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Abstract: Cardiovascular diseases (CVDs) affect the heart and the vascular system with a high
prevalence and place a huge burden on society as well as the healthcare system. These complex
diseases are often the result of multiple genetic and environmental risk factors and pose a great
challenge to understanding their etiology and consequences. With the advent of next generation
sequencing, many non-coding RNA transcripts, especially long non-coding RNAs (lncRNAs),
have been linked to the pathogenesis of CVD. Despite increasing evidence, the proper functional
characterization of most of these molecules is still lacking. The exploration of conservation of
sequences across related species has been used to functionally annotate protein coding genes.
In contrast, the rapid evolutionary turnover and weak sequence conservation of lncRNAs make
it difficult to characterize functional homologs for these sequences. Recent studies have tried
to explore other dimensions of interspecies conservation to elucidate the functional role of these
novel transcripts. In this review, we summarize various methodologies adopted to explore the
evolutionary conservation of cardiovascular non-coding RNAs at sequence, secondary structure,
syntenic, and expression level.

Keywords: non-coding RNA; cardiovascular disease; evolutionary conservation; lncRNA; circular
RNA; miRNA

1. Introduction

Myocardial and vascular ailments are complex systemic diseases, successively leading to chronic
cardiac complications. These cardiovascular diseases (CVDs) encompass a broad range of disorders
including atherosclerosis, inflammatory heart disease, arrhythmias, and congenital heart disease
among others. Cardiovascular disease remains the major cause of death in the world, exceeding
deaths due to communicable diseases such as malaria, HIV/AIDS, and tuberculosis [1,2]. In 2016,
an estimated 17.9 million people died from CVDs all across the world [1,3]. Approximately 85% of
deaths in these cases are due to myocardial infarction and stroke. Currently, 80% of CVD mortality
occurs in developing nations and is expected to be the major cause of mortality in most developing
nations by 2020. In 2011, three in every 10 deaths were caused by CVD and it is estimated that by 2030,
23.3 million people will die annually due to CVD [1,2].

In addition to sex, age, and other environmental factors, genetic factors are major drivers for
complex cardiovascular diseases [2,3]. Over the past years, several genetic studies have tried to
correlate genotype with phenotype, i.e., to identify gene–gene and gene–environment interactions.
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Genome-wide association studies (GWAS) compare the frequencies of genetic variation mapped as e.g.,
single nucleotide polymorphisms (SNPs) in individuals with a given disease and in control individuals
from the same population or ethnic background. The genetic variants predisposing to CVD range from
deleterious mutations responsible for Mendelian diseases to common polymorphisms that contribute
to disease risk with a modest effect at the individual level. Notably, in most complex CVDs, common
variants are not sufficient to explain the entire disease risk and a large part of genetic variance remains
unaccounted for [4]. This “missing heritability” can be explained in part by rare genetic variants,
which in sum can have large effects.

Most of the CVDs show complex inheritance patterns due to the complex interactions between
several genes and non-genetic factors. The current environment and changing dietary patterns followed
by majority of the world population add to the genetic susceptibility to culminate as deadly complex
cardio-metabolic complications [2]. Other factors such as sleep patterns, climate, and physical inactivity
also contribute to the pathophysiology of these diseases. High blood pressure, hypercholesterolemia,
obesity, diabetes, smoking, alcohol consumption, etc. are other pathological accelerators that increase
the risk of developing CVD and are often found to be strongly associated with CVD linked mortality [2].

Over the past decade, several novel non-coding RNAs (ncRNAs) have been discovered with
importance in cardiovascular biology. This has been accelerated by next generation sequencing (NGS)
methods which have been applied to cardiovascular genomics, transcriptomics, and epigenomics to
explore the correlation between the genotype and complex cardiac phenotypes [5]. Such leads not only
enhance the understanding of disease pathogenesis, but they also identify non-coding transcripts that
can be quantitatively assessed as novel biomarkers [6].

Apart from mutations in coding genes such as APOE [7], PAI-1 [8], ACE [9], and MTHFR [10],
numerous signals have been detected in the non-coding genome. In fact, there is an increasing body
of evidence that suggests the presence of the vast majority of associated variants in non-coding
regions. This observation, accompanied by the dysregulation of various non-coding transcripts in
CVD patients, has shifted the focus towards understanding ncRNA biology. The number of these
transcripts has steadily grown over the years, yet the biological roles of most of them are largely
unknown. This discrepancy is due to the lack of proper technologies to probe transcript functions at a
genomic scale.

