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SUMMARY

Differences in the growth and maturation of diverse forebrain tissues depend on region-specific tran-

scriptional regulation. Individual transcription factors act simultaneously in multiple regions that

develop very differently, raising questions about the extent to which their actions vary regionally.

We found that the transcription factor Pax6 affects the transcriptomes and the balance between pro-

liferation and differentiation in opposite directions in the diencephalon versus cerebral cortex. We

tested several possible mechanisms to explain Pax6’s tissue-specific actions and found that the pres-

ence of the transcription factor Foxg1 in the cortex but not in the diencephalon was most influential.

We found that Foxg1 is responsible for many of the differences in cell cycle gene expression between

the diencephalon and cortex and, in cortex lacking Foxg1, Pax6’s action on the balance of proliferation

versus differentiation becomes diencephalon like. Our findings reveal a mechanism for generating

regional forebrain diversity in which one transcription factor completely reverses the actions of

another.
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INTRODUCTION

The mechanisms that create the brain’s enormous inter-regional diversity of structure and function remain

poorly understood. Early in embryogenesis, the anterior neural plate is patterned by the regional expres-

sion of transcription factors whose actions are essential for each part to acquire its correct size and cellular

composition. These transcription factors are sometimes referred to as ‘‘master regulators’’ or ‘‘selectors’’ to

reflect their powerful ability to control the hierarchies of gene expression that specify region-specific

growth and identity (Allan and Thor, 2015). Although some transcription factors are expressed in discrete

regions of the central nervous system, many of them do not instruct the development of unique regions but

are expressed simultaneously in multiple regions whose morphologies and functions develop very differ-

ently. This raises questions about the degree to which the actions and mechanisms of action of individual

transcription factors vary between different brain regions. Does a transcription factor regulate a particular

process, such as cell proliferation, similarly in all regions? To what extent and how are its actions modified

by the context in which it is expressed?

The transcription factor Pax6 is expressed simultaneously by large populations of progenitors in bothmajor

components of the forebrain, the telencephalon (rostrally) and the diencephalon (caudally) (Stoykova and

Gruss, 1994). During this time, the telencephalon expands much more than the diencephalon, which it en-

gulfs as it forms the cerebral cortex dorsally and the basal ganglia ventrally. The diencephalon forms the

thalamus (Th) and prethalamus (PTh), which process and transmit signals to and from the overlying cortex.

Pax6 regulates the proliferation of cortical cells by limiting the rate at which progenitors progress through

the cell cycle. Pax6 deletion promotes a higher rate of proliferation of cortical radial glial progenitors

(RGPs), whereas the opposite occurs if Pax6 is overexpressed within a physiological range (Georgala

et al., 2011a, 2011b; Manuel and Price, 2005; Mi et al., 2013). Previous studies have shown that Pax6 is

required for normal thalamic and prethalamic development (Stoykova et al., 1996; Warren and Price,

1997), but whether it controls thalamic and prethalamic progenitors in the same way it regulates cortical

RGPs is unknown.

We began by addressing this question. We compared the effects of acute Pax6 deletion on the transcrip-

tomes of cells from embryonic cortex, Th, and PTh and found that the expression levels of genes associated
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Figure 1. Effects of Pax6 Deletion on Transcriptomic Differences between Embryonic Anterior Cortex (ACtx),

Thalamus (Th), and Prethalamus (PTh)

(A–D) Pax6 immunohistochemistry at (A and B) E11.5 and (C and D) E13.5 showing CAGCreER-induced loss of Pax6

throughout the forebrain following tamoxifen administration at E9.5. Ctx, cortex. Scale bar, 0.25 mm.

(E–G) Log2 fold change (LFC) of gene expression between (E) ACtx and PTh, (F) ACtx and Th, and (G) PTh and Th in

controls and CAGCreER Pax6 cKOs. Positive values indicate enrichment in PTh in (E) and in Th in (F and G). Negative values

indicate enrichment in ACtx in (E and F) and in PTh in (G). Selected genes are labeled in red.

See also Figures S1 and S4 and Tables S1, S2, and S3.
with cell proliferation and differentiation were altered in opposite directions in the cortex and dienceph-

alon. We went on to show that this corresponded with an opposite effect of Pax6 deletion on the balance

between proliferation and differentiation in these two regions. We next explored the mechanisms that

might account for these tissue-specific differences, including the possibility that the actions of Pax6 are

affected by the presence or absence of another high-level transcription factor, Foxg1. Foxg1 regulates

the cell cycles of cortical progenitors, is expressed by all telencephalic (cortical and basal ganglia) cells

including RGPs, but is not expressed by diencephalic cells (Fasano et al., 2009; Kumamoto and Hanashima,

2017; Mariani et al., 2016; Martynoga et al., 2005; Xuan et al., 1995). We first showed that Foxg1 deletion

from cortical cells makes their profile of cell cycle gene expression more diencephalon like. We went on

to test how Foxg1-null cortical cells respond to Pax6 deletion. We found that this caused cell-autonomous

changes that were opposite to those in Foxg1-expressing cortex and similar to those in diencephalic tis-

sues, indicating that the region-specific actions of Pax6 on the balance of proliferation and differentiation

in developing forebrain are Foxg1 dependent.
RESULTS

Quality Control of RNA-Seq Data

We started by using RNA sequencing (RNA-seq) to study the effects of tamoxifen-induced Pax6 deletion on

gene expression in the cortex, Th, and PTh at embryonic day 13.5 (E13.5). We dissected only the anterior

half of the cortex (ACtx), where cortical levels of Pax6 are higher. Administration of tamoxifen at E9.5 to

Pax6fl/fl embryos ubiquitously expressing Cre recombinase from a CAGCreER allele caused Pax6 loss from

E11.5 onward (Figures 1A–1D). These embryos are referred to here as CAGCreER Pax6 cKOs (conditional

knockouts), and they are compared with CAGCreER Pax6fll+ littermate controls, which continue to express

Pax6 in a normal pattern (Figures 1A and 1C). Heterozygosity for Pax6 does not detectably affect forebrain
172 iScience 10, 171–191, December 21, 2018



Pax6 protein levels or the proliferation of Pax6-expressing cells (Figure S1A; Mi et al., 2013). Accurate and

consistent dissection of the Th, PTh, and the ACtx was guided by the DTy54 transgene, which expresses

green fluorescent protein (GFP) under the control of all known Pax6 regulatory elements (Tyas et al.,

2006a). This transgene faithfully reports the levels of Pax6 gene expression in cells in which the endogenous

Pax6 locus can be either normal or null. PTh and ACtx are distinguished by high levels of Pax6/GFP

expression; PTh has a sharp posterior boundary with Th, which expresses Pax6/GFP at lower levels (Figures

S1B–S1E0).

Before RNA-seq, we quality controlled the accuracy and consistency of the separation of PTh and Th using

quantitative real-time PCR (qRT-PCR) to measure the levels of expression ofDlx2, which is highly expressed

in PTh, but not in Th, and Neurog2, which is highly expressed in Th and in only a small proportion of PTh

cells (Figures S2A and S2B). None of the PTh samples included in the analysis contained mRNA forWnt8b,

confirming that they were not contaminated by adjacent eminentia thalami, which isWnt8b-rich (Adutwum-

Ofosu et al., 2016). At least three quality-controlled replicate samples representing each tissue and geno-

type from independent litters were analyzed by RNA-seq. After sequencing, we re-confirmed the accuracy

of our diencephalic dissections by extracting the expression values of several reference genes with well-

characterized differential expression between the PTh and Th. We found low levels of prethalamic markers

(Dlx2, Gsx2 and Ascl1) in both control and cKO thalamic samples (red arrows, Figures S2C, S2E, and S2G)

and low levels of thalamicmarkers (Neurog2,Gbx2, andDbx1) in control and cKO prethalamic samples (red

arrows, Figures S2D, S2F, and S2H). The RNA-seq data is at European Nucleotide Archive; www.ebi.ac.uk/

ena; ENA: PRJEB9747. Principal component analyses (PCA) showed individual samples separating accord-

ing to genotype along the axes of greatest variation in all three tissues (Figure S3).

Major Inter-regional Differences of Gene Expression in Control Embryos

We examined differences between the transcriptomes of ACtx, Th, and PTh in control embryos. Table S1

lists all genes showing significant (adjusted p < 0.05) enrichment in each control tissue over its level in each

of the other two control tissues. There were about 3,000 significant differences between Th and PTh and

about 10,000–11,000 between ACtx and Th or PTh. The expression patterns of genes showing the greatest

inter-regional differential expression are shown in Figure S4. Many encode transcription factors or other

molecules involved in regulating developmental processes. This analysis shows the great divergence in

molecular identities and hence the context in which Pax6 operates in these three regions.

Major Inter-regional Differences of Gene Expression Remain after Pax6 Deletion

We then repeated this analysis on data from CAGCreER Pax6 cKOs to compare the differences between the

transcriptomes of ACtx, Th, and PTh when Pax6 was deleted. The numbers of inter-regional differences

increased to over 4,000 between Th and PTh and to over 12,000 between ACtx and either Th or PTh

(Table S2). We then paired the regions—ACtx with Th, ACtx with PTh, Th with PTh—and calculated differ-

ential expression (in the form of log2 fold changes [LFCs]) between the members of each pair in controls

and in cKOs. For each pair, we plotted control LFCs and cKO LFCs against each other, including all genes

significantly differentially regulated by Pax6 loss in both members of each pair (Figures 1E–1G). The graphs

showed that the vast majority of genes retained the direction of their inter-regional differential expression

in cKOs (i.e., if they were higher in one region in controls, the same was true in cKOs). Exceptions included

Gsx2, which is known fromprevious work to have its normally strong expression in PTh extinguished by Pax6

loss (Caballero et al., 2014), and Dlx family members, which are upregulated in cKO ACtx (Figures 1E and

1F); a full list of exceptions is provided in Table S3. We conclude that Pax6 is not required to maintain the

vast majority of fundamental differences in molecular identity between these forebrain regions.

The Sets of Genes Regulated by Pax6 Vary between Forebrain Regions

We next studied gene expression changes between controls and CAGCreER Pax6 cKOs within each individ-

ual tissue. Table S4 lists, for each tissue, all genes showing significant differential expression between con-

trols and cKOs (adjusted p < 0.05). Figures 2A–2C plots, for each tissue, each gene’s LFC in expression over

its average expression (those with adjusted p < 0.05 in red), and Figure 2D summarizes the numbers of

significantly up- and downregulated genes in cKOs. To explore the lists in Table S4 interactively, visit

Differential Expression at https://pricegroup.sbms.mvm.ed.ac.uk/Pax6_diencephalon/. PTh showed the

greatest number of differentially expressed genes, probably because Pax6 is expressed not only by all pro-

genitors but also by many postmitotic neurons in PTh, whereas it is expressed only by progenitors in the

cortex and Th. This likelihood is supported by the observation that genes showing the largest differential
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Figure 2. The Effects of Pax6 Deletion on the Transcriptomes of Prethalamic, Thalamic, and Anterior Cortical

Cells

(A–C) Scatter plots of log2 fold changes (on the y-axis) versus themean of normalized counts (on the x-axis) in prethalamus

(A), thalamus (B) and anterior cortex (C); red dots indicate statistically significant changes between genotypes (adjusted

p values <0.05).

(D) An overview of the numbers of significantly differentially expressed (DE) genes resulting from Pax6 deletion in each

region.

(E) Venn diagram showing the numbers of significantly DE genes in each region and common to multiple regions.

