
ancestor disease d to the semantic value of D gradually
decreases with the increasing of the distance between them,
which is regulated by ∆. And additionally, according to
Formula (2), it is obvious that the semantic value of D is the
sum of the contributions of ancestor diseases to the semantic
values of D. In general, based on the assumption that if two
diseases share more parts of the DAGs, there should be a
higher semantic similarity between them, and the semantic
similarity between the disease d(i) and d(j) can be obtained
according to the following formula:

SS(d(i), d(j)) �
􏽐t∈T(d(i))∩T(d(j)) Dd(i)(t) + Dd(j)(t)􏼐 􏼑

DV(d(i)) + DV(d(j))
.

(3)

/ereafter, according to Formula (3), we can obtain a Nd
× Nd dimensional disease semantic similarity matrix SS
based on these Nd diseases collected previously.

2.4.Gaussian InteractionProfileKernel Similarity formiRNAs
and Diseases. In this section, based on the hypothesis that
similar miRNAs are always related or unrelated to similar
diseases, we will adopt the topological information of known
miRNA-disease association network to calculate the
Gaussian interaction profile kernel similarity for miRNAs.
Firstly, let the binary vector IP(m(i)) indicate the ith column
of the adjacency matrix A, then, the Gaussian kernel sim-
ilarity between the miRNAm(i) and the miRNAm(j) can be
obtained according to the following formula:

KM(m(i), m(j)) � exp −cm‖IP(m(i)) − IP(m(j))‖
2

􏼐 􏼑,

(4)

where cm is a parameter used to control the Gaussian kernel
bandwidth, and cm is defined as follows:

cm �
cm
′

1/Nm( 􏼁􏽐
Nm

i�1 ‖IP(m(i))‖2
. (5)

As shown in Formula (5), there is a new bandwidth
parameter cm

′ , which will be set to 1 according to previous
work [34]. /ereafter, a Nm × Nm dimensional miRNA
Gaussian interaction profile kernel similarity matrix KM can
be obtained based on Formula (4).

Similarly, the Gaussian interaction profile kernel simi-
larity between the disease d(i) and disease d(j) can be cal-
culated according to the following formulas:

KD(d(i), d(j)) � exp −γd‖IP(d(i)) − IP(d(j))‖
2

􏼐 􏼑, (6)

cd �
cd
′

1/Nd( 􏼁􏽐
Nd

i�1‖IP(d(i))‖2
, (7)

where IP(d(i)) represents the ith row of the adjacency
matrix A, cd is a parameter used to control the Gaussian
kernel bandwidth, and cd

′ is a bandwidth parameter that
will be set to 1 according to previous work [34]. Hence, a
Nd × Nd dimensional disease Gaussian interaction profile
kernel similarity matrix KD will be obtained based on
Formula (6).

2.5. Integrated Similarity for miRNAs and Diseases. In this
section, in order to improve the accuracy of our prediction
results, we will further construct an integrated miRNA
similarity matrix Sm and an integrated disease similarity
matrix Sd based on these newly obtained matrices such as FS,
SS, KM, and KD according to the following formulas
separately:

Sm(m(i), m(j)) �

KM(m(i), m(j)), if FS(i, j) � 0,

FS(m(i), m(j)) + KM(m(i), m(j))

2
, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Sd(d(i), d(j)) �

KD(d(i), d(j)), if SS(i, j) � 0,

SS(d(i), d(j)) + KD(d(i), d(j))

2
, otherwise.

⎧⎪⎪⎨

⎪⎪⎩

(9)