One approach to tackle this problem has been the use of comparative genomics to identify
homologous sequences for the gene of interest in other organisms. The conservation of sequences
under selection pressure hints at an enduring functionality similar to the ancestral ortholog. However,
unlike protein coding transcripts, there are serious challenges when dealing with some classes of
ncRNA transcripts, especially long non-coding RNAs (lncRNA). The lack of consensus sequence
similarity and rapid evolutionary turnover makes the identification of orthologous sequences
very challenging. Recent developments in the field have tried to address this issue by looking
at other dimensions of lncRNA conservation including structure, synteny, and spatio-temporal
expression patterns.

2. Heart and Non-Coding RNAs

2.1. Long Non-Coding RNAs

While a large proportion of the human genome is known to be transcribed, only ~2% of the
genome appears to code for proteins [11,12]. Recent technological advances in sequencing combined
with an improvement in computational algorithms has enabled us to study the complex nature
of transcriptomes. These advancements have led to improved characterization of non-coding RNA
molecules and established them as important regulators of cellular and tissue functions. These ncRNAs
can be classified into two major groups based on the length of the transcripts. The small non-coding
RNAs, which are shorter than 200 nucleotides and other being long non-coding RNAs.
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Long non-coding RNAs play an important role in the development of specific tissues of the human
body. They have regulatory functions in maintaining the cellular morphology and differentiation,
acting via both cis and trans interactions [13]. They act, for example, as molecular sponges for
microRNAs (miRNAs) and RNA-binding proteins (RBPs) to inhibit or enhance the expression of
the genes. Few studies have shown that lncRNAs also participate in molecular signaling by being
transcribed at specific spatial and temporal points [14], acting as the bridge between coding and
non-coding biology via formation of RNA–DNA–protein complexes. The cellular localization of
lncRNAs is important in determining their functional properties [15]. While most of the lncRNAs
are enriched in the cytoplasm or ribosomal fractions, some exclusively reside in the nucleus [16].
Long non-coding RNAs, which mostly reside in the nucleus, have been shown to regulate gene
expression in cis or trans by the formation of RNA–DNA complexes and recruiting chromatin
modifiers or transcription factors. Long non-coding RNAs, which are exported to the cytoplasm,
play important roles in modulating translation, acting as competing endogenous RNA, and regulating
protein modifications among others. The association of lncRNAs with ribosomes has been linked to its
role in regulating translation, degradation, and formation of short peptides [16–18].

Long non-coding RNAs have been identified as key regulators of gene regulation in
the development and function of the cardiovascular system. Cardiomyocyte differentiation
and development, heart wall development, cardiac morphology, cardiac cell depolarization,
and repolarization are some of the core functions that are affected by the lncRNA machinery in
the human heart [19–22]. Several research studies identified the lncRNAs acting as miRNA sponges to
affect the vascular remodeling, cardiomyocyte dysfunction, hypertrophy, and phenotypic switch of
vascular smooth muscle cells from a contractile to a synthetic state in case of ailing heart [23].

Many annotated and novel putative lncRNAs have a heart specific expression pattern and multiple
examples of divergently expressed lncRNA–mRNA pairs have been identified, suggesting functional
relationships. With major roles to play, lncRNAs have been identified as mediators of maintenance of
cardiovascular health with many lncRNAs as potential biomarkers (Table 1).
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Table 1. List of clinically relevant long non-coding RNAs (lncRNA) in cardiovascular biology.

Transcript Host Gene Organism
Studied Mechanism Disease Reference

Anril CDKN2B-AS1 Human
Binds to CBX7, recruits PRC-1 and PRC-2
to INK4 locus-leading to the repression of

p15 and p16 transcription

Genetic risk factor for coronary artery disease
(CAD) and myocardial infarction (MI) [24]

BVHT BVHT Mouse

Activation of mesoderm posterior 1
(MesP1) and interacts with SUZ12,

a component of PRC2, during
cardiomyocyte differentiation

Impairs cardiomyocyte differentiation [25]

FENDRR FENDRR Human, Mouse,
Rat

Binds to the histone-remodeling PRC2
complex and TrxG/MLL to modulate

chromatin status
Low expression leads to cardiac hypoplasia [26]

NOVLNC6 Intergenic Mouse Modulates expression of MKX2.5 Downregulated in dilated cardiomyopathy (DCM) [27]