(F) Heatmap representing the results of hierarchical clustering of RNA-seq data from each sample from control and

CAGCreER Pax6 cKO.

(G–I) The 10 most highly enriched, non-redundant gene ontology (GO) terms with obvious relevance to developmental

processes for up- and downregulated genes in each region.

See also Figures S2 and S3 and Tables S4 and S5.
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expression values in PTh include many encoding ion channels and receptors associated with postmitotic

neurons, whereas these genes showed little or no significant differential expression in ACtx or Th

(Table S4). Quite similar numbers of genes showed significant differential expression in ACtx and Th

(Figure 2D). The numbers of significantly upregulated genes were �40%–60% higher than the numbers

of downregulated genes in both Th and Pth, whereas this ratio was reversed in ACtx.

A surprisingly small number of genes (255 of 5,539) showed significant differential expression across all

three tissues (referred to here as ‘‘commonly deregulated genes’’) (Figure 2E). Forty-five of these genes

were upregulated, and only 12 were downregulated in all three tissues (listed in Table S5). Many of these

57 genes encode molecules implicated in intercellular interactions such as cell adhesion, cell-cell commu-

nication, and axon guidance. For example, proteins involved in Wnt signaling were strongly represented.

Wnt3a,Wnt5a, Lrg4,Wif1, andWls were commonly upregulated, andDkk3 was commonly downregulated.

Among the commonly downregulated genes were two related to retinoic acid signaling: Rlbp1 and

Ripply3. To see the expression levels of any regulated gene in our dataset, visit Gene Expression Plots

at https://pricegroup.sbms.mvm.ed.ac.uk/Pax6_diencephalon/. Interestingly, 8 of the 12 genes that are

commonly downregulated have been reported to be directly regulated by Pax6 (Dkk3, Rlbp1) and/or

show a peak in Pax6 chromatin immunoprecipitation sequencing (ChIP-seq) (Bmpr1b, Cldn12, Dkk3,

Mlc1, Nr2e1, Rypply3, Rlbp1, and Sema3a; references in Table S5). The scarcity of commonly deregulated

genes and the fact that the direction of change of 198 of 255 of them (i.e., whether they were up- or down-

regulated) varied between tissues suggests that Pax6 deletion affects aspects of cortical, thalamic, and pre-

thalamic development in substantially different ways.
Pax6 Loss Affects Gene Expression Profiles Oppositely in Cortex and Diencephalon

To discover global similarities and differences in the inter-regional effects of Pax6 on gene expression, we

carried out distance-based hierarchical clustering on our RNA-seq data. This identified two major clusters

representing samples from the cortex and diencephalon (Figure 2F), suggesting that the reactions of the

two diencephalic tissues, Th and PTh, to Pax6 loss might be more similar to each other than to that of the

cortex.

To predict how Pax6 removal might affect biological processes in ACtx, Th, and PTh and to look for

possible similarities and differences in how these regions respond to the deletion, we first carried out

gene ontology (GO) term enrichment analysis on all genes showing significant differential expression in

each tissue. Figures 2G–2I show the 10 most highly enriched, non-redundant GO terms with obvious rele-

vance to developmental processes for up- and downregulated genes in each tissue. Regarding genes up-

regulated in the cortex, 3 of 10 terms contained ‘‘cell proliferation’’ with one being ‘‘positive regulation of

cell proliferation’’ and 3 of 10 terms contained ‘‘differentiation’’ with one being ‘‘negative regulation of cell

differentiation.’’ Regarding genes downregulated in the cortex, no terms related to proliferation but 2 of

10 terms contained ‘‘differentiation’’ and a further 4 of 10 terms related to processes that occur in differen-

tiating cells, such as ‘‘axonogenesis’’ or ‘‘projection development.’’ By contrast, in diencephalic tissues,

terms including ‘‘differentiation,’’ ‘‘axonogenesis,’’ or ‘‘projection development’’ were associated only

with upregulated genes (5 of 10 in PTh and 4 of 10 in Th), whereas terms related to proliferation were asso-

ciated only with downregulated genes (6 of 10 terms contained ‘‘cell cycle’’ in PTh). Overall, this analysis

suggests that the effects of Pax6 loss on at least some developmental processes are likely to be opposite

in the cortex and diencephalon. Pax6 loss might promote proliferation in the former but promote differen-

tiation in the latter.

We tested this idea further by hierarchically clustering all genes showing significant differential expression

in at least one tissue according to the direction and magnitude of their LFCs across all three tissues (Fig-

ure 3A). Most genes showed LFCs in the same direction in PTh and Th, but in an opposite direction in ACtx.

The dendrogram was cut to produce 14 clusters suitable for GO term analysis. Figure 3A lists highly en-

riched, representative functional terms alongside each cluster (Table S6 contains a complete list of func-

tional terms associated with each cluster). In Clusters 1 and 4, most of the genes showed positive LFCs

in ACtx, but negative LFCs in Th and PTh. These clusters were strongly associated with the GO term

‘‘cell cycle.’’ Cluster 4 contains 21 cell-cycle-related terms with significant enrichment; cell cycle terms

were exclusively enriched in these two clusters and not in others. Trends were opposite in clusters 6–8,

with most genes showing negative LFCs in ACtx but positive LFCs in Th and PTh. These clusters were

strongly associated with GO terms containing or related to ‘‘differentiation.’’ Many genes in clusters 5,
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Figure 3. Pax6 Deletion Has Opposite Effects on the Transcriptomes of Cortical and Diencephalic (Thalamic and

Prethalamic) Cells

(A) Hierarchical clustering of all genes that showed significant differential expression in at least one tissue according to

the direction and magnitude of their log2 fold change (LFC) across all three tissues. The dendrogram is cut to generate

14 clusters, and enriched GO functional terms are listed against these clusters.

(B–E) LFCs of all genes showing significant differential expression (adjusted p < 0.05) in PTh and Th against each other, in

ACtx and PTh against each other, and in ACtx and Th against each other. Genes associated with particular GO terms (‘‘cell

cycle’’ in A, ‘‘neuron differentiation’’ in B, ‘‘axonogenesis’’ in C, and ‘‘Wnt signaling pathway’’ in D) are marked on the plots

(red).

See also Table S6.
6, and 8, which are strongly associated with terms related to differentiation, showed the greatest LFCs in

PTh, in agreement with the continued function for Pax6 in postmitotic neurons in this region. Interestingly,

cluster 8 also showed enrichment for ‘‘Wnt signaling pathway,’’ indicating that this pathway might be up-

regulated specifically in the diencephalon.

Finally, we plotted the LFCs of all genes showing significant differential expression (adjusted p < 0.05) in (1)

PTh and Th against each other, (2) ACtx and PTh against each other, and (3) ACtx and Th against each other

(Figures 3B–3E). Genes associated with particular GO terms (‘‘cell cycle,’’ ‘‘neuron differentiation,’’
176 iScience 10, 171–191, December 21, 2018
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Figure 4. The Effect of Pax6 Deletion on Proliferation and Differentiation in Cortical versus Diencephalic Neurons

Is Opposite and Not Age Dependent

(A–D) Immunohistochemistry for BrdU and Tuj1 on E12.5 cortical (A and B) and diencephalic (C and D) tissues. Boxes show

the areas of quantification. Scale bars, 0.25 mm.

(A0–D0) Same sections as A–D; channel showing Ki67 staining has been separated here for a clearer visualization.

(E and F) High-power details of E12.5 control (E) and CAGCreER Pax6 cKO (F) lateral cortex showing separate channels.

Zoomed boxed areas (E1, E2, F1, F2) show examples of cells attributed to each category in our quantifications (red arrows,

differentiated cells, Brdu+/Tuj1+/Ki67-; green arrows, quiescent G0 state, Brdu+/Tuj1-/Ki67-; white arrows, proliferative

cells, Brdu+/Tuj�/Ki67+). Scale bars, 10 mm.

(G) Analysis of the quantification of proliferation and cell cycle exit indexes in all ages (E11.5, E12.5, E13.5), tissues (lateral

cortex, medial cortex, thalamus, and prethalamus), and genotypes (controls and CAGCreER Pax6 cKO) showed that Pax6

loss produces an increase in proliferation and decrease in cell cycle exit in cortical tissues but the opposite is observed in

diencephalic (thalamus and prethalamus) tissues. The data from all ages, regions, and genotypes were fitted to a

generalized linear mixed model to test the effects of Pax6 inactivation depending on age and tissue. ANOVA was used

with Tukey’s method for multiple pairwise comparisons to obtain test statistics for contrasts in question. Ctx, cortex.

See also Figure S5.
‘‘axonogenesis,’’ and ‘‘Wnt signaling pathway’’) are marked on the graphs (in red). The LFCs of most genes

associated with these and similar GO terms were directly related in Th and PTh (first column of graphs in

Figures 3B–3E). However, the LFCs of large proportions of these genes were inversely related when Th

or PTh were compared with ACtx (second and third columns of graphs in Figures 3B–3E). Selected genes

associated with each function are highlighted in the graphs. For example, the cell cycle gene Ccnd1

(CyclinD1) was significantly downregulated in both Th and PTh but significantly upregulated in ACtx

(Figure 3B). On the other hand, genes associated with differentiation, such as Neurod6 and Rbfox3 (also

commonly known as NeuN), were significantly upregulated in Th and PTh but significantly downregulated

in ACtx (Figure 3C). To identify in these graphs any individual gene or group of genes associated with any

GO term, visit LFC-GO plots at https://pricegroup.sbms.mvm.ed.ac.uk/Pax6_diencephalon/.

These analyses showed that Pax6 deletion caused many genes to alter their expression levels in opposite

directions in cortical versus diencephalic regions. They indicate that many of these oppositely regulated

genes are associated with cell proliferation and differentiation. They suggest that Pax6 loss is likely to pro-

mote proliferation over differentiation in cortex but to have the opposite effect in both diencephalic

regions.
Pax6 Has Opposite Effects on Neurogenesis in Cortex and Diencephalon

We then tested this prediction directly in embryonic brain. As before, we created CAGCreER Pax6 cKOs and

littermate controls by giving tamoxifen at E9.5. We carried out the analysis at three different ages for all

tissues (E11.5, E12.5, and E13.5), thereby allowing for the fact that diencephalic tissues develop slightly

ahead of telencephalic tissues, with neurogenesis starting by E11.5 in the former (Suzuki-Hirano et al.,

2011) and by E12.5 in the latter. We injected a single pulse of the S-phase marker bromodeoxyuridine

(BrdU) 24 hr before collecting tissue for analysis using markers of proliferating cells (Ki67) and differenti-

ating neurons (Tuj1). We counted from two regions of ACtx, one lateral and one medial, and one region

each of Th and Pth (Figures 4A–4D0). We measured the proportions of BrdU+ cells that (1) remained

proliferative (BrdU+, Ki67+, Tuj1�; white arrows in Figures 4E and 4F), (2) had started to differentiate

(BrdU+, Ki67�, Tuj1+; red arrows in Figures 4E and 4F), and (3) were in an intermediate state (BrdU+,

Ki67�, Tuj1�; green arrows in Figure 4E) in ACtx, Th, and PTh of control and Pax6 cKO embryos.

Very few cells were BrdU+, Ki67� and Tuj1� in any condition, and their numbers changed in proportion to

the fraction of differentiated cells (Figure S5). Most likely these cells had only recently entered G0 en route

to undergoing differentiation. As there was no evidence that Pax6 deletion caused their numbers to in-

crease, we decided to combine all BrdU+, Ki67� cells into one group, representing those that had exited

the cell cycle to differentiate.