2.6.�ePredictionModelof NBMDA. For a disease node d(i)
and a miRNA node m(j) in the miRNA-disease association
network, according to the concept of common neighbors
given in the previous literature [35], considering the com-
putational complexity, we define the common neighbors
(CNs) between d(i) andm(j) as the nodes that are involved in
all possible quadrangular closure between d(i) and m(j) in
the miRNA-disease association network. Obviously, the
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more CNs between two seed nodes such as d(i) andm(j), the
greater the possibility that these two seed nodes are asso-
ciated with each other will be. In addition, according to LCP-
theory (i.e., the theory of local community paradigm)
[35, 36], it is easy to know that the information content
related with the common neighbor nodes should be com-
plemented with the topological information emerging from
their interactions. Hence, in this section, we introduced
LCLs to indicate the number of links that exist between CNs
in the miRNA-disease association network. While searching
for CNs between two seed nodes in the miRNA-disease
association network, we will temporarily remove the con-
nection between these two seed nodes if there is a connection
between them. Based on the above LCP-theory, we proposed
a novel neighborhood-based computational model called
NBMDA for potential miRNA-disease association pre-
diction. In the model of NBMDA, firstly, an integrated
miRNA similarity and an integrated disease similarity will be
obtained based on the miRNA functional similarity, the
disease semantic similarity, and the Gaussian interaction
profile kernel similarity for miRNAs and diseases, re-
spectively. And then, considering that known miRNA-
disease associations are quite sparse and many diseases
(or miRNAs) are associated with only one or a few miRNAs
(or diseases), we adopted KNN as a recommendation al-
gorithm to improve the prediction accuracy of NBMDA. Its
main idea is to obtain K different diseases that are most
similar to a randomly given disease d(i) based on the in-
tegrated disease similarity, if most of these K diseases are
associated with a same miRNA m(k), then it is obvious that
we can assume that disease d(i) is associated with themiRNA
m(k), and therefore, we can construct a new miRNA-disease
association network SDA. In a similar way, we can as well
obtain K different miRNAs that are most similar to a ran-
domly given miRNA m(j) based on the integrated miRNA
similarity, if most of these K miRNAs are associated with a
same disease d(k), then we can assume that miRNA m(j) is
associated with the disease d(k), and therefore, we can
further construct another new miRNA-disease association
network SMA. Furthermore, considering the selection of the
value of K while adopting KNN, we tried different values of
K from 1 to 5 and found that the best experimental results
can be achieved by NBMDA when K is set to 3. And as a
result, an example is shown in Figure 1, in which, in order to
predict the potential association betweenD1 andM1, in SDA,
based on the integrated disease similarity, we can obtain
three diseasesD2, D5, and D6 that are the most similar to D1,
and then, we can obtain a new disease-miRNA association
matrix based on 3NN. Additionally, in SMA, while calcu-
lating the association probability between the seed nodes D1
andM1, we will temporarily remove the connection between
them.

According to above descriptions, as illustrated in Fig-
ure 1, based on the concept of common neighbors and these
two newly constructed networks such as SDA and SMA and
the original miRNA-disease association network MDA, for
any given disease d(i) and miRNA m(j), the possibility of
potential association between them can be calculated as
follows:

score(i, j) �
CJCMDA(i, j)∗CJCSDA(i, j)∗CJCSMA(i, j)

3
,

CJCX(i, j) �
CNS(X, d(i), m(j))∗ LCLS(X, d(i), m(j))( 􏼁

N(X, d(i)) ∪N(X, m(j))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

(10)

where X ∈ MDA, SDA, SMA{ }, CNS(X, d(i), m(j)) repre-
sents the number of common neighbors between the disease
d(i) and the miRNA m(j) in the X, LCLS(X, di, mj) rep-
resents the number of connections existing among the
common neighbors between the disease d(i) and themiRNA
m(j) in the network X, N(X, d(i)) represents the degree of
disease d(i) in the network X, and N(X, m(j)) represents
the degree of miRNA m(j) in the network X.

3. Results

3.1. Performance Evaluation. To evaluate the predictive
performance of NBMDA, we performed LOOCV and 5-fold
CV on dataset1 and LOOCV on dataset2 separately. And
during simulation, under the global LOOCV framework,
each known miRNA-disease association is alternately uti-
lized as a test sample and other known miRNA-disease
associations are considered as a training set. Hence, the
process needs to be repeated 5430/250 times in total, and
during each round of iteration, the predicted score of test
sample was ranked with predicted score of all the miRNA-
disease pairs without any known association evidences, and
if its ranking is above a given cutoff, it will be considered as a
successful predictionmade by NBMDA. As for 5-fold CV, all
known associations are randomly divided into five equal
sized and uncrossed subsets, and among them, four subsets
are used for model training and the other for model testing.
In order to reduce the impact of data partitioning on the
prediction results, we repeated 5-fold CV for 100 times.
Finally, the receiver operating characteristic (ROC) curves
which show the relationship between the true positive rate
(TPR, sensitivity) and false positive rate (FPR, 1-specificity)
were drawn for further model evaluation and comparison
based on TPR and FPR which were obtained by different
thresholds. Here, TPR�TP/(TP+ FN) represents the per-
centage of positive samples identified by the prediction
model to all positive samples, and FPR � FP/(FP +TN)
indicates the proportion that the prediction model in-
correctly considers the negative samples of the positive class
to account for all negative samples. Moreover, the areas
under ROC curves (AUCs) are calculated as a standard for
model performance evaluation. /e larger the value of AUC
is, the better the prediction performance of the model will
be.