CARMEN CARMN Human, Mouse,
Rat

Interacts with SUZ12 and EZH2 of
PRC2 complex

Plays a critical role in maintaining a differentiated
cardiac fate in mature cardiomyocytes in case of

DCM and aortic stenosis (AOS)
[28]

KCNQ1OT1 KCNQ1OT1 Human, Mouse Kcnq1 imprinted domain in heart
development

Defects in KCNQ1 leads to cardiac arrhythmias,
predicts left ventricular dysfunction [29]

SENCR SENCR Human Inhibitor of smooth muscle cell migration Downregulated in CAD and MI [30]

MALAT1 MALAT1 Human, Mouse - Involvement in the pathogenesis of diabetic
cardiomyopathy [31]

H19 H19 Human Acts by targeting VDAC1 Regulates cardiomyocyte apoptosis in diabetic
cardiomyopathy [32]

RNCR3 RNCR3/LINC00599 Human, Mouse miR-185-5p sponge RNCR3 is athero-protective [33]

CHAER CHAER1/GM42105 Mouse Interacts with PRC2

Inhibition of Chaer expression in the heart before,
but not after, the onset of pressure overload
substantially attenuates cardiac hypertrophy

and dysfunction

[34]

LIPCAR JA760602 Human - Elevated in patients with chronic heart failure [35]
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Table 1. Cont.

Transcript Host Gene Organism
Studied Mechanism Disease Reference

MIAT MIAT/RNCR2 Human MIAT functioned as a ceRNA for miR-24 to
modulate Furin and TGF-β1 expression

Involved in pathological angiogenesis and is
suggested as a predictor of MI [36]

MHRT MHRT Human - Protective factor for cardiomyocyte [37]

GAS5 GAS5 Human, Mouse,
Rat

Interacts with miR-290, Inhibits nuclear
translocation of beta-catenin, inducing

expression of downstream genes

GAS5 knockdown aggravate
hypertension-induced microvascular dysfunction [38]

MEG3 MEG3 Mouse MEG3 directly binds with the p53 DNA
binding domain

MEG3 is upregulated following ischemia
and stroke [39]

UCA1 UCA1 Human Inhibit the expression of p27 Upregulated in the plasma of patients after MI [40]

HIF1A-AS1 HIF1A-AS1 Human - Plays an important role in the pathogenesis of
cardiovascular disease (CVD) [41]

NPPA-AS1 NPPA Human Alternative splicing of the NPPA gene Involved in CVD [42]

CHRF DCC Human Targeting miR-489 Regulates cardiac hypertrophy [43]

CHAST - Mouse, Human
CHAST negatively regulated Pleckstrin
homology domain–containing protein

family M member 1
Potential target to prevent cardiac remodeling [44]

PANCR PITX2 Human miR-143 and miR-501 sponge Affected in atrial fibrillation (AF) [45]

PVT1 PVT1 Mouse Essential for the maintenance of cell size of
cardiomyocytes Regulation of cardiac hypertrophy [46]

Carl CASC11 Human Targeting miR-539 and PHB2 Regulates mitochondrial fission and apoptosis
in MI [47]

HOTAIR HOTAIR Human Targets expression of NOX2 Upregulated in ischemic heart failure [48]
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2.2. MicroRNAs

Another major class of non-coding RNAs are the small non-coding RNAs, with miRNAs being
most notable. MicroRNAs are ~22 nucleotides single-stranded molecules which primarily function as
post-transcriptional regulators of gene regulation. They are the functional unit of the RNA-induced
silencing complex (RISC), which bind to its target mRNA in a sequence-dependent manner resulting
in the degradation or deadenylation of the mRNA [49]. Additionally, miRNAs can also be sequestered
by other lncRNA or pseudogenes introducing a new layer of regulatory complexity [50].

MicroRNAs play an integral part in all the facets of cardiovascular biology, including smooth
muscle maturation and proliferation, endothelial function, and regulation of genes involved in
cardiogenesis. Several pathological conditions, such as atherosclerosis, heart failure, cardiomyopathy,
and myocardial fibrosis are shown to result from the dysregulation of miRNA (Table 2).

