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Abstract: State-of-the-art scenarios, such as Internet of Things (IoT) and Smart Cities, have recently
arisen. They involve the processing of huge data sets under strict time requirements, rendering the
use of cloud resources unfeasible. For this reason, Fog computing has been proposed as a solution;
however, there remains a need for intelligent allocation decisions, in order to make it a fully usable
solution in such contexts. In this paper, a network-aware scheduling algorithm is presented, which
aims to select the fog node most suitable for the execution of an application within a given deadline.
This decision is made taking the status of the network into account. This scheduling algorithm
was implemented as an extension to the Kubernetes default scheduler, and compared with existing
proposals in the literature. The comparison shows that our proposal is the only one that can execute
all the submitted jobs within their deadlines (i.e., no job is rejected or executed exceeding its deadline)
with certain configurations in some of the scenarios tested, thus obtaining an optimal solution in
such scenarios.

Keywords: scheduling; fog computing; network; quality of service; Kubernetes

1. Introduction

In recent years, distributed heterogeneous computing resources have arisen. Cloud
computing can be considered as the application of business models existing in traditional
utilities (e.g., water or power supply) to computing equipment, where users consume
virtualized storage or compute resources offered by a provider, based on a pay-as-you-
go model. The resource providers are large data centers with high computing, memory,
and storage capacity. In addition, devices at the edge of the network can serve as part of
Internet of Things (IoT) deployments. These can be sensors and devices that are part of
Smart City infrastructure, lifestyle gadgets such as wearables, and smart appliances or
smart phones. These devices were originally designed to sense and generate data streams,
and have some spare capacity (computing, memory, and storage) which can be harnessed
to execute applications [1].

The most recent term to be coined is fog computing, which refers to computing
resources that are between the edge and cloud in the network hierarchy, with compute,
storage, and memory capacities that fall between these layers [2]. These edge and fog
resources provide the opportunity for low-latency processing of the generated data closer
to its source, utilizing the wide-area network [3]. As a result, there is critical need to
understand how this diverse ecosystem of edge, fog, and cloud resources can be effectively
used for large-scale distributed applications [4]. This multi-level scenario can be seen in
Figure 1 [5], where the term cloudlets refers to the access point devices, extended with
computing and storage services to create the fog system.
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In such a multi-level environment, the network plays an essential role, as it is the com-
munication medium between all the actors in the system; as such, its performance affects
the whole system. Thus, the network should be taken into account when making all kinds
of decisions, in order to provide Quality of Service (QoS), with one of the main decisions
being scheduling. The term “scheduling” refers to the process of allocating computing
resources to an application and mapping constituent components of that application onto
those resources, in order to meet certain QoS and resource conservation goals [6].

Figure 1. Multi-level edge/fog/cloud scenario [5].

Virtualization technologies allow for the packaging and execution of applications
in isolated environments, independent of the underlying hardware resources. The most
traditional virtualization technology is hardware virtualization, which creates virtual
machines (VMs)—abstractions of hardware, on top of which an operating system runs.
They require extensive hardware resources to run, as VMs run full operating systems.
A more recent method of virtualization is operating system-level virtualization, which
creates containers [7]. They use the host operating system and, thus, do not require one
for each container (as is the case for VMs), such that the hardware requirements to run
containers are lower than for VMs. Thanks to this, containers are suitable to run on low-cost
computers, such as the Raspberry Pi.

In order to deploy containers, a cluster of computers can be used. In this case, there is
a need to manage the cluster, which is done by a container orchestrator; one of the best-
known orchestrators is Kubernetes [8]. Among the tasks the orchestrator has to perform,
one of the most important is scheduling the containers into the nodes of the cluster.

In the context of fog computing and IoT, Ficco et al. [9] have presented a number
of open challenges, one of them being the development of new scheduling algorithms
for the efficient use of fog resources. This is the challenge that our work tackles. Our
work takes into account the deadlines of the tasks and the status of the interconnection
network, in order to make the most appropriate decision about the fog node used to run
each task. Other proposals from the literature that share the same objective are reviewed in
next section.