To further evaluate the predictive performance of
NBMDA, we compared NBMDA with two state-of-the-art
computational methods such as WBSMDA [37] and
RLSMDA [38] in terms of global LOOCV and 5-fold CV as
well, and the simulation result is shown in the above Fig-
ure 2. It is easy to see that NBMDA, RLSMDA, and
WBSMDA can achieve reliable AUCs of 0.8983/0.8153,
0.8501/0.7702, and 0.7740/0.7142, respectively. And moreover,
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in the 5-fold CV, simulation results show that NBMDA can
achieve reliable average AUCs of 0.8975 ± 0.0008. Hence, it is
obvious that NBMDA can achieve much better AUCs than
these two kinds of state-of-the-art computational methods in
terms of both global LOOCV and 5-fold CV, which also
demonstrate that NBMDA has reliable performance in po-
tential miRNA-disease association prediction and can improve

the predictive performance of previous state-of-the-art com-
putational models effectively.

3.2.Case Studies. More andmore evidences have shown that
miRNAs play an important role in the occurrence and
development of human diseases [39, 40]; therefore, effective
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Figure 2: Performance comparisons between NBMDA, RLSMDA, and WBSMDA in global LOOCV. Comparison results based on (a)
dataset1 and (b) dataset2.
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Figure 1: Flowchart of NBMDA.
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prediction models are important for discovering potential
miRNA-disease associations and medical researches. In
order to further evaluate the predictive performance of
NBMDA, we implemented the case studies of esophageal
neoplasms, breast neoplasms and colon neoplasms on
dataset1. /e 5430 miRNA-disease associations downloaded
from HMDD v2.0 were used as a training sample for model
learning, and 50 predicted miRNAs with the strongest as-
sociation with esophageal neoplasms, breast neoplasms and
colon neoplasms will be ranked according to their scores
respectively and then verified by the records stored in the
dbDEMC and miR2Disease databases. What needs to be
emphasized is that only miRNA-disease pairs which have
not been included in the HMDD v2.0 database would be
considered as validation candidates.

Among these kinds of diseases, esophageal neoplasms
(EN) is a cancer with a high incidence and is the eighth most
common cancer in the world and the sixth leading cause of
cancer death in humans [41]. Esophageal cancer is a com-
mon digestive tract cancer, and around 300 thousand people
worldwide die from the disease every year. Related data show
that the survival rate of patients with esophageal cancer has
increased from 15% to 25% in the last five years [42]. If
treatment can be performed early in this disease, the survival
rate can reach 90%. /erefore, the study of potential bio-
markers associated with disease is important for the treat-
ment of related diseases. Recently, related studies have
achieved some interesting results. For example, mir-21, miR-
143, miR-203, miR-205, and miR-221 were found to be
expressed at high levels in esophageal cancer tissues [43].
MiR-375 was found to be expressed at low levels in EN cells,
and downregulation of miR-375 can be used as a biomarker
for predicting esophageal tumors [44]. In this section, in
order to identify miRNAs that are potentially associated with
EN, we conducted a case study of EN based on NBMDA, and
the simulation results show that 47 out of top 50 potential
associated miRNAs are validated by dbDEMC and miR2-
Disease (Table 1). And moreover, related literatures show
that miR-17 (ranking 1st in our prediction list) promotes the
growth of EN cells and regulates disorders in a variety of
cancers [45, 46]. Mir-125b (ranking 2nd in our prediction
list) is expressed at low level in EN cells and can promote the
differentiation of EN cells [47, 48].