A large effort has been placed in developing miRNA mimics and anti-miRNA inhibitor molecules
as therapeutic interventions to regulate disease physiologies. One of the first miRNA-dependent
therapies was developed in 2008, where a highly specific antagomir of miR-21 was developed for
the attenuation of cardiac dysfunction in rodent model of cardiac fibrosis [51]. The high stability of
circulating miRNAs in plasma and their differential expression in disease phenotypes also makes them
excellent candidates as biomarkers in CVD.

Table 2. List of clinically relevant miRNA in cardiovascular biology.

Transcript Organism Studied Mechanism Disease Reference

miR-133 Mouse, Human Targets HAND-2,
de-repression of IRX5

Regulates the balance between
differentiation and proliferation

during cardiogenesis
[52]

miR-208a Mouse, Human
Regulates the balance

between the a- and b-myosin
heavy chains

MiR-208 inhibition is protective in
heart failure [53]

miR-17 Mouse target genes are BIM, BMP
2/4, ISL1, TBX1

Regulation of cardiac progenitor
genes, repression of fibronectin [54]

miR-195 Human CHEK1 regulation
Associated with ventricular septal

defect and right ventricular
hypoplasia

[55]

miR-25 Mouse, Human
Regulation of cardiac

contractility through control
of SERCA2a expression

Mitigation of heart failure [56]

miR-302/367 Mouse, Human - Role in differentiation and
reprogramming in cardiac remodeling [57]

miR-590 Mouse, Rat - Stimulates cardiac regeneration [58]

miR-99a Mouse, Zebrafish Regulates FNTB, SMARCA5
expression Regulate cardiac regeneration [59]

miR-499 Mouse, Human Regulates SOX6, ROD1,
MYH7B

Reduces cell proliferation and
enhances myocyte differentiation [60]

miR-15a/b Mouse, Pigs Targets BCL2 and ARL2 in
cardiomyocytes

Reduced infarct size and cardiac
remodeling and enhances cardiac

function in response to myocardial
infarction (MI)

[61]

miR-145 Mouse, Human Regulates KLF4 and KLF5
expression

Prevented the development of
pulmonary artery hypertension [62]

miR-320a Mouse, Rat
Reduced infarct size via
antithetical regulation of

heat-shock protein-20

Potential therapeutic target for
ischemic heart disease [63]

miR-22 Human, Mouse,
Rat Regulates MYH7 expression

Deregulated in human heart failure
and also in animal models of cardiac

hypertrophy and failure
[64]

miR-21 Mouse Regulates ER-MAP kinase
activity

In vivo silencing of miR-21 in rodent
model of cardiac fibrosis impacts

global cardiac structure and
ameliorates cardiac dysfunction

[51]
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2.3. Circular RNAs

Recent development in RNA sequencing technology has facilitated the characterization of several
novel RNA transcripts. Circular RNAs (CircRNAs) represent one such emerging class, which has been
identified across multiple species including archaea, fungi, plants, fish, insects and mammals [65–67].
These transcripts have been shown to perform a myriad of regulatory roles in multiple biological
processes. Circular RNAs are known to function as miRNA sponges [66,68], splicing competitors [69],
protein binding/sequesters [70], and transcription [71] and translation [70] regulators of the host gene.
Some circRNAs have also been shown to produce proteins using the translational machinery in a
cap-independent manner [72,73]. The expression of circRNAs is spatio-temporally regulated and plays
a critical role in the development and pathogenesis of several diseases including cancer, neurological
and CVD [74–76].

Many transcriptomic studies have focused on the identification of circRNAs [77,78] during cardiac
development and pathological conditions. Interestingly, most of these studies detect differential
expression of multiple circRNA isoforms specifically from TTN and RYR2 genes. These are known
genes which play an important role in cardiovascular biology, yet the functional characterization of
their circular isoforms remains to be established. Recent studies have tried to interpret the role of many
candidate circRNAs in cardiovascular development and disease, which is summarized in Table 3.

The efforts to identify circRNAs is also in part due to the promise, which these novel transcripts
offer as potential biomarkers. For one reason they are expressed in a cell-specific manner. Another
reason is the lack of free ends which renders them resistant to exonuclease-mediated degradation.
CircRNAs have been shown to have a median half-life of at least 2.5 times higher than their linear
counterparts [79]. Apart from being highly stable, they have been detected to be circulating in the
blood and are present in plasma as well as extracellular vesicles [80–82]. One study also showed their
presence in cell-free saliva which makes them excellent candidates for non-invasive detection [83].
Wesselhoeft et al. engineered circular RNAs for the production of proteins and showed their prowess
as robust and stable protein producers. This also suggests their potential as therapeutic vehicles [84].