The contributions of our work are as follows: (1) The development of an extension
to the Kubernetes default scheduler, which allows it to use the network status to make
decisions; (2) the development of a network-aware scheduling algorithm for fog environ-
ments (called the IPerf Algorithm, IPA), which calculates predictions for the execution time
of applications and rejects those applications for which the system decides the deadline
cannot be met; and (3) a performance evaluation of our algorithm is carried out, comparing
it with other proposals from the literature.

The remainder of the paper is structured as follows. Section 2 presents the related
work. Section 3 details the work done to extend the Kubernetes default scheduler. Section 4
provides our proposal for QoS provision in fog scenarios. Section 6 concludes the paper
and suggests future work.
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2. Related Work

The provision of Quality of Service (QoS) in fog computing environments has been
reviewed by Kashani et al. [10], who identified several key categories; namely, service/re-
source management, communication management, and application management. Our
work considers the first of these. Several proposals lying in this category are reviewed
in this section. Furthermore, QoS provision in parallel-distributed computing systems
has received a lot of attention from the research community over the years and, so, some
significant works in this line are also reviewed in this section.

Skarlat et al. [11] presented a placement technique for IoT services on fog resources,
taking into account their QoS requirements (including deadlines). Their proposal takes into
account both cloud and fog resources. According to the authors, it prevents QoS violations
and leads to a significantly lower cost of execution, if compared to a purely cloud-based
approach. This approach takes into account the status of the network—more specifically,
the network link delays. Among its weaknesses, this proposal does not reject applications
when the deadline cannot be met (in contrast with the approach proposed in our work).
Instead, when the deadline is close, the application is given priority over other applications
with wider deadlines.

Aazam et al. [12] provided a resource management framework for IoT. Their model
covers the issues of resource prediction, customer type-based resource estimation and
reservation, advance reservation, and pricing for new and existing IoT customers, on the
basis of their characteristics. Murtaza et al. [13] presented a task scheduling proposal
that chooses the fog node which is most suitable for Internet of Everything (IoE) requests,
in order to improve the response time, processing time, and energy consumption in fog
environments. Neither of these proposals took deadlines of applications into account
when making scheduling decisions, and were evaluated by means of simulations using
CloudSim [14] and iFogSim [15].

Maiti et al. [16] considered the challenge of allocating service requests to Virtual
Machines (VMs) running on different fog nodes under QoS restrictions. The use of VMs,
rather than containers, imposes a heavy load on the fog resources; for this reason, we
consider containers in our work. As in the works reviewed previously, this work did
not take into account the deadlines of applications, and was also evaluated through sim-
ulations using MATLAB. Besides, this work did not take into account the status of the
interconnection network.

Intharawijitr et al. [17] proposed three different strategies for optimum resource
utilization. First, a random methodology was used to select the fog nodes to execute tasks
upon arrival. Second, the focus was on the lowest latency fog devices. Finally, the fog
resources with the maximum available capacity were primarily considered. Although the
second strategy took transmission delays into account, it dids not consider deadlines. The
three proposed policies were then evaluated, using a mathematical model.

Zeng et al. [18] introduced a joint optimization task scheduling and image placement
algorithm, which was designed to minimize the overall completion task time for better
user experience. The first sub-problem investigated was to balance the workload in both
client devices and computational servers. The second sub-problem investigated was the
placement of the task image on storage servers, while the final sub-problem was to balance
the input–output interrupt requests among the storage servers. Although the transmission
delays were considered, in order to calculate a completion time for tasks, no deadline was
considered. This proposal was also evaluated through simulations.

The proposals that share more similarities with ours are the algorithm presented
in [19] and the Network Aware Scheduler (NAS) algorithm, presented in [20] and extended
in [21]. Regarding [19], the authors presented a scheduling algorithm for Kubernetes,
which relies on the characterization of the incoming applications to be deployed on the
cluster, based on their use of resources. Their intention was to avoid applications with
high resource usage (CPU or disk) being deployed on the same node. They classified
applications based on high or low use of resources, and considered two resources: CPU
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and disk. Classification of the applications is performed by the client or developer of
the application to be deployed. Regarding [21], the authors presented a network-aware
scheduling algorithm for fog computing. For this, nodes in the Kubernetes cluster are
labeled with their Round Trip Time (RTT) and bandwidth. For the incoming pods to be
scheduled, they include a minimum bandwidth label, which is used to filter out nodes
which do not have the necessary bandwidth available. After that, the node with the
lowest RTT is chosen to deploy the pod. These two proposals were tested using a real
Kubernetes clusters.