The data from all ages, regions, and genotypes were fitted to a generalized linear mixed model to test the

effects of Pax6 inactivation depending on age and tissue (Figure 4G). In the cortex, the proportions of

mitotic (BrdU+) cells that remained proliferative (Ki67+) after 24 hr were significantly higher in cKOs than

in controls and the proportions that had exited the cell cycle were significantly lower in cKOs, with the

sole exception of the medial cortex at E12.5, where we detected no significant effect. It appeared that
178 iScience 10, 171–191, December 21, 2018
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Pax6 had less effect in the medial than the lateral cortex at all three ages, which might be explained by the

normally lower levels of Pax6 in medial regions (Figures 1A and 1C). In both Th and PTh, effects of Pax6 loss

were opposite to those in the cortex: the proportions of mitotic cells that remained proliferative after 24 hr

were significantly lower in cKOs than in controls and the proportions that had exited the cell cycle were

significantly higher.

These data also allowed us to compare the states of maturation of tissues of different ages in control

animals. In E13.5 lateral cortex, for example, �45% of mitotic cells had exited the cell cycle during the

last 24 hr. Similar rates of exit are found at E12.5 in Th and are likely to be reached between E11.5 and

E12.5 in PTh. This validates our premise that the range of ages included in these experiments allows com-

parison of the effects of Pax6 at equivalent developmental stages in the three tissues. The effect observed

is therefore tissue specific and not age dependent. The results agree with our prediction from the RNA-seq

experiments that the effects of Pax6 on the balance between proliferation and differentiation are opposite

in the cortex versus diencephalon.

Inter-regional Variation in Pax6 Levels and Exon Usage Do Not Correlate Closely with Its

Function

We next considered possible mechanisms by which Pax6 might regulate the balance between proliferation

and differentiation in opposite directions in cortical and diencephalic regions. The first possibility was that

regional variation in attributes of the transcription factor itself causes it to operate differently in the cortex

and diencephalon. Variation in Pax6’s level and the ratio between its twomajor splice variants might modify

its function (Haubst et al., 2004; Manuel et al., 2006).

Regional variation in levels of Pax6 protein in normal forebrain did not correlate with the effects of Pax6 on

the balance of proliferation versus differentiation. Levels of Pax6 are the highest in PTh and ACtx, which

show opposite changes in proliferation versus differentiation following Pax6 deletion, and are relatively

low in Th, which shows changes in the same direction as PTh (Figures 1A–1D). Regarding alternative

splicing, previous studies have suggested that the two major isoforms, Pax6 and Pax6(5a), the latter con-

taining an additional 14 amino acids inserted into the paired domain, affect gene expression differently

(Chauhan et al., 2004; Haubst et al., 2004; Pinson et al., 2005). We used our RNA-seq data to compare

exon 5/5a usage in control ACtx, Th, and PTh (Figure S6). In each sample, we measured the average

coverage across exons 5 and 5a and found that the only significant difference was an �2-fold difference

in the 5/5a ratio between ACtx and PTh, with the ACtx having higher relative counts for exon 5a and there-

fore a lower 5/5a ratio. As with Pax6 levels, variation in relative levels of exon 5/5a usage did not correlate

closely with the effects of Pax6 on the balance of proliferation versus differentiation. Pax6 is pro-prolifera-

tive in both Th and PTh and the opposite in ACtx, whereas the exon 5/5a ratio differed significantly between

ACtx and only one of the diencephalic regions. Although regional differences in the exon 5/5a ratio might

play a role, on their own they are unlikely to explain regional differences in Pax6 action on the balance of

proliferation and differentiation. We went on to consider further possible mechanisms.

Pax6 Loss Causes Canonical Wnt Signaling Deregulation

We then considered the possibility that Pax6 might affect the balance between proliferation and differen-

tiation in opposite directions in the cortex and diencephalon because of its differential effects on intercel-

lular signaling. We examinedWnt signaling, because the aforementioned results identified it as a GO func-

tion that is regulated differentially between the cortical and diencephalic regions (Figure 3).

A number of genes involved in Wnt signaling were commonly deregulated across all three tissues, some-

times in different directions but sometimes in the same direction. Lrp1, which encodes low-density lipopro-

tein receptor-1, a potential negative regulator of canonical Wnt signaling (Willnow et al., 2007; Zilberberg

et al., 2004), was upregulated in Th and PTh but downregulated in ACtx (Figure 3E). These changes

correlated with regional differences in the effects of Pax6 on the balance of proliferation versus differenti-

ation, whereas the others did not. Wnt3a and Wnt5a were upregulated across all three regions. The Wnt

antagonists Sfrp2 and Dkk3 were strongly downregulated in prethalamic progenitors but were unaffected

in Th, where their levels are normally very low (Figures 5A–5G). Sfrp2 and Dkk3 were significantly downre-

gulated in ACtx, although their expression domains are limited mainly to extremely lateral cells around the

pallial-subpallial boundary and medially at the cortical hem, respectively (Figures 5B, 5C, 5F, and 5G; Kim

et al., 2001).
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Figure 5. Pax6-Loss-Induced Changes in Canonical Wnt Signaling in the Forebrain

(A and H) Box and whisker plots showing data from RNA-seq of reads per kilobase of transcript per million mapped reads

(RPKM) for Sfrp2, Dkk3, Lef1, and Axin2 in ACtx, PTh, and Th from control and CAGCreER Pax6 cKOs. Significance was

tested by ANOVA followed by post-hoc Tukey comparison.

(B–E) In situ hybridization for Sfrp2 combined with immunohistochemistry for Pax6 in controls (B and D) and Pax6 cKOs

(C and E) showing the drastic reduction of Sfrp2 in the prethalamic ventricular zone. Green arrows in B indicate Sfrp2+

cells at the pallial-subpallial boundary.

(F and G) In situ hybridization for Dkk3 showing a general downregulation in Pax6 cKOs (G) with respect to controls (F).

(I–P) In situ hybridization in E13.5 control (I, K, M, andO) andCAGCreER Pax6 cKOs (J, L, N, and P) detected an upregulation

of the Wnt signalling readout Lef1, close to the ventricular zone of the prethalamus (compare O and P). Scale bars:

0.25 mm in (B, C, F, G, and I–L) and 0.1 mm in (D, E, and M–P).
To see if the changes in expression of individual Wnt pathway genes produced a net effect that correlated

with regional differences in the effects of Pax6 on the balance of proliferation versus differentiation, we

examined the expression of two bona fide readouts of the Wnt canonical pathway, Lef1 and Axin2 (Figures

5H–5P). Both genes were significantly upregulated in PTh and Lef1 was upregulated in Th, but neither gene

was significantly altered in ACtx.
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These analyses suggest that the effects of Pax6 loss on canonical Wnt signaling are largely restricted to the

diencephalon, where the effects were greatest in PTh. These changes would likely affect the behaviors of

diencephalic progenitors, whereas they do not provide a clear explanation for the effect of Pax6 loss on

cortical progenitors. We went on, therefore, to explore other factors that might be important for explaining

the nature of Pax6’s cortical effect.
Foxg1-Null Cortex Develops a Diencephalon-like Profile of Cell Cycle Gene Expression

We next examined the possibility that Pax6 operates differently in the cortex because another transcrip-

tion factor in this tissue moves the transcriptomes of cortical cells away from those of diencephalic cells,

thereby altering the context within which Pax6 operates, thus modifying its actions. We postulated that

such a factor should be present in the cortex and not the diencephalon and that it should not be regu-

lated by Pax6. Transcripts for transcription factor Foxg1 showed the highest log2 fold enrichment be-

tween ACtx and Th (11.67) and the third highest between ACtx and PTh (9.57) (Table S1; Figure S4Y).

Foxg1 is co-expressed with Pax6 by cortical progenitors and is an important positive regulator of their

cell cycles (Martynoga et al., 2005; Vezzali et al., 2016; Xuan et al., 1995; Yip et al., 2012). Our RNA-

seq data showed that its cortical expression is only marginally downregulated following Pax6 removal

(LFC = �0.207; adjusted p = 0.0190), a change that was not visible in cortical sections (Figures 6A and

6B). Levels of Foxg1 protein and its nuclear distribution in cortical cells appeared unaltered by Pax6

loss (Figures 6D–6F). We hypothesized, therefore, that Foxg1 might modify the molecular context within

which Pax6 operates and therefore its actions.

We first tested whether differences between the transcriptomes of cortical and diencephalic cells are

created by Foxg1’s presence in the cortex. We used RNA-seq to test whether Foxg1 deletion from the cor-

tex moved its profile of gene expression toward that of diencephalic tissues. We gave tamoxifen at E9.5 to

induce cortex-specific deletion of Foxg1 (Emx1CreER; Foxg1fl/fl, referred to here as Foxg1 cKO; the Foxg1fl

allele was from Miyoshi and Fishell, 2012). This caused loss of Foxg1 from almost all cortical cells by E13.5

(Figures 6C and 6G). We carried out RNA-seq in E13.5 control (Emx1CreER; Foxg1fl/+) and Foxg1 cKO

cortices (in these experiments the entire cortex was used). Five replicate samples for controls and cKOs

from independent litters were sequenced. The raw data can be obtained from the European Nucleotide

Archive (www.ebi.ac.uk/ena; ENA: PRJEB21349 ).

PCA showed that data from individual samples clustered by genotype along the axis of greatest variation

(Figure S7A). Table S7 lists all genes with significant differential expression in Foxg1 cKOs (adjusted p <

0.05), and the numbers of up- and downregulated genes are shown in Figures S7B and S7C. The list of

downregulated genes showed high enrichment for functional terms related to cell cycle and mitosis

(Table S8), consistent with the fact that Foxg1 is a regulator of cortical proliferation (Martynoga et al.,

2005; Xuan et al., 1995). This effect is unlikely to be mediated by an effect of Foxg1 on Pax6 levels or

alternative splicing. Pax6 levels were only marginally decreased at the RNA level (LFC = �0.18; adjusted

p = 0.007), Pax6 protein remained expressed in a normal pattern (Figure S7D), and there was no significant

effect of Foxg1 deletion on the relative usage of Pax6’s exons 5 and 5a (Figures S7E and S7F). We conclude

that both Foxg1 and Pax6 operate largely independently with only very limited effects of either gene on the

expression of the other.

To find out whether Foxg1 shifts the context within which Pax6 operates toward that in diencephalic tis-

sues, we compared RNA-seq data from the cortex of Foxg1 cKOs with those from control cortex, Th, and

PTh. Control cortical data were from the five samples obtained as controls for the Foxg1 cKOs and the

three samples from ACtx obtained as controls for the CAGCreER Pax6 cKOs. Control thalamic and pretha-

lamic data were from the samples obtained as controls for the CAGCreER Pax6 cKOs. We carried out dis-

tance-based hierarchical clustering including specifically those genes annotated by the ‘‘cell cycle’’ GO

term that were significantly deregulated in the Foxg1 cKO. All eight control cortical samples clustered

together and separated not only from control diencephalic samples but also from Foxg1-null cortical

samples (Figure 6H; Table S9 lists the genes included in this analysis). Control diencephalic samples

were clustered with Foxg1-null cortical samples. Only at the third level in the dendrogram did Foxg1

cKO cortical samples separate from Th control samples. PCA using the same set of genes revealed

the same trend: Foxg1-null cortical samples, but not control cortical samples, clustered with samples

from control Th and PTh along the axis of maximum variation, which represented 77% of the variance

(Figure 6I). We repeated the same clustering experiments with sets of genes annotated by other GO
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Figure 6. Foxg1 Deletion in the Embryonic Cortex Makes Its Profile of Expression of Cell Cycle Genes

Diencephalon Like

(A–C) In situ hybridizations showing Foxg1 telencephalic expression in (A) control, (B) Emx1CreER Pax6 cKOs, and (C)

Emx1CreER Foxg1 cKOs at E13.5. GE, ganglionic eminence. Scale bar, 0.2 mm.