Table 3. List of clinically relevant circRNA in cardiovascular biology.

Transcript Host Gene Organism
Studied Mechanism Disease Reference

HRCR PWWP2A Mouse miRNA sponge for
miR-223

Inhibits hypertrophic
cardiomyopathy and

heart failure
[85]

MICRA ZNF609 Human - Downregulated in
heart failure [86]

CDR1AS CDR1 Mouse miRNA sponge for
miR-7

Upregulated in
myocardial infarction [87]

circFoxo3 FOXO3 Mouse

Retains ageing
factors ID-1, E2F1,
FAK, and HIF1α in

cytoplasm

Upregulated in
myocardial senescence [88]

cZNF292 ZNF292 Human - Promotes angiogenesis [89]

circANRIL CDKN2B-AS1 Human Binds to PES1 Protects against
atherosclerosis [90]

3. RNA-Sequencing for Identification of Non-Coding RNA

RNA sequencing (RNA-seq) has emerged as one of the major facilitators for the identification and
characterization of ncRNAs. RNA sequencing characterizes CVD by studying transcriptome-wide
expression profiles, alternative splicing patterns, and regulatory networks that provide deeper
information of the biochemical pathways altered in the diseased condition and possible modifiable
genome level interactions. RNA sequencing has enabled us to compare gene expression in diseased and
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non-diseased tissues or blood components to yield a set of genes that might explain the pathological
condition. Several variants of RNA-Seq protocol have been developed to study spatio-temporal
complexity of individual components of the transcriptomes. These protocols have been accompanied
by computational methodologies to assist in the proper quantification of transcripts [91].

Most of the lncRNA detection studies either involve poly-A enrichment or rRNA depletion before
library preparation. While mRNAs and many lncRNAs contain a poly-A tail, these molecules can
be detected using poly-A enrichment. However, since there are many non-polyadenylated lncRNAs,
these transcripts will not be captured. Sequencing protocols involving rRNA depletion enable us
to cover the whole diversity of transcripts. Thus, the choice of sequencing methodology highly
depends on the desired targets to be sequenced and economic viability. Multiple algorithms have been
developed to help distinguish between protein-coding and lncRNA transcripts [92]. Small RNA-seq
enables the identification of miRNA and other small RNA species using size selection techniques.
Although, total RNA-seq can capture circRNA transcripts, specialized protocols have been developed
to enrich for circular transcripts by selecting against poly-A transcripts. Several algorithms have
also been developed to facilitate the identification of back-splicing junctions, which are a hallmark of
circRNA transcripts [93,94]. Recently, the focus has also shifted towards the quantification as well as
the relative abundance of these molecules compared to linear counterparts of the host gene [95,96].

4. Experimental Methodologies to Explore ncRNA Functionality

Despite the growth in the number of lncRNAs and database resources, most of the lncRNAs
remain uncharacterized [97]. While miRNA function and their binding targets are better understood,
these resources remain far from completion [98]. Many resources provide information about
experimentally validated functions of lncRNAs, yet just looking at the number of represented lncRNAs
makes the void quite evident [99,100].

One way of addressing this gap is to search for the homologous transcripts in related organisms.
The main assumption behind most of the ortholog identification studies is that they also share biological
function. However, due to limited consensus in the methods for identification of ncRNA homologs,
this may not always be true. Therefore, apart from verifying the presence of individual lncRNAs,
there is also an urgent need to experimentally validate their biological role.

Despite recent progress, functional genomics is yet to be completely exploited to understand the
lncRNAs’ functions, their interactions, as well as mechanism of regulation and physiological relevance.
In recent years, novel methodologies have been developed to probe the function of individual
transcripts mostly involving its overexpression, knockout or knockdown studies (Table 4) [101,102].
Several high-throughput techniques also enable the investigation of interactions of lncRNAs with
DNA, RNA, and proteins (Table 4) [103]. As lncRNAs are pivotal to cardiovascular biology, functional
validation can help deepen our understanding of their biological implication in development
and disease.

Table 4. Experimental techniques available for the identification, quantification, and characterization
of ncRNAs.

Technique Used for Throughput

Microarrays Quantification of transcript expression High

Serial analysis of gene expression (SAGE) Transcript identification and quantification of
expression High

Next generation sequencing (NGS)-based transcriptome
analysis methods (RNA-seq—RNA sequencing,

CAGE—Cap Analysis of Gene Expression,
GRO-Seq—Genomic run-on sequencing, etc.)