As mentioned above, these proposals share some drawbacks. First, some of them do
not take the network status into account when making scheduling decisions. Second, none
of these proposals decided about whether an application can be executed within its deadline
or not; as such, all the applications submitted to the system are accepted and executed.
Third, some of the above referenced proposals were evaluated by means of simulation or
mathematical evaluation, rather than through the use of a real implementation.

The work presented here tackles these drawbacks, as follows: Our system uses in-
formation about the status of the network—namely, the bandwidth and round trip time
(RTT)—to make scheduling decisions. Our system predicts whether a application can
be executed within its deadline and rejects applications when the system decides their
deadlines cannot be met. Finally, a evaluation conducted using the extending Kubernetes
scheduler is presented.

3. Extending Kubernetes Default Scheduler

In order to allow Kubernetes to deploy scheduling algorithms using network status
information, a new scheduler module was developed in the Python language, whose main
components and interactions are depicted in Figure 2. Different threads are used to separate
different functionalities. For communication between threads, queues are used.

In the image, the Scheduler thread is called when a job is submitted to Kubernetes,
and it includes this new pod in the ActiveQueue, which the Worker thread listens to. This
thread retrieves the list of available nodes from the K8S-API and decides which scheduling
algorithm should be used to handle this pod. For the selected algorithm, the thread
Algorithm retrieves information of the pod from the K8S-API and statistics for the previous
executions of this pod. Using this information, the Algorithm thread chooses a node to
execute this pod, and returns it to the Worker node. The following section details the
Algorithm thread, which is one of our main developments.

If a node has been selected to run the pod, it is included into the ScheduledQueue,
and the Statistics thread polls the K8S-API for the status of the pod. Once the pod completes
its execution, statistics are calculated, including the completion time of the pod. This
statistic is used by the Algorithm thread for future scheduling decisions.

If no node is selected, the pod is moved to the UnscheduledQueue, where it waits for
a new scheduling decision. There is a number of retries, until the pod is eventually rejected
or accepted for execution.

In order to allow the scheduling algorithms to use the network status information,
iperf [22] is used to calculate the network status. An iperf server was deployed as a docker
container running in each worker node, and a central component was developed that tests
every worker at a configurable frequency (which, by default, is set to 30 s). This component
runs on the master node of the cluster, and adds the network information as metadata of
the nodes; as such, it is available through the API of Kubernetes.

Furthermore, in order to allow the ability to schedule each pod with a different
scheduler, the information of the chosen scheduler algorithm for a pod is included in
the manifest.
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Figure 2. Sequence diagram.

In order to implement this extension, the architecture of a Kubernetes cluster has been
modified. Originally, a Kubernetes cluster has two parts [23], namely the control plane and
the nodes, all of them communicated through a network connection.

The control plane has the following components:

• API: the front end for the Kubernetes control plane.
• etcd: highly-available key value store for all cluster data.
• sched: it matches pods to nodes.
• c-m or controller manager: it runs controller processes, such as jobs or node controllers.
• c-c-m or cloud controller manager: if the cluster is deployed in a cloud provider, it

links the cluster into the cloud provider’s API.

The nodes have the following components:

• k-proxy or kube proxy: it maintains network rules on nodes.
• kubelet: it ensures that the containers are running according their specifications.

Two new components have been added to this architecture in order to implement
our new functionality. These are one iperf-server per cluster and one iperf-agent per node.
The iperf server monitors network status of the nodes and then publishes its information
in the API. This architecture is presented in Figure 3, where the new components appear
in green.

Algorithm Class

This class takes the nodes of the cluster and the pod to schedule, creates a connection
to the API of Kubernetes, and initiates the logging. This class is shown in Listing 1.
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To develop a new scheduling algorithm, the evaluate method must be overridden,
in order to chose the most appropriate node to run a pod. The name of the class is used in
the manifest of the pods to be scheduled, after the scheduler/algorithm: annotation.

Figure 3. Architecture of a Kubernetes cluster with the extensions.

Listing 1: class Algorithm().