(D–G) Immunohistochemistry showing Foxg1 protein expression in (D) control telencephalon, (E) control cortex, (F)

Emx1CreER Pax6 cKO cortex, and (G) Emx1CreER Foxg1 cKO telencephalon at E13.5. Scale bars: 0.2 mm in (D and G) and

0.05 mm in (E and F).

(H) Heatmap of hierarchical clustering of RNA-seq data on genes annotated by the ‘‘cell cycle’’ GO term (GO:0007049)

that were significantly deregulated in the Foxg1 cKO. Data are from samples of control cortex, control ACtx, control PTh,

control Th, and Emx1CreER Foxg1 cKO cortex.

(I) Principal component (PC) analysis on the same RNA-seq data as in (H).

See also Figures S7 and S8 and Tables S7, S8, and S9.
terms, but none showed the same separation as observed for cell cycle genes (examples are shown in

Figure S8).

These results suggest that the deletion of Foxg1 from the cortex shifts the profile of expression of genes

whose actions are related to the cell cycle closer to that of normal diencephalic tissues. We then went on to

test whether this shift alters the way in which cortical cells respond to Pax6 by asking whether Pax6 deletion

from Foxg1�/� mutant cortex causes a response closer to that observed when Pax6 is lost from the wild-

type diencephalon.
Foxg1 Alters Pax6’s Effect on Expression of an Important Cell Cycle Regulator

Before testing whether the presence of Foxg1 in the cortex modifies the effects of Pax6 on the balance be-

tween proliferation and differentiation, we sought molecular evidence for whether this was likely. We first
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Figure 7. Foxg1 Deletion in the Embryonic Cortex Reverses Effects of Pax6 Deletion

(A) Log2 fold changes (LFCs) of all genes showing significant regulation by both Pax6 (data from CAGCreER Pax6 cKOs) and

Foxg1 (data from Emx1CreER Foxg1 cKOs). Red dots mark cell-cycle-associated genes.

(B) Genes associated with the cell cycle regulated in opposite directions in CAGCreER Pax6 cKOs versus Foxg1 cKOs; any

significant changes following Pax6 removal from Th or PTh are indicated.

(C) Box and whisker plots of RPKM for Ccnd1 in ACtx, PTh, and Th from E13.5 control and CAGCreER Pax6 cKOs.

Significance was tested by ANOVA followed by post-hoc Tukey comparison.

(D–I) In situ hybridizations showing expression of Ccnd1 in the forebrains of E13.5 (D–F) controls and (G–I) CAGCreER Pax6

cKOs. Scale bars: 0.25 mm in (D and G), 0.2 mm in (E and H), and 0.05 mm in (F and I).

(J–M) In situ hybridizations showing expression of Ccnd1 in the forebrains of E13.5 (J, K, and M) Emx1CreER Foxg1 cKOs

and (L) Emx1CreER Foxg1 Pax6 cKOs. Scale bars: 0.25 mm in (J and L) and 0.05 mm in (K and M).

(N) Quantitative RT-PCR for Ccnd1 in E13.5 cortex of Emx1CreER Foxg1 cKOs and Emx1CreER Foxg1 Pax6 double cKOs.

Means G SEMs; n = 3 for each genotype; p < 0.05 Student’s t test.

See also Table S10.
focused on those genes that were regulated by both Pax6 and Foxg1 obtained from the intersection of our

RNA-seq data from Pax6 cKOs and Foxg1 cKOs. We identified 678 genes whose cortical expression was

regulated by both Pax6 and Foxg1. These genes are listed in Table S10, and their average LFCs in Pax6

cKO and Foxg1 cKO are plotted against each other in Figure 7A.
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Pax6 and Foxg1 regulate many of these genes in the same direction. Included in this group are many down-

regulated genes with roles in cortical neurogenesis and differentiation, such as Neurog1, Neurod2,

Neurod4, and Satb4. Pax6 and Foxg1 might act synergistically to promote the expression of these genes

and drive neuronal precursors toward differentiation. Among the genes upregulated by either Pax6 or

Foxg1 deletion, we found genes involved in signaling (Wls, Bmp2, Bmp5, Wnt3a, or Wnt8b) and several

encoding transcription factors (Arx, Pax7, Zic3, or Sp5) (see Table S10). Pax6 and Foxg1 regulated others

in opposite directions, and we focused on these genes for our subsequent analyses. We argued that this

group would be the one most likely to include genes whose regulation by Pax6 is reversed by Foxg1.

Of the genes whose expression was deregulated in opposite directions by cortical deletion of Pax6 or

Foxg1, 15 had GO annotations relating them with cell cycle control (red dots in Figure 7A). These genes

are listed in Figure 7B along with the direction of their expression change when either Pax6 or Foxg1

was removed from each region. Seven of these genes showed directions of change in CAGCerER Pax6

cKOs that were opposite in ACtx versus Th and/or PTh. These gene expression changes, individually or

collectively, might make a significant contribution to changing the balance between proliferation and

differentiation in opposite directions in cortex versus the diencephalon after Pax6 deletion.

One of these genes was the cell cycle regulator Ccnd1, which we took as an exemplar of the principles

outlined above. In our RNA-seq data, Ccnd1 showed significant Pax6-loss-induced differential expression

in opposite directions in the cortex (upregulated) and diencephalon (downregulated in both Th and PTh)

(Figure 7C). These changes can be seen with in situ hybridization in Figures 7D–7I. Ccnd1 is a G1 phase

cyclin, which promotes entry into S-phase and hence cell cycle progression over cell cycle exit in many

systems and cell types. Several previous studies have shown that altering its expression levels in the em-

bryonic cortex alters the balance between proliferation and differentiation (Artegiani et al., 2011; Fergu-

son et al., 2000; Kollmann and Sexl, 2013; Lange et al., 2009; Matsushime et al., 1994; Morgan, 1997; Pilaz

et al., 2009; Zerjatke et al., 2017). In the light of these findings, we studied changes in Ccnd1 expression

further because they were likely to be good predictors of cellular responses to Pax6 removal in different

contexts.

To test whether Foxg1 affects the actions of Pax6 on Ccnd1 expression, we tested the effect of deleting Pax6

from Foxg1-null cortex. We generated Emx1CreER;Foxg1fl/fl and Emx1CreER;Foxg1fl/fl;Pax6fl/fl embryos and

induced deletion of Foxg1 or both Pax6 and Foxg1 by tamoxifen administration at E9.5 to produce embryos

referred to here as Foxg1 cKOs or Pax6;Foxg1 dcKOs (double cKOs), respectively. Both Pax6 and Foxg1 protein

were deleted from all but themost lateral cells of the cortex, where Emx1 is not expressed, by E13.5 (Figures 6C,

6G, 8I, and 8I0; see also Mi et al., 2013). Ccdn1 expression was significantly reduced in Foxg1 cKO cortex

(Table S7), whereas the levels were even lower following Pax6 co-deletion (Figures 7J–7N). This Pax6-loss-

induced change was opposite to the one that occurs following Pax6 removal from the cortex that expresses

Foxg1. It was in the same direction as occurs in Th and PTh following Pax6 loss.

Altogether, these results increased the likelihood that Pax6’s effects on the balance of proliferation versus

differentiation in the cortex are Foxg1 dependent. We went on to test the hypothesis that in cortex lacking

Foxg1, Pax6’s effects would be more like those normally seen in the diencephalon.
Absence of Foxg1 Alters the Cellular Response of Cortex to Pax6 Removal

We first counted the proportions of cortical cells that were proliferative (Ki67+) in E13.5 control, Pax6 cKO,

Foxg1 cKO, and Pax6;Foxg1 dcKO embryos (Figures 8A–8E). We found that, in contrast to the conse-

quences of removing Pax6 from normal Foxg1-expressing cortex (Figures 4, 8A, and 8B), removing Pax6

from Foxg1�/� mutant cortex caused a significant reduction in the proportion of proliferating cells (Fig-

ure 8E; Student’s t test, p = 0.02). This response was opposite to that of Foxg1-expressing cortex and in

the same direction as that of Th and PTh (Figure 4).

We then tested the effect of Pax6 deletion from Foxg1-null cortex on the production of Tbr1-expressing

cells. Tbr1 marks cortical cells as they transition from a proliferative progenitor state to a postmitotic

neuronal state (Englund et al., 2005). In our RNA-seq data, Tbr1 levels were significantly reduced in cortical

Pax6 cKOs (Table S2), fitting with the shift to proliferation. This was also clear with immunohistochemistry

(Figures 8F–8H). Here we compared the effects of Pax6 removal from Foxg1-null versus Foxg1-expressing

cortical cells on their production of Tbr1+ cells at E15.5.
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Figure 8. Foxg1 Deletion in the Embryonic Cortex Reverses the Effects of Pax6 Deletion on the Balance of

Proliferation versus Differentiation

(A–D) Immunohistochemistry of Ki67+ cells in the cortex of E13.5 (A) controls, (B) CAGCreER Pax6 cKOs, (C) Emx1CreER

Foxg1 cKOs, and (D) Emx1CreER Foxg1 Pax6 cKOs. Boxes show the areas selected for quantification. Scale bar, 0.25 mm.

(E) Quantifications of Ki67+ cells in the cortex of E13.5 controls, CAGCreER Pax6 cKOs, Emx1CreER Foxg1 cKOs, and

Emx1CreER Foxg1 Pax6 cKOs. Means G SEMs; n = 3 for each genotype; p < 0.05 Student’s t test.
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Figure 8. Continued

(F–H) Immunohistochemistry for Tbr1 and Foxg1 in (F) control and (G and H) CAGCreER Pax6 cKO at E15.5. Scale bars,

0.05 mm.

(I and I0) Immunohistochemistry for Pax6 and Foxg1 on the same section of E13.5 Emx1CreER Foxg1 Pax6 double cKO

telencephalon. Arrows show that small numbers of cells in the cortex retained Foxg1 but not Pax6. Scale bars, 0.2 mm.

(J–M’) Immunohistochemistry for Foxg1 and Tbr1 on E15.5 Emx1CreER Foxg1 Pax6 double cKOs showing that most

neurons expressing Foxg1 do not express Tbr1 and vice versa (K–M’). Box in J is shown in (K and K’). Scale bars: J, 0.05mm;

(K–M)’, 0.025mm.

(N–P) Immunohistochemistry for Foxg1 and Tbr1 on E15.5 Emx1CreER Foxg1 single cKOs showing that most neurons

expressing Foxg1 also express Tbr1 (O,O’, see double labelled cells in P). Box in N is shown in O,O’. Scale bars: N,

0.05mm; O–P, 0.01mm.
We observed that in some E13.5 and E15.5 Foxg1 cKOs and Pax6;Foxg1 dcKOs, small clusters of cells

continued to express Foxg1 protein. These clusters comprised only a few cells in the ventricular zone at

E13.5 (Figure 8I) but were larger by E15.5 (Figures 8J–8P), as expected because their failure to delete

Foxg1 would enhance their proliferation relative to Foxg1�/� cells. Foxg1+ clusters in Pax6;Foxg1 dcKOs

did not express Pax6 (arrows in Figures 8I, and 8I0), suggesting that the floxed Pax6 allele deleted more effi-

ciently than the floxed Foxg1 allele. This mosaicism allowed us to compare how the presence or absence of

Foxg1 in neighboring cortical cells affected their response to Pax6 deletion.