Transcript identification and quantification of
expression High

Quantitative RT-PCR—Real time- polymerase chain reaction Validation of transcript existence and
abundance in real time Low
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Table 4. Cont.

Technique Used for Throughput

RNA-Fluorescence in-situ hybridization (RNA-FISH) Transcript Localization in the cellular
compartment and relative abundance Low

Northern Blot

transcript size, the observation of alternate
splice products, the use of probes with partial

homology, the quality and quantity
of transcript

Low

RNA immunoprecipitation (RIP) RNA–protein interaction Moderate

Crosslinking immunoprecipitation sequencing (CLIP-Seq)
based methods (HITS-CLIP—High-throughput sequencing,

PAR-CLIP—photoactivatable ribonucleoside,
iCLIP—individual-nucleotide resolution etc.)

RNA–Protein interaction High

Chromatin isolation by RNA purification (ChIRP) RNA–DNA interaction High

DNA-RNA fluorescence in-situ hybridization (FISH) RNA–DNA interaction Low

Capture hybridization analysis of RNA targets (CHART) RNA–DNA interaction (localization in
the genome) Moderate

RNA antisense purification (RAP)-DNA RNA–DNA interaction High

RNA antisense purification (RAP)-RNA
lncRNA-RNA interactions that occur through

protein intermediates or through direct
RNA-RNA hybridization

High

Cross-linking, ligation and sequencing of hybrids (CLASH) RNA–RNA interaction High

Clustered regularly interspaced short palindromic repeats
(CRISPR) based techniques

Overexpression/Knockdown, interactions,
cellular compartment localization of

particular transcript
Low

Transcription activator-like effector nucleases (TALENs) Knockout/overexpression of the transcript Low

Zinc-finger nucleases (ZFNs) Knockout/overexpression of the transcript Low

Antisense oligos (ASOs), Locked nucleic acids (LNAs)
based methods Silencing of transcript Low

RNA interference (RNAi) Silencing of transcript Low

Luciferase Reporter Assays Target sites of the transcript Low

RNase protection assays Transcription start-site localization Low

5. Conserved Nature of Non-Coding RNAs

The evolutionary conservation of ncRNA has been a topic of intense research in the last few years.
While some classes of ncRNA such as miRNAs are considered highly conserved, establishing the
conservation of lncRNAs remains challenging. Most of the earlier efforts were focused on establishing
these orthologous relations based on sequence conservation. Some studies tried to identify segments of
the genome which were ultra-conserved across species and found that majority of them were located
in introns and intergenic regions [104]. Further studies confirmed that most of these regions are indeed
transcribed into lncRNA sequences [105].

On the other end of this spectrum, Pollard et al. [106] investigated regions within humans with
high sequence diversity but were conserved in other species, and also found them to be mostly
within non-coding regions. They argued that the lack of sequence conservation does not mean
lack of function. Although, sequence conservation still remains the primary method for identifying
orthologs, many researchers have tried to complement this with structure, synteny, and expression
level conservation (Figure 1).
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5.1. Sequence Level

The precise detection of homologous transcripts has mainly relied on sequence level conservation
between species. Over the years, several resources have been developed to infer these orthologous
relations which can be divided into tree-based or graph-based algorithms [107]. The main principle
behind these methodologies is to differentiate between orthologs, which are a result of speciation
events and have the same function and paralogs resulting from gene duplication and can differ
functionally. Several attempts have also been made to compare and standardize the methodologies in
order to get a more accurate ortholog detection [108–110]. However, the fact that lncRNAs are not well
conserved at the sequence level has limited their application beyond coding genes. In fact, due to the
degree at which the sequences have diverged, it is sometimes impossible to call any ortholog. There are
only a handful of known lncRNAs which show sequence conservation similar to coding genes [111].

With decreasing sequencing costs, it has become feasible to investigate genome-wide lncRNA
sequences across organisms. Some studies which have attempted to look at genome-wide sequence
homology in lncRNAs, mainly employ a reciprocal best hit method involving two-way sequence
alignment (Table 5). Most of these studies looked at transcriptome patterns across different organs
to capture complete transcriptomic heterogeneity across each species [112,113]. Recent attempts
have tried to improve this approach by utilizing synteny and structure-based methods to aid in the
identification of orthologs [114]. Nonetheless, these studies mostly agree that lncRNAs undergo rapid
evolutionary changes and the sequences are rarely conserved beyond a particular evolutionary point.