Breast neoplasms (BN) is a common disease, and breast
cancer is the most common malignant tumor in women,
accounting for 25% [49, 50]. In recent years, the incidence of
breast cancer is on the rise and themortality rate is decreasing.
But in developing countries, the survival rate of patients is still
low [51]. In the United States, an average of 185,000 women
suffer from breast cancer each year and 44,000 people die
from this disease. /erefore, a large number of studies are
devoted to the treatment of the disease, and identifying po-
tential miRNAs associated with the disease is an important
means. Up to now, a lot of achievements have been made in
this direction. For example, miRNA-10b was found to be
highly expressed in metastatic breast cancer cells and has a
positive regulatory effect on cell migration and invasion [52].
Mir-125b, mir-145, mir-21, and mir-155 are significantly
dysregulated in breast cancer patients and can be used as

potential biomarkers for early detection of BN [52]. MiR-
200c-141, miR-200b-200a-429, and miR-183-96-182 are
downregulated in human breast cancer stem cells [53]. Hence,
in this section, in order to identify miRNAs that are po-
tentially associated with BN, we conducted a case study of
breast neoplasms based on NBMDA. And simulation results
show that 10 out of top 10 and 48 out of top 50 predicted
miRNAs are validated by dbDEMC and miR2Disease (Ta-
ble 2). In addition, previously published literatures show that
mir-142 (ranking 1st in our prediction list) can regulate the
tumorigenicity of human breast cancer stem cells [54]. /e
expression ofmiR-150 (ranking 2nd in our prediction list) can

Table 1: /e top 50 predicted miRNAs associated with EN ob-
tained by implementing our model NBMDA.

Top 1–25 Top 26–50
miRNA Evidence miRNA Evidence

hsa-mir-17 dbdemc hsa-mir-
195 dbdemc

hsa-mir-125b dbdemc hsa-mir-
124 dbdemc

hsa-mir-16 dbdemc hsa-mir-7 dbdemc
hsa-mir-18a dbdemc hsa-mir-93 dbdemc
hsa-mir-29a dbdemc hsa-let-7i dbdemc

hsa-mir-1 dbdemc hsa-mir-
429 dbdemc

hsa-mir-19b Unconfirmed hsa-mir-
106b dbdemc

hsa-mir-221 dbdemc hsa-mir-
125a dbdemc

hsa-mir-200b dbdemc hsa-mir-
23a dbdemc

hsa-mir-142 dbdemc hsa-mir-
497 dbdemc

hsa-mir-10b dbdemc hsa-mir-
106a dbdemc

hsa-mir-29b dbdemc hsa-mir-
30c dbdemc

hsa-let-7e dbdemc hsa-mir-
151a dbdemc

hsa-let-7d dbdemc hsa-mir-
224 dbdemc

hsa-mir-146b dbdemc hsa-mir-
127 dbdemc

hsa-mir-218 dbdemc hsa-mir-24 dbdemc

hsa-mir-222 dbdemc hsa-mir-
199b dbdemc

hsa-mir-133b dbdemc hsa-mir-
107

dbdemc;
miR2Disease

hsa-mir-182 dbdemc hsa-mir-
135a dbdemc

hsa-mir-181a dbdemc hsa-mir-
10a Unconfirmed

hsa-mir-9 dbdemc hsa-mir-96 dbdemc

hsa-mir-181b dbdemc hsa-mir-
103a dbdemc

hsa-mir-30a dbdemc hsa-mir-
18b dbdemc

hsa-let-7g dbdemc hsa-mir-
378a dbdemc

hsa-let-7f Unconfirmed hsa-mir-
302b dbdemc
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significantly inhibit the migration and invasion of breast
cancer cells in vitro [55].

Colon neoplasms (CN) are common malignant tumors
in the gastrointestinal tract; the incidence rate is second only
to gastric cancer and esophageal cancer. It is the most
common part of colorectal cancer, accounting for about
60%. In recent years, the number of CN patients is increasing
year by year. It is reported that the number of patients with
colorectal cancer increase globally by 930,000 per year.
However, colon neoplasms is the most easily self-screening
conditions, if detected early can be cured. /erefore,
detecting potential biomarkers of colon tumors has great
significance for the treatment of the disease. Related studies
have identified several miRNAs associated with CN. For
example, miR-143 andmiR-145 are expressed at low levels in
CN cells [56]. /e serum miRNA-21 content in CN patients
is abnormally reduced. /erefore, miRNA-21 may be a
potential molecular mechanism regulating angiogenesis in
CN [57]. /ese findings provide a theoretical basis for
clinical treatment of CN. Hence, in this section, in order to
further discover miRNAs associated with colon tumors, we
conducted a case study of colon neoplasms based on
NBMDA. And simulation results show that 48 out of top 50
predicted miRNAs are successfully validated by dbDEMC
and miR2Disease (Table 3). In addition, some previous
experimental literatures show that miR-20a (ranking 1st in
our prediction list) upregulates in colon neoplasms cells; its