In clusters that retained Foxg1 expression in E15.5 Pax6;Foxg1 dcKOs (i.e., single Pax6 cKO cells), only a

small percentage of cells expressed Tbr1 (12% G 3 SD). These had reached the outermost layer of the

cortical plate (Figures 8J–8M), agreeing closely with the pattern and proportions of Tbr1-expressing cells

(11% G 2 SD) seen in E15.5 Pax6 single cKO embryos (Figures 8G and 8H). On the other hand, the majority

(59% G 7 SD) of cells that were null for both Pax6 and Foxg1 in dcKOs expressed Tbr1, indicating that

neuronal differentiation was much more advanced in this population. To confirm that the differential

outcome between Foxg1-positive and Foxg1-negative cells was a consequence of Pax6 removal, we

compared clusters of Foxg1-positive and Foxg1-negative cells in Foxg1 single cKOs, in which Pax6 expres-

sion was normal. In these embryos, large proportions of both Foxg1-positive and Foxg1-negative cells

throughout the cortical plate were Tbr1 positive (Figures 8N–8P).

These results indicate that although Pax6 normally promotes differentiation over proliferation in embryonic

cortex, this effect is Foxg1 dependent. If Foxg1 is absent, Pax6 promotes cortical cell cycle progression,

and Pax6 removal is anti-proliferative and pro-differentiative.
DISCUSSION

Previous studies on non-neural cells from the lens of the eye, b-cells of the pancreas, and neural cells from

the forebrain have reported that Pax6 has partially overlapping effects on the transcriptomes of these high-

ly divergent Pax6-expressing cell types (Mitchell et al., 2017; Sun et al., 2015; Xie et al., 2013). How the mo-

lecular actions of Pax6 compare between subdivisions of the forebrain was not clear. In this study, we first

explored the differences between the transcriptomes of embryonic cortical and diencephalic (thalamic and

prethalamic) cells in control brains and in brains from which Pax6 had been deleted. In controls, there were

many more differences between cortical and diencephalic cells (from either Th or PTh) than between

thalamic and prethalamic cells. The gene expression changes that Pax6 deletion introduced within cortex

were substantially different from those in the diencephalic tissues.

We found that whereas Pax6 regulates the balance between proliferation and differentiation in all three

forebrain regions, it affects this process in opposite directions in cortex versus diencephalon. When we

tested possible mechanisms to explain this, we found that the presence of Foxg1 in the cortex is a major

factor. In vertebrates, the presence of Foxg1 protein is a hallmark of telencephalon (Kumamoto and Hana-

shima, 2017), the anteriormost part of the developing forebrain, which gives rise to the cerebral cortex

dorsally and basal ganglia ventrally. Its expression is restricted to the telencephalic anlage in the anterior

neural plate as this region folds, closes, and expands. It is present in the nuclei of telencephalic progenitors

and affects their proliferation, maintaining a normal rate of cell cycle progression and preventing their exit

from the cell cycle (Martynoga et al., 2005; Xuan et al., 1995). Its ability to bind DNA is required for it to keep

progenitors in a proliferative state (Hanashima et al., 2002). This requirement is cell autonomous, as evi-

denced by our previous work on the cortex of Foxg1�/�;Foxg1+/+ chimeras showing that abnormalities
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of proliferation occur in Foxg1-null cells even if they are surrounded by wild-type cells (Manuel et al., 2011).

Foxg1 is highly conserved not only in vertebrates but also in invertebrates that lack a telencephalon (Bre-

denkamp et al., 2007). In invertebrates, Foxg1 or its homologs are expressed in, and have an instructive role

in the development of, cells situated anteriorly in the developing nervous system (Grossniklaus et al., 1994;

Pani et al., 2012; Toresson et al., 1998). It is likely that the acquisition of Foxg1 by anterior neural tissue has

been an important driver of this region’s evolutionary expansion.

Like Foxg1, Pax6 is highly conserved across the animal kingdom and is essential for normal anterior neural

development in both invertebrates and vertebrates (Manuel et al., 2015; Yuan et al., 2016). Unlike Foxg1,

however, Pax6 promotes exit from the cell cycle in the mammalian cerebral cortex. On the face of it, this

seems paradoxical because it would limit the production of progenitors and hence, ultimately, the

numbers of neurons in a structure, one of whose major defining features is its rapid evolutionary

expansion. It is conceivable that Pax6 actually evolved as a promoter of cell cycle re-entry, a feature

that it demonstrates in the diencephalon, but that the superimposition of Foxg1 expression in the telen-

cephalon has had the effect of reversing this activity. In a context where Foxg1 is generating a powerful

drive to cell cycle re-entry, Pax6, although possessing the potential to promote proliferation, might

have become a brake to Foxg1’s drive, preventing the counterproductive retention of large numbers of

cells in a progenitor state.

More broadly, the effects of the transcription factor Pax6 on the cell cycle are far from clear. For example, its

role in different tumor cell types is contradictory. It has been shown to have both oncogenic and tumor sup-

pressor effect depending on the tissue affected (Hegge et al., 2018; Muratovska et al., 2003; Zhang et al.,

2015; Zhou et al., 2005). Here we show one mechanism by which this versatile transcription factor can con-

trol the cell cycle in opposite ways, depending on the presence or absence of another important transcrip-

tion factor. This might be important for determining the nature of Pax6’s role in different tumor types.

How the expression of Foxg1 leads to a reversal of Pax6’s actions on proliferation is likely to be complex,

with some or all of a number of possible mechanisms operating. Pax6 and Foxg1 might converge directly

on the same downstream cell cycle genes to regulate their expression. For example, ChIP-seq studies on

Pax6 and Foxg1 have shown that both transcription factors can bind genomic regions likely to regulate the

expression of cell cycle regulators including Ccnd1 (Bulstrode et al., 2017; Sun et al., 2015). In the absence

of Foxg1, Pax6 binding might activate expression of genes such as Ccnd1 that promote cell cycle re-entry.

Pax6 binding might have an opposite effect if Foxg1 is present because Pax6 binding, although pro-pro-

liferative, might interfere with a potentially more powerful pro-proliferative effect of Foxg1 binding, result-

ing in an inhibition of cell cycle re-entry. In other words, removal of Pax6 might allow Foxg1 freer rein to

drive proliferation. This could occur through direct competition between Pax6 and Foxg1 for binding, a

phenomenon observed in other systems (Hong and Wu, 2010; Ilsley et al., 2017; Ngondo-Mbongo et al.,

2013; Norton et al., 2017; Wan et al., 2011; Zabet and Adryan, 2013). Another possibility is that, in common

with other Fox transcription factors, Foxg1 might be a chromatin remodeling (or pioneer) transcription fac-

tor that opens the chromatin to allow proteins such as Pax6 to access sites that they would not otherwise be

able to bind, thereby changing its function (Golson and Kaestner, 2016; Iwafuchi-Doi and Zaret, 2016;

Magnani et al., 2011). Another possibility is that Foxg1 modifies Pax6’s function by binding to it rather

than to DNA.

Although Ccnd1 emerges as a clear example of a gene that may explain the context-dependent role of

Pax6, it is likely to be just one of a cohort of genes that act as effectors of Pax6 and Foxg1. Genes showing

opposite regulation in cortex versus diencephalon and opposite regulation in cortex after Foxg1 versus

Pax6 loss, such as Chek1 or Ccnc (Figure 7B), could represent good candidates. Fgfr1 emerges as a power-

ful contender to be directly co-regulated by both transcription factors because ChIP-seq data show it has

overlapping peaks for Pax6 and Foxg1 binding in an intronic region (Bulstrode et al., 2017; Sun et al., 2015).

Pax6 and Foxg1 might not converge directly on the same downstream cell cycle genes, rather they might

act on progenitors independently through separate routes. Our data indicate that there are manymore dif-

ferences than similarities in the genes regulated by Pax6 and Foxg1, with both regulating many other tran-

scription factors that have actions on progenitor proliferation. It is possible that these Pax6-and Foxg1-

regulated transcription factors then control the activity of more direct cell cycle regulators. Indeed, given

the breadth of Pax6’s and Foxg1’s actions, it seems likely that multiple mechanisms will need to be invoked

to explain how Pax6 affects the balance of proliferation and differentiation in opposite directions in cortex
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and diencephalon. In the future, it would be interesting to assess the interplay between Pax6 and Foxg1 by

co-misexpression experiments, for example, in neural stem cell culture or by in utero electroporation.

One possibility we considered was that regional variation in an attribute of Pax6 itself, such as its expression

level or its exon usage, might cause it to operate differently in the cortex and diencephalon. Variation in

Pax6’s level and the ratio between its two major splice variants, Pax6 and Pax6(5a), can modify its function

(Chauhan et al., 2004; Haubst et al., 2004; Manuel et al., 2006). We found, however, that regional variation in

levels of Pax6 protein and in the ratio between exon 5/5a usage did not correlate in a straightforward way

with the effects of Pax6 on the balance of proliferation versus differentiation. Previous work has shown that

both Pax6 and its rarer variant Pax6(5a) can suppress proliferation and that the level of suppression is dose

dependent across the cortex (Haubst et al., 2004; Manuel et al., 2006; Mi et al., 2013). Levels of Pax6 are,

however, very high in PTh, where our new evidence indicates that Pax6 promotes proliferation, an effect

that is shared with neighboring Th, where Pax6 levels are relatively low. It is unclear how the �2-fold differ-

ence in exon 5/5a usage between ACtx and PTh, but not between ACtx and Th, might contribute to the

opposite effects of Pax6 on proliferation in ACtx versus both PTh and Th. It is conceivable that the actions

of the two forms might oppose each other in the context of prethalamic cells and that higher levels of Pax6

relative to Pax6(5a) in PThmight promote proliferation in this region, but at present there is no evidence for

or against this possibility.

We also considered the possibility that a differential effect on canonical Wnt signaling might contribute. In

eye development, Pax6 directly and positively regulates the expression of Wnt inhibitors, such as Sfrp1,

Sfrp2, and Dkk1, thereby suppressing canonical Wnt signaling, with absence of Pax6 leading to aberrant

canonical Wnt activity (Machon et al., 2010). In the forebrain, our results indicated that Pax6 loss caused

significant upregulation of canonical Wnt signaling (indicated by increased Lef1 and Axin2 expression) in

diencephalic structures but not in the cortex. It appears that Pax6’s effects on canonical Wnt signaling

are largely restricted to the diencephalon, where many are striking, such as the almost complete loss of

the Wnt antagonist Sfrp2 from PTh progenitors. Although these changes would likely affect the behaviors

of diencephalic progenitors, previous studies would predict increased canonical Wnt signaling to promote

proliferation (Stolz and Bastians, 2015), whereas we observed the opposite following Pax6 loss from Th and

PTh. It seems very likely that multiple synergistic and antagonistic factors combine to generate the tissue

specificity of Pax6’s net cellular effects, but we need a much better understanding of how contributing fac-

tors act and interact in the different contexts presented by different brain regions.

In conclusion, we have discovered that Pax6 has opposite molecular and cellular effects on the balance of

proliferation and differentiation in two major forebrain regions, the cortex and diencephalon. We provide

evidence that a major reason for these differences is the presence of Foxg1 in cortical cells, which reverses

the cortical actions of Pax6 so that they occur in the same direction as in the diencephalon.