1 c l a s s Algorithm ( ) :
2 nodes = None
3 pod = None
4
5 def _ _ i n i t _ _ ( s e l f , nodes , pod ) :
6 s e l f . pod = pod
7 s e l f . nodes = nodes
8 s e l f . log = logging . getLogger ( )
9 s e l f . api = KubernetesUt i l s ( )

10
11 def evaluate ( s e l f ) :
12 nodes = s e l f . nodes
13 i f len ( nodes ) > 0 :
14 choosen_node = random . choice ( nodes )
15 s e l f . log . debug
16 ( f ’ The choosen node i s { choosen_node . metadata . name } ’ )
17 re turn choosen_node
18 e l s e :
19 re turn~None

4. Proposal for QoS Provision in Fog Computing: IPerf Algorithm (IPA)

Using the extension to the Kubernetes scheduler presented in the previous section,
a proposal for fog computing scheduling is presented, which takes into account the status
of the network to map pods to the nodes of the cluster that are more suitable to run them
within their deadline. This algorithm is called the IPerf Algorithm (IPA), which is presented
as pseudocode in Algorithm 1.

This algorithm is aimed at applications that have strong network consumption and
utilize deadlines. It has two phases: filter and rank. In the filter phase, it is checked whether
the pod to be scheduled is part of a job [24] and has a deadline. This is shown in line 9 in
Algorithm 1. In Kubernetes, a job creates one or more Pods and ensures that a specified



Sensors 2021, 21, 3978 7 of 16

number of them successfully terminate. As pods successfully complete, the Job tracks the
successful completions. When a specified number of successful completions is reached,
the job is complete. Jobs may define the directive activeDeadlineSeconds, which applies
to the duration of the job, no matter how many pods are created. Once a Job reaches
activeDeadlineSeconds, all of its running Pods are terminated. If this test is true, then the
available nodes in the Kubernetes cluster are checked, in order to decide whether they
can run the pod within its deadline or not, by calling the function filter_nodes_statistics
(line 10). This function is explained in Algorithm 2. As a result of this first phase, the only
remaining nodes of the system are ones suitable to running the pod within its deadline,
which are used as inputs for the second phase.

In the rank phase, a quality is calculated for each suitable node (line 14), which takes
into account the use of the resources by the existing pods running in the node. This function
is explained in Algorithm 3. Then, the node with the highest quality is chosen to deploy
this pod (line 21).

Algorithm 1 IPerf Algorithm (IPA).

1: Let nodeList: list of active nodes in the system
2: Let pod: a pod to be scheduled
3: Let suitableNodes: list of nodes that could run the pod within its deadline
4: Let chosenNode: the node that the scheduler chooses for this pod
5: Let bestQuality: the highest quality of the already tested nodes
6: Let quality: the quality of a node
7: bestQuality = 0.0
8: /* Filter phase */
9: if (pod is part of a Job) and (pod has activeDeadlineSeconds) then

10: suitableNodes = filter_nodes_statistics(nodeList, pod)
11: end if
12: /* Rank phase */
13: for all node in suitableNodes do
14: quality = calculate_quality(node)
15: if quality > bestQuality then
16: bestQuality = quality
17: chosenNode = node
18: end if
19: end for
20: if chosenNode not null then
21: assign(pod, chosenNode)
22: end if

The function to filter nodes is presented in Algorithm 2. It receives the list of nodes
available in the system and pod to be scheduled as input. For each node, it calculates
an estimate for the completion time of the pod using the node, and removes it if this
estimate is not within the deadline of the pod. This estimation is calculated as presented in
Algorithm 4, where the previous executions of the pod in the node are considered.

Algorithm 2 filter_nodes_statistics(nodeList, pod) function.

1: Let nodeList: List of nodes available in the system
2: Let deadlinepod: The deadline of pod
3: for all node in nodeList do
4: if CompletionTimeEstimation(pod, node) > deadlinepod then
5: remove node from nodeList
6: end if
7: end for
8: return nodeList
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Algorithm 3 calculate_quality(node) function.