downregulation is also considered to be a biomarker for CN
[58]. MiR-18a (ranking 2nd in our prediction list) inhibits
the progression of colon cancer and induces apoptosis in
colon cancer cells [59]. /e miR-143 (ranking 3rd in our
prediction list) is downregulated in various cancers in-
cluding colon cancer, and its antitumor activity can inhibit
the proliferation and migration of cancer cells [60].

4. Discussion

In this paper, a neighborhood-based computational model
called NBMDA is proposed for potential miRNA-disease

Table 2: /e top 50 predicted miRNAs associated with BN ob-
tained by implementing our model NBMDA.

Top 1–25 Top 26–50
miRNA Evidence miRNA Evidence
hsa-mir-142 dbdemc hsa-mir-615 dbdemc
hsa-mir-150 dbdemc hsa-mir-449a dbdemc
hsa-mir-106a dbdemc hsa-mir-1273c Unconfirmed
hsa-mir-99a dbdemc hsa-mir-130b dbdemc

hsa-mir-98 dbdemc;
miR2Dsease hsa-mir-381 dbdemc

hsa-mir-378a dbdemc hsa-mir-542 dbdemc
hsa-mir-130a dbdemc hsa-mir-337 dbdemc
hsa-mir-138 dbdemc hsa-mir-371a dbdemc
hsa-mir-15b dbdemc hsa-mir-95 dbdemc
hsa-mir-532 dbdemc hsa-mir-181c dbdemc

hsa-mir-181d dbdemc;
miR2Dsease hsa-mir-449b dbdemc

hsa-mir-192 dbdemc hsa-mir-30e dbdemc
hsa-mir-198 dbdemc hsa-mir-637 dbdemc
hsa-mir-186 dbdemc hsa-mir-519b dbdemc
hsa-mir-185 dbdemc hsa-mir-330 dbdemc
hsa-mir-212 dbdemc hsa-mir-208b dbdemc
hsa-mir-196b dbdemc hsa-mir-372 dbdemc
hsa-mir-527 dbdemc hsa-mir-602 dbdemc
hsa-mir-526b dbdemc hsa-mir-370 dbdemc

hsa-mir-99b dbdemc hsa-mir-211 dbdemc;
miR2Disease

hsa-mir-1280 Unconfirmed hsa-mir-32 dbdemc
hsa-mir-574 dbdemc hsa-mir-514a dbdemc
hsa-mir-548b dbdemc hsa-mir-362 dbdemc
hsa-let-92b dbdemc hsa-mir-652 dbdemc
hsa-let-432 dbdemc hsa-mir-873 dbdemc

Table 3: /e top 50 predicted miRNAs associated with CN ob-
tained by implementing our model NBMDA.

Top 1–25 Top 26–50
hsa-mir-20a Evidence miRNA Evidence

hsa-mir-18a dbdemc;
miR2Disease hsa-mir-200a dbdemc

hsa-mir-143 dbdemc;
miR2Disease hsa-mir-15a dbdemc

hsa-mir-19b dbdemc;
miR2Disease hsa-mir-181a dbdemc;

miR2Disease

hsa-mir-92a dbdemc;
miR2Disease hsa-mir-181b dbdemc;

miR2Disease
hsa-mir-155 dbdemc hsa-mir-27a miR2Disease

hsa-mir-125b dbdemc;
miR2Disease hsa-mir-133b dbdemc;