Limitations of the Study

Our cell cycle parameter quantifications were performed at the population level, assuming that all cell pro-

genitors are homogeneous and divide at equivalent rates. We know the cortex, and probably the Th,

contain at least two main classes of progenitors (apical and basal) with different functions and dynamics.

With our tools, we could not discern between these two types of progenitor pools. In the future it would

be very interesting to use in vivo cell imaging or single-cell transcriptomics to tackle this matter.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND SOFTWARE AVAILABILITY

RNA-seq raw data of the Pax6 deletion experiment can be obtained from the European Nucleotide Archive

(www.ebi.ac.uk/ena; Project PRJEB9747). RNA-seq raw data of the Foxg1 deletion experiment can be ob-

tained from the European Nucleotide Archive (www.ebi.ac.uk/ena; PRJEB21349).
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Supplementary Figures 

 

 Figure S1 Preparation of samples for RNA-seq. Related to Figure 1 and STAR methods. 

(A) Western blots showing Pax6 levels in two wild-type (WT), two Pax6+/- and a Pax6-/- E13.5 

forebrain(s). 

(B) GFP expression from the DTy54 transgene in the E13.5 forebrain; Ctx, cortex; Di, 

diencephalon; Mes, mesencephalon. 

(C,C’) The two cortices were teased apart and the brain was cut along the midline (broken 

line).  

(D,D’) The anterior cortex (ACtx; high Pax6/GFP expression) was separated from posterior 

cortex (PCtx; broken line) in each hemi-brain. Th, thalamus; PTh, prethalamus. 

(E,E’) Thalamus (Th) and prethalamus (PTh) were dissected (broken lines). Arrows indicate 

boundaries of these structures visible in bright-field. PT, pretectum.  



 

Figure S2 Quality control of samples for RNA-seq. Related to Figure 2 

(A,B) Quantitative real-time PCR (qRT-PCR) to measure the levels of expression of Dlx2 and 

Neurog2 in E13.5 control thalamus (Th) and prethalamus (PTh) relative to GAPDH. Values 

are means ± sem; n=3 animals in all cases (p<0.05 Student’s t-test). 

(C-H) In situ hybridizations on control forebrains at E13.5 and data from control and CAGCreER 

Pax6 cKOs on counts per million reads (CPM) extracted from RNA-seq experiments for three 

thalamic and three prethalamic markers. Red arrows indicate low values for markers of each 

region in the other region. 

 

 



 

Figure S3 Principal component analysis on RNA-seq data. Related to Figure 2. 

(A-C) Analysis of data from 3 samples from each of control and  CAGCreER Pax6 cKO anterior 

cortex, control prethalamus and control and  CAGCreER Pax6 cKO thalamus and 4 samples 

from CAGCreER Pax6 cKO prethalamus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



Figure S4 Expression patterns of genes showing the greatest inter-regional differential 

expression in control embryos. Related to Figure 1 and Table S1. 

(A,D,E,G,J,L,O,R-X,BB,CC,EE,GG,II) From Genepaint, http://www.genepaint.org/ 

(B,C,F,H,I,K,M,N,P,Q,Y-AA,DD,FF,HH,JJ) From Allen Brain Atlas 

http://developingmouse.brain-map.org/. 
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Figure S5 Effects of Pax6 deletion on proportions of different cell types in forebrain 

regions with age in control and CAGCreER Pax6 cKOs. Related to Figure 4. 

Counts in ACtx were in lateral (L) and medial (M) regions. Proliferating cells were BrdU+, 

Ki67+, Tuj1-; differentiating cells were BrdU+, Ki67-, Tuj1+; intermediate cells were BrdU+, 

Ki67-, Tuj1-. 

 

 

 

 

 

 

 

 



 

Figure S6 Pax6/Pax6(5a) ratio in ACtx, Th and PTh in control embryos. 

(A) Counts per base read coverage of exons 4, 5a and 5 of Pax6 from each sample. 

(B) Ratios between the average coverage per base in exons 5 and 5a for each sample 

superimposed on box and whisker plots. ANOVA followed by post hoc Tukey comparison 

showed a significant difference between the ratios in ACtx and PTh (p=0.02). 



 

Figure S7 Effects of Foxg1 deletion from the cortex. Related to Figure 6. 

(A) Principal component analysis of RNA-seq data from 5 control and 5 Foxg1 cKO samples.  

(B) MA plots of log2 fold changes in the expression of each gene against its average 

expression level; red dots indicate statistically significant changes between genotypes 

(adjusted p values <0.05).  

(C) Numbers of significantly (adjusted p<0.05) upregulated and downregulated genes in 

Foxg1 cKO cortex. 

(D) Expression of Foxg1 and Pax6 in Foxg1 cKO. Panels show merged, Pax6 and Foxg1 

staining. Scale bar: 0.25mm. 

(E) Counts per base read coverage of exons 4, 5a and 5 of Pax6 from each control and Foxg1 

cKO sample. 

(F) Ratios between the average coverage per base in exons 5 and 5a for each sample 

superimposed on box and whisker plots. There was no significant difference between 

genotypes. 



 

Figure S8 Clustering of RNA-seq data on genes annotated by the Neuron Differentiation 

and Wnt signalling pathway GO terms. Related to Figure 6. 

(A,C) Heatmaps of hierarchical clustering of RNA-seq data from samples of control cortex, 

control ACtx, control PTh, control Th and Emx1CreER Foxg1 cKO cortex.  

(B,D) Principal component (PC) analysis on the same RNA-seq data as in A,C). 



 

Transparent Methods 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will 

be fulfilled by the Lead Contact, David Price (David.Price@ed.ac.uk ). 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Mice colony maintenance and transgenic lines 

To generate a conditional tamoxifen-inducible deletion of Pax6 throughout the embryo, we 

combined lines carrying a CAGGCre-ERTM allele (Hayashi and McMahon, 2002), a green 

fluorescent protein (GFP) reporter allele (Sousa et al., 2009) and Pax6loxP alleles (Simpson et 

al., 2009). Pregnant mice were given 10mg of tamoxifen (Sigma) by oral gavage on 

embryonic day 9.5 (E9.5) to induce Pax6loxP deletion and embryos were collected on E11.5, 

E12.5 and E13.5. Embryos heterozygous for the Pax6loxP allele (Pax6fl/+;CAGGCreER) were used 

as controls since previous studies have shown no detectable defects in the forebrain of 

Pax6fl/+ embryos (Simpson et al., 2009). Embryos carrying two copies of the floxed Pax6 

allele (Pax6fl/fl;CAGGCreER) were the experimental conditional knock-out (cKO) group. DTy54, 

a YAC transgene that expresses GFP in Pax6 expressing cells (Tyas et al., 2006), was crossed 

into some animals to guide the diencephalic dissections. 

To delete Foxg1 in cortex, we combined lines carrying an Emx1-CreERTM allele (Kessaris et 

al., 2006), a GFP reporter allele (Sousa et al., 2009) and Foxg1loxP alleles (generously donated 

by Drs. Goichi Miyoshi and Gord Fishell; Miyoshi and Fishell, 2012). Pregnant females were 

given 10mg of tamoxifen by oral gavage at E9.5 and embryos were collected at E13.5 and 

E15.5. Foxg1fl/+;Emx-CreERTM embryos were considered controls and Foxg1fl/fl;Emx-CreERTM 

embryos were the experimental cKO group. 

To simultaneously delete Pax6 and Foxg1 in the cortex, we combined lines carrying an 

Emx1-CreERTM allele (Kessaris et al., 2006), a GFP reporter allele (Sousa et al., 2009) and 

both Pax6loxP alleles (Simpson et al., 2009) and Foxg1loxP alleles (Miyoshi and Fishell, 2012). 

Pregnant females were given 10mg of tamoxifen by oral gavage at E9.5 and embryos were 

collected at E13.5 and E15.5.  



The day the vaginal plug was detected was considered E0.5. 

Animals were bred according to the guidelines of the UK Animals (Scientific Procedures) Act 

1986 and all procedures were approved by Edinburgh University’s Animal Ethics Committee. 

METHOD DETAILS 

Tissue processing for RNA-seq 

We bisected embryonic brains (E13.5) along the midline and processed one half of the brain 

for immunohistochemistry to confirm Pax6 or Foxg1 loss in cKO samples. The other half was 

dissected further. For Pax6-cKO and corresponding control embryos, we dissected the 

thalamus (Th), prethalamus (PTh) and anterior half of the cerebral cortex (ACtx) (Figure S1) 

and extracted total RNA with an RNeasy Plus micro kit (Qiagen). We sequenced three 

biological replicates for ACtx and four biological replicates for Th and PTh. Each replicate 

consisted of samples pooled from three (ACtx and Th) or five (PTh) embryos of the same 

experimental group. We used embryos from 14 different litters, pooling control and 

experimental embryos from the same litter whenever possible. Poly-A mRNA was purified 

and TruSeq RNA-seq libraries were prepared and sequenced with Illumina HiSeq v4 (50 base 

paired-end reads for ACtx samples; 125 base paired-end reads for Th and PTh samples). For 

Foxg1-cKO and corresponding control embryos, we dissected only cortical tissue. Total RNA 

extraction and RNA-seq library preparation was performed as above (150 base paired-end 

reads). Five biological replicates were included, each consisting of two pooled cortices from 

littermate embryos. 

We performed a post-processing quality control of samples through a series of principal 

component analysis (PCA) to see which samples satisfy the criteria of minimal within-group 

variance. Certain samples (1 PTh control, 1 Th control and 1 Th Pax6 cKO) did not satisfy the 

criteria since PCA resulted in them clustering out of their groups. We decided to remove 

these samples from further analysis in order to minimise unwanted technical variance. 

Tissue processing for immunohistochemistry and in situ hybridization (ISH) 

Embryos were dissected in cold phosphate buffered saline (PBS), their heads were fixed in 

4% paraformaldehyde (PFA) overnight at 4°C, washed in PBS, cryoprotected in 30% sucrose 

and embedded in a mixture of 30% sucrose and OCT compound (50:50). Cryostat sections (5 

or 10µm) were obtained and stored at -20°C until processed. 



Immunohistochemistry  

Cryo-sections were let to stabilize at room temperature for at least 2 hours and then 

washed three times in PBST (1X PBS with 0.1% Triton X-100, Sigma). To block endogenous 

peroxidase, sections were treated with 3% H2O2 for 10 minutes. After two PBS washes, 

antigen retrieval was performed by immersing the sections in Sodium Citrate buffer (10mM, 

pH6) heated at approximate 90°C using a microwave for 20 minutes. Once the solution 

cooled down sections were washed twice in PBST. After a 20 minutes pre-incubation in 20% 

Normal Goat Serum (Invitrogen), sections were incubated with the primary antibody 

overnight at 4°C. Biotin-coupled secondary antibodies were incubated for 1 hour at room 

temperature followed by a 30 minute incubation with Avidin-Biotin complex (ABC kit, Vector 

laboratories). Finally, diaminobenzidene (DAB, Vector Laboratories) reaction was used to 

obtain a brown precipitate and sections were mounted in DPX media (Sigma).  

For immunofluorescence a cocktail of primary antibodies were incubated overnight at 4°C. 

Secondary antibodies were incubated at room temperature for one hour. For Ki67, Foxg1 

and Tbr1 detection we used Streptavidin signal amplification (biotin-coupled secondary 

antibody followed by 30 minute incubation with Streptavidin Alexa Fluor™ 488, 546 or 647 

conjugate; Thermo Fisher Scientific). Sections were counterstained with DAPI (Thermo 

Fisher Scientific) and mounted in ProLong Gold Antifade Mountant (Thermo Fisher 

Scientific). 