1: Let weight_rtt: weight of the rtt in the schedule decision
2: Let weight_bandwidth: weight of the bandwidth in the schedule decision
3: Let weight_memory: weight of the % memory in the schedule decision
4: Let weight_cpu: weight of the % cpu in the schedule decision
5: Let weight_current_pods_type: weight of the number of pods of the same type running

in a node in the schedule decision
6: Let quality: the quality of a node
7: rtt = normalize_rtt(node) * weight_rtt
8: bandwidth = normalize_bandwidth(node) * weight_bandwidth
9: cpu = normalize_cpu(node) * weight_cpu

10: memory = normalize_memory(node) * weight_memory
11: current_pods_type = normalize_current_pods_type(node) * weight_current_pods_type
12: quality = rtt + bandwidth + cpu + memory + current_pods_type
13: return quality

Algorithm 4 CompletionTimeEstimation(pod, node) function.

1: Let node: a node in the system
2: Let pod: pod to be scheduled
3: Let n: the number of samples of completion time for the pod in the node
4: Let CompletionTime(pod, node)j = the jth completion time for the pod pod in the node

node
5: CompletionTimeEstimation =

∑n
j=1 CompletionTime(pod,node)j

n
6: return CompletionTimeEstimation

Algorithm 3 details how the quality of nodes is calculated. It is done by taking into
account several parameters for each node; namely, the percentage of CPU and memory
occupation in the node, the number of pods already deployed on it, and the bandwidth
and round trip time (RTT) of the node. As can be seen, the network characteristics are
considered for this decision. Each parameter has a weight, which can be configured.
For each parameter, a normalization function is called (presented in Listing 2). Each
normalized parameter is multiplied by its associated weight (lines 7 to 11). Then, all the
parameters are added, in order to calculate the quality of the node (line 12).

The normalization functions used in Algorithm 3 are presented in Listing 2. These
functions consider each resource (RTT, bandwidth, CPU, memory, running pods), and they
aim at giving a high value when the utilization of the resource is lower. Therefore, for the
CPU and memory (which are measured as percentages of utilization), they must be re-
versed, in order to show the availability of the resource—this is done by taking 1 minus the
utilization of that resource (see lines 23 and 28).

For the RTT and bandwidth, these parameters are normalized by operating them
along with the lowest and highest values for each parameter (lines 8 and 18). The current
number of pods already running in the node is also normalized, using the configured
maximum number of pods in a node (line 33).
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Listing 2: Normalization functions.

1 funct ion normalize_bandwidth ( node )
2 currentbandwidth = getbandwidth ( node )
3 I f currentbandwidth > max_bandwidth then
4 max_bandwidth = currentbandwidth
5 I f currentbandwidth < min_bandwidth then
6 min_bandwidth = currentbandwidth
7 normalized = ( currentbandwidth − min_bandwidth ) /
8 ( max_bandwidth − min_bandwidth )
9 re turn~normalized

10
11 funct ion n o r m a l i z e _ r t t ( node )
12 c u r r e n t r t t = g e t r t t ( node )
13 I f c u r r e n t r t t < min_rt t then
14 min_rt t = c u r r e n t r t t
15 I f c u r r e n t r t t > max_rtt then
16 max_rtt = c u r r e n t r t t
17 normalized = ( c u r r e n t r t t − min_rt t ) /
18 ( max_rtt − min_rt t )
19 re turn~normalized
20
21 funct ion normalize_cpu ( node )
22 currentcpupercentage = getcpu ( node )
23 normalized = 1 − currentcpupercentage
24 return~normalized
25
26 funct ion normalize_memory ( node )
27 currentmemorypercentage = getmemory ( node )
28 normalized = 1 − currentmemorypercentage
29 return~normalize
30
31 funct ion normalize_current_pods_type ( node )
32 currentnumberpods = getpodsfromalgorithm ( node )
33 normalized = 1 − currentnumberpods/MAX_PODS_IN_NODE
34 return normalize

4.1. Complexity Analysis

The time complexity of the proposed IPA algorithm was analyzed, and the results are
as follows. The normalization functions presented in Listing 2 and the calculate_quality
function, presented in Algorithm 3, have constant complexity. The CompletionTimeEsti-
mation function, presented in Algorithm 4, has O(n) complexity, which depends on the
number of existing samples. This function could also be implemented with a constant
complexity if, instead of storing all the samples for the completion time of a pod in a node,
only the addition of all the samples and the counter of samples were stored.