Table 5. Studies looking at lncRNA conservation.

Study Species/Organisms Details Reference

Necsulea et al. 11 vertebrates RNA sequencing (RNA-seq) of multiple tissues [113]
Washietl et al. 6 mammals RNA-seq of multiple tissues [112]

PLAR 17 vertebrates RNA-seq of multiple tissues [114]

Lopez-Ezquerra et al. 7 insect species Comparative analysis of long non-coding
RNAs (lncRNAs) in insect species [115]

Gardner et. al. 48 avian species Comparative analysis of non-coding RNAs
(ncRNAs) in avian genomes [116]
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However, the transcriptome profiles evolve more dynamically and in many cases the comparison
of transcribed sequences may not provide the complete perspective. The changes in splicing patterns
and exonic boundaries result in lncRNAs of one species aligning to non-transcribed regions in the
other. Moreover, in some cases there is no sequence similarity between organisms except near the
5′ end and promoter sequence of the lncRNA. In fact, some studies have also pointed out that the
promoter regions of lncRNAs are often as conserved as the promoters of protein coding genes [113,117].
These complexities make it crucial to correctly identify and characterize lncRNA orthologs. Numerous
lncRNAs, such as MALAT1, HOTAIR, GAS5, CARMEN and CHAST, have been identified in humans
with some degree of sequence conservation across other organisms. Still there are many other lncRNAs
in CVD, whose orthologs are yet to be identified.

5.2. Structure Level

Non-coding RNAs, especially miRNAs are known to form secondary structures, which are
important for its interactions with other biomolecules and thus their function. Just like other mRNA
transcripts, lncRNAs are also known to form stable secondary structures [118]. The absence of
significant sequence conservation does not mean lack of selection at the structural level [119]. This is
evident in case of the telomerase RNA and the stem region of miRNAs, which even in the absence
of sequence similarity maintain structural integrity. However, this hypothesis has been tested with
limited success in case of lncRNAs.

The fact that even random RNA sequences can form stable structures, suggests that it is not a
necessary condition for a functional correlation at the sequence level. Indeed, there are contradictory
views about the conservation of lncRNA secondary structures. While some studies suggest lack of any
statistically significant conserved RNA structure for some lncRNAs, others have shown conserved
structural domains in several lncRNAs [120–123]. In fact, several important cardiovascular lncRNAs,
such as GAS5 and HOTAIR, have been shown to have some degree of structural conservation [124,125].

Over the last two decades, several studies have tried to use computational methods to look at
the genome-wide RNA secondary structure conservation (Table 6). Most of these tools are based on
sequence alignment, and thus require a certain degree of sequence conservation. Others have tried
to overcome this obstacle by using conserved synteny as the basis for the identification of stretches
for structural survey. However, most of these computational methods, irrespective of their intrinsic
principle, suffer from low detection accuracy and their predictions rarely agree [126].

Table 6. RNA secondary structure conservation-based studies.

Study Technique/Tool Used Reference

Washietl et al., 2005 RNAz [127]

Pedersen et al., 2006 EvoFold [128]

Washietl et al., 2007 AlifoldZ, RNAz, EvoFold [129]

Torarinsson et al., 2008 CMfinder, RNAz, EvoFold [130]

Rabani et al., 2009 RNApromo [131]

Parker et al., 2011 EvoFam [132]

Smith et al., 2013 RNAz and SISSIz [119]

Will et al., 2013 RE-Alignment for Prediction of structural ncRNA (REAPR) [133]

Seemann et al., 2017 CMfinder [134]

Ding et al., 2014 Structure-seq [135]

Rouskin et al., 2014 Dimethyl sulfate sequencing (DMS-seq) [136]

Wan et al., 2014 Parallel Analysis of RNA Structure (PARS) [137]

Aw et al., 2016 Sequencing of psoralen crosslinked, ligated, and selected
hybrids (SPLASH) [138]
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Recent advancements in high-throughput technologies have made it possible to probe RNA
structures across the genome [139]. Methodologies such as PARS (parallel analysis of RNA structure),
Frag-Seq (fragmentation-sequencing), SHAPE-Seq, DMS-Seq, among others, have been developed to
determine RNA structures on a genome-wide scale. These experimental methodologies coupled
with computational algorithms can greatly improve the accuracy of RNA structure prediction,
thus improving our understanding of lncRNA structure conservation.