Details of the antibodies used in this study can be found in Key Resources Table. 

In situ hybridization 

In vitro transcription of digoxigenin-labeled probes was done with DIG RNA-labeling kit 

(Sigma-Aldrich). 

Cryo-sections were processed for ISH using standard protocols. Digoxigenin-labelled probes 

used were Ccnd1 (kindly donated by Dr. Ugo Borello, INSERM, France), Dlx2 (kindly donated 

by Dr. John L.R. Rubenstein, USCF, USA), Neurog2 (kindly donated by Dr Thomas Theil, 

University of Edinburgh, UK), Gbx2 (kindly donated by Dr. Alexandra L. Joyner, HHMI,USA), 

Gsx2 (kindly donated by Dr. Kenneth Campbell, Cincinnati Children’s Hospital Medical 

Center, USA), Dbx1 (kindly donated by Dr. Luis Puelles, University of Murcia, Spain), Lef1 

(kindly donated by Dr. J. Galcerán, University of Alicante, Spain), Sfrp2 (kindly donated by 

Dr. Jeremy Nathans, JHU, USA), Dkk3 (synthetized in the lab from cDNA using primers 



specified in Witte et al., 2009), Foxg1 (kindly donated by Dr. Thomas Theil) and Ascl1 (kindly 

donated by Dr. Francois Guillemot, Francis Crick Institute, UK). 

Some slides were sequentially processed for fluorescent ISH (Sfrp2) followed by 

immunofluorescence (Pax6, Biolegend). 

Genotyping of mutant lines 

We dissected tissue from the tails of each embryo, extracted DNA and performed PCR 

amplification to detect the alleles of interest. 

For the detection of the floxed Pax6 allele, PCR reaction was performed in a final volume of 

25µl containing 1.5µl of extracted DNA, 0.5mM primer mix (Simpson et al. 2009, forward 

primer: 5’-AAA TGG GGG TGA AGT GTG AG-3’; reverse primer: 5’-TGC ATG TTG CCT GAA 

AGA AG-3’), 0.5 mM dNTPs mix, 1X PCR reaction buffer and 5U/µl Taq DNA Polymerase 

(Qiagen). PCR was performed with 35 cycles and a Tm of 59°C. The PCR product was 

subsequently run in a 2% agarose gel. Wild type allele results in a fragment of 156bp and 

floxed allele fragment was 195bp, therefore two bands indicated the heterozygous 

condition (used as controls) and one strong 195bp band identified the homozygous floxed 

allele condition (Pax6 KOs). 

For genotyping the floxed Foxg1 allele PCR reaction was performed in a final volume of 50µl 

containing 4µl of extracted DNA, 0.4mM primer mix (forward primer: 5’-

TTGCTACATGCCTTGCCAG-3’ ; reverse primer: 5’-TCCAGCATCACCCAGGCGTC-3’ ), 0.2 mM 

dNTPs mix, 1X PCR reaction, 5% DMSO, and 5U/µl Taq DNA Poltymerase (Qiagen). PCR was 

performed with 34 cycles and a Tm of 58°C. The PCR product was subsequently run in a 2% 

agarose gel. Wild type allele results in a fragment of 190bp and floxed allele fragment was 

230bp, therefore two bands indicated the heterozygous condition (controls) and one 230bp 

band identified the homozygous floxed allele condition (Foxg1 KO). 

Western blot analysis 

Embryonic tissue was triturated in 50-200µl TENT (Tris-EDTANaClTritonX100 buffer) with 

protease inhibitors and homogenised. Cells were allowed to lyse for 20 minutes at 4°C, 

cellular debris was pellet by centrifugation at 13,000rpm for 15 minutes at 4°C and 

supernatant, containing cellular proteins, was decanted. All protein samples were resolved 

on 12% pre-cast tris-glycine gels. Protein (50mg in 20ml 4X sample loading and TENT buffer) 



was denatured at 95°C for 5 minutes and gels were run for 1 hour 40 minutes at 150V; each 

included a molecular weight ladder. Proteins were transferred onto a nitrocellulose 

membrane (225mA at room temperature for 2½ hours). Transfer efficiency was determined 

by staining the membrane in Ponceau’s solution followed by two successive de-stains in 

ddH2O. Membranes were blocked in TBS-tween with 10% dried milk for 1 hour at room 

temperature. Primary antibodies were Serum 13 anti-Pax6 homeodomain (Carriere et al., 

1993). Following incubation in primary antibody, membranes were washed 3 times in TBS-

tween to remove unbound antibody. Secondary antibodies were centrifuged and diluted in 

10ml blocking buffer, and allowed to bind for one hour at room temperature on a shaking 

platform. All secondary antibodies were conjugated to horseradish peroxidase to allow 

chemiluminescent detection of bound primary antibody. Membranes were washed 3 times 

in TBS-tween, to remove unbound secondary antibody. Bound antibody was then detected 

using the ECL+ chemiluminescent detection kit. Membranes were bathed for 5 minutes in 

ECL+ substrate, which was broken down by horseradish peroxidase, causing the emission of 

light. Signal was then detected by exposure to photographic film for 45 minutes. 

Membranes were washed 3 times in TBS-tween after chemiluminescent detection and re-

probed for β-actin. Densitometric analysis of gel films was performed using a BioRad GS-710 

densitometer. Gels were scanned at a high resolution in greyscale and analysis was 

performed using the Quantity One software (BioRad; rolling disc with background 

subtraction, peak area was taken as a measurement of band intensity). The relative intensity 

of each band was determined, and divided by the intensity of the β-actin band obtained for 

that sample. For each gel, the intensity of the WT bands were then averaged, and assigned 

an arbitrary value of 1. The intensity of the non-WT bands on the gel were divided by that of 

the WT samples. 

Microscopy and imaging  

ISH and DAB images were taken with a Leica DMNB microscope coupled to a Leica DFC480 

camera. Fluorescence images were taken using a Leica DM5500B automated 

epifluorescence microscope connected to a DFC360FX camera. Images of embryo 

dissections were taken with a Leica MZFLIII fluorescence stereomicroscope. Image panels 

were created with Adobe Photoshop CS6. 

Bromodeoxyuridine (BrdU) injections 



Pregnant females, previously gavaged with tamoxifen at E9.5 to induce Pax6 deletion (see 

methods above), were intraperitoneally injected with a single dose of BrdU (10ug/ul, 

Thermo Fisher Scientific) at E10.5, E11.5 or E12.5 and embryos were collected 24 hours after 

the injection (E11.5, E12.5 or E13.5, respectively).  

Quantitative Real Time PCR (qRT-PCR) 

We extracted total RNA with RNeasy Plus micro kit (Qiagen) from Th, PTh and Ctx. cDNA was 

synthesized with a Superscript reverse transcriptase reaction (Thermo Fisher Scientific) and 

we performed qRT-PCR using a Quantitect SYBR Green PCR kit (Qiagen) and a DNA Engine 

Opticon Continuous Fluorescence Detector (MJ Research). We used the following primer 

pairs: Dlx2, 5’- CCAAAAGCAGCTACGACCT-3’ and 5’-GGCCAGATACTGGGTCTTCT-3’; Ngn2, 5’-

CAAACTTTCCCTTCTTGATG-3’ and 5’-CATTCAACCCTTACAAAAGC-3’; Wnt8b, 5’-

AACGTGGGCTTCGGAGAGGC-3’ and 5’-GCCCGCGCCGTGCAGGT-3’; Ccnd1, 5’-

GAAGGGAAGAGAAGGGAGGA-3’ and 5’-GCGTACCCTGACACCAATCT-3’. We calculated and 

plotted the abundance of each transcript relative to GAPDH expression levels. For all 

samples we used three biological replicates consisting on tissue dissected from embryos 

belonging to three different litters. Controls and experimental embryos were from the same 

litter whenever possible. For each biological replicate we run three technical replicates.   

QUANTIFICATION AND STATISTICAL ANALYSIS 

RNA-seq data analysis 

Read alignment and counting 

RNA-seq reads from each sample were mapped using STAR 2.4.0i (Dobin et al., 2013) to the 

mm10 mouse genome build downloaded from Ensembl77 (Aken et al., 2016) in October 

2014. STAR was run with default options, allowing maximum multi-mapping to three sites. 

The number of reads mapped to each gene was counted using featureCounts v1.4.5-p1 (Liao 

et al., 2014) from the Subread package. Default options were used with a requirement that 

both reads needed to be properly mapped over exons to be counted, including reads which 

aligned over splice junctions. 

Differential expression (DE) analysis 

DE analysis was done in R (R Core Team, 2016) to assess the significance of differences in 

gene expression levels in cKO samples over control samples. We used two different R 



packages: DESeq2 1.8.1 (Love et al., 2014) and edgeR 3.1.12 (Robinson et al., 2009), both 

run with default parameters. Appropriate filtering of low expressing genes was performed 

manually for edgeR, where genes with CPM values were lower than 1 were removed. For 

DESeq2, independent filtering of low expressed genes was performed before multiple 

testing corrections. DE was considered probable at FDR ≤ 0.05 for edgeR and an adjusted p-

value ≤ 0.05 for DESeq2. Some genes were identified as differentially expressed by either 

DESeq2 alone or edgeR alone, while most of the genes identified as differentially expressed 

were identified by both (78.56% in ACtx, 73.96% in PTh and 70.60% in Th). After examining 

the expression levels of those genes by plotting counts per million (CPM) mapped reads in 

controls versus cKO, we decided to accept genes identified by either package as 

differentially expressed, attributing the difference in detection to the underlying methods 

(low-expression filtering, expression normalization and multiple testing correction) of each 

package. Accordingly, we included all genes identified by either DESeq2 or edgeR in our 

subsequent analysis. 

Functional analysis 

Lists of genes were analysed for Gene Ontology (GO) term enrichment using DAVID 6.8 Beta 

(Huang et al., 2009a, 2009b). Enrichment statistics were calculated for biological process 

terms from DAVID GO FAT database (GO_BP_FAT category).  

Plots generated in R 

Plots were generated with ggplot2 package (Wickham, 2016) and heatmaps were generated 

with pheatmap package. MA-plots were generated using the plotMA() function from 

DESeq2, modified so that it also includes the DE results from edgeR. PCA plots were 

generated using prcomp() function from base R. 

Sample clustering methods 

Expression values were transformed from raw read counts using variance stabilizing 

transformation described in DESeq2 and samples were hierarchically clustered using dist() 

and hclust() functions from base R, using parameters for Euclidean distance and Ward’s 

linkage method (Ward, 1963). To cluster samples from experiments in which Pax6 or Foxg1 

were deleted, variance stabilizing transformation was followed by the application of the 

ComBat function from R package sva (Leek et al., 2016) to correct for batch effects that 

might influence the comparison of results from these two sets of experiments. These 



samples were clustered using the hcluster() function from amap R package (Lucas, 2014), 

with same distance and linkage methods as above. Within each tissue, log2-fold changes 

(LFCs) in gene expression between genotypes were calculated from average counts per 

million (CPM) mapped reads in cKO samples over average CPM mapped reads in control 

samples, using the following formula: 

 

Genes were clustered hierarchically by Pearson’s correlation as a distance measure and 

Ward’s linkage method. 