The filter_nodes_statistics function, presented in Algorithm 2, also has O(n) com-
plexity, which depends on the number of nodes in the system. However, this function
can be executed in parallel, in the case where the number of nodes in the system grows,
by devoting more than one server to host the scheduler and splitting the information on
the nodes between these servers, such that each one performs this function on a subset of
the nodes.
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5. Performance Evaluation

In this section, a performance evaluation of the IPA algorithm is presented, through
a comparison with several other proposals from the literature, which are detailed in
Section 2. Authors considered that the best comparison would be against the most up-to-
date proposals from literature, specifically those which are also network-aware (similarly
to IPA), rather than against well-known algorithms such as Shortest Job First (SJF) which
are not network-aware.

Regarding the proposals from the literature, we compared the IPA algorithm with the
algorithm presented in [19] and the NAS algorithm [21]. Both are reviewed in Section 2.
The algorithm of [19] was modified to implement network awareness (labeled in the figures
as CA-Net; Contention-Aware Network), which was done by using a disk tag for the use of
the network; all the jobs submitted share a high load for this resource. So, all the proposals
tested implemented network awareness. The manifest for the IPA algorithm tested is
presented in Listing 3.

The evaluation has two main parts, first the complexity of the algorithms is compared,
then a performance evaluation is presented. Regarding the first part, Section 4.1 presents
the complexity of IPA. With regard to NAS algorithm, it is a recursive approach as presented
in [21]. When a pod enters the system, NAS first checks all the nodes in the system in
order to find the node with the lowest RTT. This part of the algorithm has O(n) complexity
depending on the number of nodes in the system. After that, it finds the bandwidth of
that node and checks if both RTT and bandwidth are within the requirements of the pod.
This part also has O(n) complexity depending on the number of nodes in the system. If the
node with the lowest RTT does not have enough bandwidth for the new pod, then the
whole procedure is repeated recursively eliminating this node from the list of available
nodes. Thus, the complexity of NAS can be seen as nO2(n) depending on the number of
nodes in the system. Regarding CA algorithm as presented in [19], its complexity is O(n)
depending on the number of nodes in the system. Considering this information, it can be
seen that CA is the least complex algorithm, followed by IPA and finally NAS.

Now we move on to the performance evaluation. This evaluation was performed
using a testbed based on Kind [25], which was used to create a cluster made of one master
and four worker nodes, all of them running on the same physical server. Figure 3 represents
our testbed graphically. The application used in the tests was a speed test [26], which was
deployed in a docker image developed by the authors [26]. This application was chosen
as it requires high bandwidth consumption. This application performs a test of network
speed, where the number of times that it is repeated is a configurable parameter; in our
case, this was set to 2.

The tests conducted consisted of 200 jobs, submitted with three seconds between each
one and with three different deadlines (60, 100, and 120 s). These deadlines were chosen
such that the jobs were difficult to meet and, so, the chosen scheduling algorithm could
make a difference. The network-monitoring interval was set to 30 s and the minimum
number of executed jobs to calculate predictions was set to 10.

IPA was evaluated using several different configurations: IPA-Original (labeled IPA-O
in figures), IPA-Network (labeled IPA-N), IPA-Balanced (labeled IPA-B), and IPA-Equal
(labeled IPA-E). These are shown in Table 1. For these configurations, the weights assigned
to each parameter varied, where network bandwidth and existing pods running on the
node always had a significant weight.

Table 1. Different weight configurations of the IPA algorithm.

Name Bandwidth Existing Pods RTT CPU Memory

IPA-O 50% 30% 10% 5% 5%
IPA-N 100% - - - -
IPA-B 70% 30% - - -
IPA-E 50% 50% - - -
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Listing 3: IPA manifest.