5.3. Synteny Level

Non-coding RNAs are known to regulate the expression of protein coding genes both via cis and
trans-acting mechanisms. Although, most lncRNAs undergo rapid evolutionary turnover in terms
of sequence and transcription, yet the syntenic relationship with neighboring genes appears to be
preserved [114,140,141]. Many times, such lncRNAs display only local levels of sequence conservation
mostly near the promoter region, which suggests that the transcriptional event from that loci is essential
and the lncRNA itself might be of less importance. FENDRR and PVT1 are two lncRNAs, which are
essential to cardiovascular biology and do not show high levels of sequence conservation, yet their
relative location is conserved [114].

The fact that lncRNAs maintain their positional integrity across species, provides insight into
the origins of these transcripts. Hezroni and co-workers [142] suggest some lncRNAs might be
relics of ancestral genes which lost their coding potential. Ning et al. [143] suggested that many
of the lncRNA-coding gene overlap pairs were a result of overprinting and not due to genomic
rearrangements. Other recent findings suggest lncRNAs to be intermediaries leading to the origin of
novel protein coding genes [144,145]. Chen et al. [141] also investigated the positional conservation
of lncRNAs with respect to miRNAs, snoRNAs, and protein coding transcripts and suggested their
classification based on evolutionary history.

This evidence suggests that the position of lncRNAs is important for the cis regulatory function.
Long non-coding RNAs that are antisense to protein coding genes have been shown to influence
nearly every aspect of gene expression regulation by interacting with DNA, RNA, and proteins of
the respective coding gene [146]. In particular, lncRNAs overlapping protein coding genes display
a high level of co-expression and tissue specificity resulting in their evolutionary retention [143].
Amaral et al. [147] described lncRNAs, which bear positionally conserved promoters in humans
and mice, and were enriched at topologically associating domain (TAD) boundaries. Their findings
indicated their role in the regulation of expression in neighboring genes and modulation of chromatin
looping. These studies emphasize the importance of syntenic conservation on the functional properties
of lncRNA.

5.4. Expression Level

Transcriptome profiles of individual organs have been demonstrated to be more conserved across
species than they are across organs within the same species [148]. Long non-coding RNAs are expressed
at lower levels than mRNAs and less conserved at the sequence level, but they are known to be highly
tissue specific [113,114]. It therefore becomes imperative to carefully match homologous tissues across
species in order to capture the complete expression profiles. This specificity has also been observed for
the human heart. Not only the transcriptome profile of the heart is different from other organs, recent
studies have also demonstrated it to be different across the heart chambers [149,150]. These differences
shed some light into the function and pathophysiology of heart related ailments. Indeed, there are
known examples of non-coding transcripts which are expressed exclusively in a particular heart
chamber (Figure 2), yet not much is known about this specificity. Future studies will provide deeper
insight into the conservation of expression profiles across heart chambers and other tissue subtypes.
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6. Conclusions

The advancements in NGS technologies have accelerated the identification of various novel
ncRNA transcripts in CVD. However, only a handful of these transcripts have been functionally
characterized. The lack of high-throughput experimental approaches to elucidate the role of these
transcripts makes their functional investigation very challenging. The availability of well characterized
genomes has led to the emergence of comparative genomics methodologies to functionally annotate
them. These methods are highly dependent on sequence conservation across species, and thus,
limited mainly to protein coding genes.

Although several lncRNAs show sequence conservation, the rapid evolutionary turnover has
resulted in sequence divergence beyond recognition. Despite this, most of the lncRNAs appear to have
conserved expression patterns and functions. Over the past years, several experimental methodologies
have been developed to explore the structural elements within lncRNAs. These protocols have enabled
us to investigate the genome-wide structural conservation of lncRNAs. Apart from this, many studies
have tried to exploit the syntenic conservation of lncRNAs to improve the characterization of
their homologs. These studies highlight the fact that there are several dimensions to interspecies
conservation, and a lack of sequence conservation does not necessitate lack of function.

Novel and innovative approaches accompanied by improved experimental methodologies should
aid to understand the functional implications of non-coding transcripts. In summary, future studies
encompassing these dimensions of non-coding RNA conservation pose an exciting opportunity to
investigate the role of non-coding RNAs in the cardiovascular system.
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