Image analysis and quantification  

BrdU quantification and calculation of proliferation/differentiation indexes 

We counted the total number of BrdU-labelled cells and classified them into three different 

categories according to their expression of Ki67 (proliferation category), Tuj1 

(differentiation category) or none (G0 category). We calculated the fractions of proliferative 

cells, cells in G0 and differentiated cells by dividing the number of cells in each of the three 

categories by the total number of BrdU-labelled cells. Cell quantification was performed on 

40x magnification coronal microphotographs using the cell counter plug in from Fiji (Image 

J) (Schindelin et al., 2012). 

We quantified three biological replicates (three embryos from three different litters, n=3) 

for each tissue (Actx, Thal, Pthal), genotype (control, Pax6 cKO) and age (E11, E12, E13), 

being controls and experimental embryos pairs from the same litter. For each embryo we 

analysed three different rostro-caudal sections in the case of cortical tissue and four rostro-

caudal sections for diencephalic tissues. For each tissue and condition, we counted an 

average of 989 cells.  

The data from all ages, regions and genotypes was statistically assessed to test the effects of 

Pax6 inactivation on proliferation and differentiation depending on age and tissue. Data was 

fitted to a generalized mixed linear model using the glmer() function from lme4 R package 

(Bates et al., 2015). Counts of cells in proliferation and counts of cells exiting the cell cycle 

were set as outcome variables, with genotype, age and tissue set as interacting fixed effects 

and litter and embryo set as nested random effects. Function argument ‘family’ was set to 



‘binomial’ due to two possible outcomes of cell state. P-values of fixed effects and their 

interactions were obtained using the Anova() function from car package (Fox and Weisberg, 

2011) with argument type = 3 to specify the usage of Type III Wald chisquare tests. 

Contrasts of interest were tested using lsmeans() function from lsmeans package (Lenth, 

2016).  

Quantification of proliferation  

To quantify proliferation in the cortices of Foxg1 cKOs and Pax6 Foxg1 cKOs we selected an 

area of the cortex (indicated in Figure 8) and counted the total number of cells (DAPI-

positive) and the number of proliferating cells (Ki67-positive). Proliferation fraction was 

calculated by dividing the number of proliferating cells by the total number of cells.  

Cells were counted in 40x magnification coronal microphotographs using cell counter plug in 

from Fiji (Image J) (Schindelin et al., 2012). We quantified three independent embryos from 

three different litters for each genotype (n=3). For each embryo we counted three different 

rostro-caudal sections. Differences across the two genotypes were assessed by one tail 

paired t-test and significance was considered when p<0.05. 

Statistical analysis /RT-qPCR details  

T-tests (n=3) were performed in Microsoft Excel. Statistical details of all experiments are 

specified in the text or corresponding figure legend.  

Analysis of the splicing variants Pax6 and Pax6 (5a) ratio  

We used summarizeOverlaps function from the GenomicAlignments R package (Lawrence et 

al., 2013) to count the number of reads aligning to genomic regions of Pax6 exons 5 and 5a. 

Read counts were divided by the number of bases of each exon (216b for exon 5, 42b for 

exon5a) to normalize for the exon length. Exon5/5a ratios for each sample were calculated 

as the normalized read counts in exon 5 over exon 5a. We then used aov and TukeyHSD 

functions from R stats package (base R) to test for significance in difference of exon5/5a 

rations between tissues and perform pairwise comparisons. 

DATA AND SOFTWARE AVAILABILITY 

The datasets generated in this study can be obtained from the European Nucleotide Archive 

(www.ebi.ac.uk/ena). 



The accession number for the RNA-seq raw data from the Pax6 mutant experiments is ENA:  

PRJEB9747. 

The accession number for the RNA-seq raw data from the Foxg1 mutant experiment is ENA: 

PRJEB21349. 

ADDITIONAL RESOURCES 

To interactively explore the Pax6 RNA-seq dataset visit  

https://pricegroup.sbms.mvm.ed.ac.uk/Pax6_diencephalon/  

 

https://pricegroup.sbms.mvm.ed.ac.uk/Pax6_diencephalon/


 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Rabbit polyclonal anti-Pax6 (1:200) Biolegend Cat# 901301, 

RRID:AB_2565003 

Mouse monoclonal anti-Pax6 (1:10) A gift from Prof. V 

van Heyningen, 

AD2.38 

Simpson et al., 2009 

N/A 

Rabbit polyclonal anti-Ki67 (1:200) Abcam Cat# ab15580, 

RRID:AB_443209 

Rat monoclonal anti-BrdU (1:100) Abcam Cat# ab6326, 

RRID:AB_305426 

Mouse monoclonal anti-Beta III tubulin (Tuj1) 

(1:200) 

Abcam Cat# ab18207, 

RRID:AB_444319 

Rabbit polyclonal anti-Gsx2 (1:400) Millipore Cat# ABN162, 

RRID:AB_1120329

6 

Mouse monoclonal anti-Foxg1 (1:100) Hybridoma clone 

17B12 

Kindly donated by 

Dr. S. Pollard. 

Bulstrode et al., 

2017 

N/A 

Rabbit polyclonal anti-Tbr1 (1:1000) Abcam at# ab31940, 

RRID:AB_2200219 

Goat anti-mouse biotinylated secondary antibody 

(1:200) 

Vector laboratories Cat# BA-9200, 

RRID:AB_2336171 

Goat anti-rabbit biotinylated secondary antibody 

(1:200) 

Vector laboratories Cat# BA-1000, 

RRID:AB_2313606 

Donkey anti-rabbit Alexa 568 secondary antibody 

(1:100) 

Thermo Fisher 

Scientific 

Cat# A10042, 

RRID:AB_2534017 

Donkey anti-rat Alexa 488 secondary antibody 

(1:100) 

Thermo Fisher 

Scientific 

Cat# A-21208, 

RRID:AB_141709 

Donkey anti-mouse Alexa 568 secondary antibody 

(1:100) 

Thermo Fisher 

Scientific 

Cat# A10037, 

RRID:AB_2534013 

Streptavidin, Alexa Fluor 488 conjugate antibody Thermo Fisher 

Scientific 

Cat# S11223, 

RRID:AB_2336881 

Streptavidin, Alexa Fluor 546 conjugate antibody Thermo Fisher 

Scientific 

Cat# S-11225, 

RRID:AB_2532130 

Streptavidin, Alexa Fluor 647 conjugate antibody Thermo Fisher 

Scientific 

Cat# S-21374, 

RRID:AB_2336066 

Chemicals, Peptides, and Recombinant Proteins   



Tamoxifen Sigma-Aldrich T5648; CAS: 

10540-29-1 

Critical Commercial Assays   

RNeasy Plus micro kit Qiagen 74004 

SuperScript III Reverse Transcriptase Thermo Fisher 

Scientific 

18080093 

QuantiTect SYBR Green PCR Kit Qiagen 204143 

Avidin-Biotin complex (ABC) kit Vector Laboratories PK6100 

DAB peroxidase substrate kit Vector Laboratories SK4100 

DPX Mountant for histology Sigma-Aldrich 06522 

DAPI (4',6-Diamidino-2-Phenylindole, 

Dihydrochloride) 

Thermo Fisher 

Scientific 

D1306 

ProLong Gold Antifade Mountant Thermo Fisher 

Scientific 

P36930 

DIG RNA Labeling Kit (SP6/T7) Sigma-Aldrich 11175025910 

Taq DNA Polymerase Qiagen 201203 

BrdU (5-Bromo-2´-Deoxyuridine) Thermo Fisher 

Scientific 

B23151 

Normal Goat Serum Thermo Fisher 

Scientific 

31873 

Normal Donkey Serum Sigma-Aldrich D 9663 

Deposited Data   

Pax6 RNAseq raw data  This paper European 

Nucleotide Archive 

(www.ebi.ac.uk/en

a; ENA: 

PRJEB9747) 

Foxg1 RNAseq raw data This paper European 

Nucleotide Archive 

(www.ebi.ac.uk/en

a; ENA: 

PRJEB21349) 

Experimental Models: Organisms/Strains   

Mouse: CAGGCre-ERTM; RCE (GFP)  This paper 

Hayashi and 

McMahon, 2002 

Sousa et al., 2009 

N/A 

Mouse: Dty54 Tyas et al., 2006 N/A 

Mouse: Emx1-CreERTM; RCE (GFP) This paper 

Kessaris et al., 2006 

Sousa et al., 2009 

N/A 

Mouse: Pax6loxP Simpson et al., 2009 N/A 

Mouse: Foxg1loxP  Miyoshi et al., 2007 N/A 



Oligonucleotides   

Primers for the detection of floxed Pax6 allele. 

Forward: AAATGGGGGTGAAGTGTGAG.  

Reverse: TGCATGTTGCCT GAAAGAAG. 

This paper 

Simpson et al., 2009 

N/A 

Primers for the detection of floxed Foxg1 allele. 

Forward: TTGCTACATGCCTTGCCAG. Reverse: 

TCCAGCATCACCCAGGCGTC.  

This paper N/A 

Primers for Dlx2 qRT-PCR. Forward: 

CCAAAAGCAGCTACGACCT. Reverse: 

GGCCAGATACTGGGTCTTCT. 

This paper N/A 

Primers for Ngn2 qRT-PCR. Forward: 

CAAACTTTCCCTTCTTGATG. Reverse: 

CATTCAACCCTTACAAAAGC 

This paper N/A  

Primers for Wnt8b qRT-PCR. Forward: 

AACGTGGGCTTCGGAGAGGC. Reverse: 

GCCCGCGCCGTGCAGGT. 

This paper N/A 

Primers for Ccnd1 qRT-PCR. Forward: 

GAAGGGAAGAGAAGGGAGGA. Reverse: 

GCGTACCCTGACACCAATCT.  

This paper N/A 

Software and Algorithms   

STAR 2.4.Oi Dobin et al., 2013 https://github.com/

alexdobin/STAR 

featureCounts v1.4.5-p1 Liao, Smyth and Shi, 

2014 

http://subread.sour

ceforge.net/ 

R software R Core Team, 2016 https://www.r-

project.org/ 

DESeq2 1.8.1 (R package) Love, Huber and 

Anders, 2014 

https://doi.org/doi:1

0.18129/B9.bioc.D

ESeq2 

edgeR 3.1.12 (R package) Robinson, McCarthy 

and Smyth, 2009 

https://doi.org/doi:1

0.18129/B9.bioc.e

dgeR 

ggplot2 (R package) Wickham, 2016 https://github.com/t

idyverse/ggplot2 

sva (R package) Leek et al., 2016 https://doi.org/doi:1

0.18129/B9.bioc.sv

a 

amap (R package) Lucas, 2014 https://cran.r-

project.org/packag

e=amap 

Lme4 (R package)  Bates et al., 2015 http://lme4.r-

forge.r-project.org/ 



car (R package) Fox and Weisberg, 

2011 

https://cran.r-

project.org/web/pa

ckages/car/index.h

tml 

lsmeans (R package) Lenth, 2016 https://cran.r-

project.org/web/pa

ckages/lsmeans/in

dex.html 

GenomicAlignments Lawrence et al., 

2013 

https://doi.org/doi:1

0.18129/B9.bioc.G

enomicAlignments 

DAVID 6.8 Beta Huang, Lempicki 

and Sherman, 2009 

https://david.ncifcrf

.gov/ 

Fiji (Image J) Schindelin et al., 

2012 

https://fiji.sc/ 

Other   

Pax6 RNAseq analyzed data. Interactive app This paper https://pricegroup.s

bms.mvm.ed.ac.uk

/Pax6_diencephalo

n/  
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