1 apiVersion : batch/v1
2 kind : Job
3 metadata :
4 name : deadline − t e s t
5 spec :
6 template :
7 metadata :
8 l a b e l s :
9 app : deadline − t e s t

10 annotat ions :
11 scheduler/algorithm : ’ IperfAlgorithm ’
12 spec :
13 act iveDeadlineSeconds : 60
14 schedulerName : qos−scheduler
15 c o n t a i n e r s :
16 − name : sp eedtes t
17 image : dmartin581/s peedtes t
18 env :
19 − name : TEST_NUMBERS
20 value : " 2 "
21 r e s t a r t P o l i c y : Never
22 backof fLimit : 0

The first statistic to be presented is the percentage of jobs accepted for execution
for each algorithm and each deadline. For the different configurations of IPA, these are
jobs whose estimated completion time was within the deadline. This statistic is shown in
Figure 4, from which is can be seen that the CA-Net and NAS algorithms scheduled all
the jobs that were submitted to the system, as they do not perform any kind of admission
control. In constrast, the different configurations of IPA rejected some pods, when the
prediction of the completion time for the application was beyond the deadline. As can be
seen, the wider the deadline was, the more pods were accepted for execution. This was
because, at the beginning of the experiments, there were no data on the execution time
of jobs and, so, no predictions could be calculated. In this case, the jobs were accepted
and assigned to random nodes. Only when a minimum number of jobs had successfully
finished their executions, could their completion times be used to calculate predictions for
the completion times of future jobs. Therefore, CA-Net and NAS were between 52% and
64% better than any configuration of IPA for the 60 s deadline, between 18% and 42% better
for the 100 s deadline, and 7% better than IPA-O for the 120 s deadline.

It can also be seen that different configurations of IPA showed slightly different results.
IPA-N accepted more jobs under the 60 and 100 s deadlines (between 8% and 12% more
than the other configurations of IPA for the 60 s deadline, and between 11% and 21% for the
100 s deadline). IPA-E accepted fewer jobs for the 100 s deadline. Furthermore, IPA-O was
the only configuration that rejected some jobs with the 120 s deadline (7% of jobs). These
differences were related to the monitoring interval of the network, which was set to 30 s.
Therefore, the use of the network caused by the execution of jobs is only considered for
future scheduling decisions after the network has been monitored, which happens at most
30 s after the job execution has started. Thus, scheduling decisions made in the meantime
do not reflect the current status of the network. A decrease in the monitoring interval
may be considered, but it should be noted that monitoring the network involves sending
synthetic information through it, which may affect real transmissions. So, a trade-off
between the monitoring interval and accuracy in the status of the network must be reached.
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Figure 4. Percentage of accepted jobs for each deadline.

The next statistic presented is the percentage of jobs that were successfully executed,
out of the total amount of jobs submitted to the system, as presented in Figure 5. It can
be seen that, although CA-Net and NAS accepted all the jobs, a low percentage of them
met the deadline (at most 65% for the 120 s deadline). This was expected, as they did
not make decisions based on the deadlines of jobs. Furthermore, the longer the deadline
is, the more jobs are successfully executed. The algorithm with the lower values was
NAS, which was between 27% and 48% worse than any configuration of IPA for the 100 s
deadline, and between 50% and 65% for the 120 s deadline. One reason for this behavior
is that, although it uses the status of the network to make scheduling decisions, it does
not calculate predictions for the completion times of jobs. In contrast, CA-Net tries to
distribute the workload among all the nodes, regardless of their actual use of resources.
Recall that, in CA-Net, jobs require labeling, which is performed by the client application;
in our experiments, all of the jobs were labeled as requiring high network use.

Figure 5. Percentage of successfully executed jobs for each deadline, out of the submitted jobs.
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Next, we present the percentage of accepted jobs that were successfully executed for
each deadline, as shown in Figure 6. This is the main statistic illustrating the success of the
IPA proposal when providing QoS to applications deployed in the cluster, as this statistic
indicates the correctness of a decision to accept a job.

It can be seen that, for the tightest deadline (60 s), few jobs could be successfully
executed for all the algorithms (the best being IPA-E, with less than 10% of successful
jobs), leading to poor QoS. For all the IPA configurations, too tight deadlines affected them
heavily, as it cannot calculate predictions on future pods—IPA can only calculate predictions
for future jobs when a minimum number of previous jobs are successfully executed.