miR2Disease
hsa-let-7a Unconfirmed hsa-let-7b dbdemc

hsa-mir-19a dbdemc;
miR2Disease hsa-mir-142 dbdemc

hsa-mir-16 dbdemc;
miR2Disease hsa-mir-210 dbdemc

hsa-mir-200c Unconfirmed hsa-mir-203 dbdemc;
miR2Disease

hsa-mir-34a dbdemc;
miR2Disease hsa-mir-34c miR2Disease

hsa-let-31 dbdemc;
miR2Disease hsa-mir-100 dbdemc

hsa-let-146a dbdemc;
miR2Disease hsa-let-7 dbdemc

hsa-mir-10b dbdemc hsa-mir-101 dbdemc

hsa-mir-200b dbdemc;
miR2Disease hsa-mir-106b dbdemc;

miR2Disease

hsa-mir-21 dbdemc hsa-mir-183 dbdemc;
miR2Disease

hsa-mir-218 dbdemc;
miR2Disease hsa-mir-7d dbdemc

hsa-mir-221 dbdemc hsa-mir-146b dbdemc

hsa-mir-182 dbdemc;
miR2Disease hsa-mir-222 dbdemc

hsa-mir-205 dbdemc;
miR2Disease hsa-let-7e dbdemc

hsa-mir-29a dbdemc hsa-let-7c dbdemc

hsa-mir-1 dbdemc;
miR2Disease hsa-mir-375 dbdemc

hsa-let-9 dbdemc;
miR2Disease hsa-mir-34b dbdemc;

miR2Disease

hsa-let-29b dbdemc;
miR2Disease hsa-mir-141 dbdemc

hsa-mir-20a dbdemc;
miR2Disease hsa-mir-150 dbdemc
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association prediction. In NBMDA, an integrated disease
similarity network and an integrated miRNA similarity
network will be constructed first based on the disease se-
mantic similarity, the miRNA functional similarity, and the
Gaussian interaction profile kernel similarity for diseases
and miRNAs. And then, based on the two integrated sim-
ilarity networks, the KNN method will be adopted as a
recommendation algorithm to solve the problem that known
miRNA-disease associations are very sparse. Finally, based
on the concept of common neighbors, the possibilities of
potential associations between miRNAs and diseases can be
calculated based on these two newly constructed miRNA-
disease association networks and the original miRNA-
disease association network. And experimental results
show that NBMDA can achieve reliable AUCs of 0.8983/
0.8153 and 0.8975 in the frameworks of global LOOCV and
5-fold CV, respectively, which are much better than the
AUCs achieved by state-of-the-art predictionmodels such as
WBSMDA and RLSMDA. Moreover, by implementing
NBMDA in case studies of esophageal neoplasms, breast
neoplasms, and colon neoplasms, there are 47, 48, and 48 out
of the top 50 predicted miRNAs having been validated by
relevant databases or related literatures separately, which
further demonstrate that NBMDA can achieve excellent
predictive performance.

/e advantages of NBMDA lie in the following aspects:
firstly, an integrated disease similarity and an integratedmiRNA
similarity were obtained by combining the disease semantic
similarity, the miRNA functional similarity, and the Gaussian
interaction profile kernel similarity for diseases and miRNAs
separately, which solved the problem of the sparseness of the
similarity matrix to some extent. In addition, the KNNmethod
was adopted as a recommendation algorithm to solve the
problem of scarcity of known miRNA-disease associations and
the problem that the number of common neighbors between
two seed nodes in the association network may be 0.

Of course, there will be some limitations in NBMDA
that need to be improved in the future works. Firstly, the
known miRNA-disease associations obtained from the
database are very limited, which accounts for only 2.9% of
all possible associations. Secondly, the newly proposed
method to solve the problem of the sparseness of the
miRNA functional similarity matrix and the disease se-
mantic similarity matrix is relatively simple, and a more
effective and reasonable measure of miRNA and disease
similarity will be helpful to further improve the prediction
performance of NBMDA.

5. Conclusions

A growing number of studies have shown that miRNAs are
associated with a variety of complex human diseases.
/erefore, the detection of potential miRNA-disease asso-
ciations has great significance for the treatment of the
disease and human health. In this paper, we proposed a
computational model called NBMDA to discover potential
miRNA-disease associations. And in order to evaluate the
prediction performance of NBMDA, we compared it with
some existing state-of-the-art prediction models in terms of

LOOCV and 5-fold CV, respectively, and both the simu-
lation results and case studies indicate that NBMDA can
effectively predict potential miRNA-disease associations.
/erefore, NBMDA can be a powerful tool for identifying
potential biomarkers of diseases.
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