For the 100 s deadline, IPA-O and IPA-E obtained the best results: between 26%
and 39% better than the other configurations of IPA, more than 35% better than CA-Net,
and more than 70% better than NAS. IPA-N presented similar results as CA-Net, while the
worst results came from NAS. The results from CA-Net suggested that the mere labeling
of applications as high or low consumers of a resource is not enough to provide QoS,
as deadlines of applications are not considered at all. As IPA-N and NAS gave the worst
results, this suggests that using the network alone to perform scheduling does not provide
QoS to applications; even though, in this case, real measurements of the status of the
network were used, instead of relying on the labeling of applications.

For the 120 s deadline, all the configurations of IPA outperformed the other proposals.
There were slight differences between IPA-O, IPA-N, and IPA-B, which were around 15%
better than CA-Net and almost 50% better than NAS. The best results were obtained using
IPA-E, which showed 100% of succeeded jobs. Recall that IPA-E was able to schedule all the
jobs and, so, all the jobs submitted to the system were successfully executed within their
deadline, for the 120 s deadline, with this configuration. This was the only configuration
that could meet the deadline of all the jobs submitted to the system, and it can be concluded
that IPA-E provided an optimal solution in this scenario, being the only proposal that could
achieve this.

For IPA-N, almost 15% of jobs were not executed within their deadlines. This high-
lights the fact that the network alone is not a good candidate to make scheduling decisions.

Figure 6. Percentage of successfully executed jobs for each deadline, out of the accepted jobs.
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In order to better understand these results, a final statistic is presented: the allocation
of jobs to nodes. This is presented in Figure 7. This is only presented for the 120 s deadline,
as the most noticeable differences were found for it. It can be seen that, for IPA-E, all
the nodes executed a similar number of jobs, in the same way, as CA-Net. However,
as presented above, IPA-E presented better results, regarding successfully executed jobs,
than CA-Net (more than a 30% increase). These better results originate from the way that
IPA-E tries to balance jobs between nodes, as it calculates a quality involving the network
and the jobs already running in a node, while CA-Net tries not to submit two jobs of the
same type to the same node. Considering that all the jobs were of the same type (all of them
involving heavy use of the network), CA-Net chose nodes almost at random all the time.

Figure 7. Jobs executed in each node, for the 120 s deadline.

6. Conclusions and Future Work

Fog computing has arisen in recent years, providing a more suitable solution than
cloud computing when there are time restrictions for the processing of large data sets, such
as those found in IoT applications. There are a number of open challenges in such fog
and IoT ecosystems, one of them being the development of new scheduling algorithms
for the efficient use of fog resources. In this context, this paper presented a scheduling
algorithm for fog computing which has the following main features: First, it was designed
to provide Quality of Service (QoS) to applications; which, in our case, involves executing
those applications within a deadline. Second, it makes scheduling decisions while taking
into account the status of the network. Third, it calculates estimates for the completion
time of jobs. The proposed scheduler, named the IPerf Algorithm (IPA), was implemented
as an extension to the Kubernetes default scheduler. Several variations of IPA were tested,
in which the weights of different parameters varied, and compared with different proposals
from the literature. For the highest deadline, when IPA makes decisions considering the
network and the jobs already running as having equal importance (i.e., IPA-E), it can
successfully execute all the jobs submitted to the system within their deadlines, providing
at least a 30% increase over the other proposals from the literature.

This work provides a number of contributions. First, it was shown that the scheduling
algorithm plays an essential role in QoS provision. Second, we demonstrated that the
network status information should be taken into account when performing scheduling
but always combined with other parameters. Third, estimates of the completion time of
jobs should be calculated, in order to decide whether a job can be executed within its
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deadline. Fourth, we proposed a scheduling algorithm called IPA, and found that one of
its configurations—called IPA-E—can provide an optimal solution for one of the tested
scenarios; making it the only scheduling algorithm that could achieve an optimal solution
in any of the tested scenarios.

As for future work, improvements to IPA can be implemented, which may involve,
among others, calculating predictions in a more efficient way, and include concepts from
autonomic computing in order to improve the accuracy of the predictions, in the same way
as [27]. Furthermore, scheduling in advance is another interesting concept, such that jobs
are submitted to the system and scheduled some time before the start of their execution,
in the same way as [28]. Also, the use of other network metrics such as loss, latency and
jitter are considered for future work, along with the construction of detailed profiles for
applications taking into account their CPU and memory consumption.
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