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Objective: Type III Bartter syndrome (BS) is caused by loss-of-function mutations in the
gene encoding basolateral chloride channel ClC-Kb (CLCNKB), and is characterized by
hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism. Here, we
investigated the molecular defects in four Chinese children with clinical manifestations
of Bartter syndrome.

Methods: The genomic DNA of the four patients was screened for gene variations using
whole-exome sequencing (WES). The candidate variants were validated by direct Sanger
sequencing. Quantitative PCR (qPCR) was subsequently performed to confirm the whole
CLCNK gene deletion mutation. A minigene assay and reverse transcription PCR (RT-
PCR) were performed to analyze the effect of splice variants in vitro.

Results: Our patients showed early onset age with hyponatremia, hypokalemia,
hypochloremia, repeated vomiting and growth retardation, suggesting Bartter
syndrome. Genetic analysis revealed that all patients carried compound heterozygous
or homozygous truncating variants in the CLCNKB gene. In particular, we identified a
novel nonsense variant c.239G > A (p.(Trp80*)), two splice site variants (c.1053-1 G > A
and c.1228-2A > G), a whole gene deletion, and a novel synonymous variant c.228A > C
(p.(Arg76Arg)) which located -2 bp from the 5′ splice donor site in exon 3. Furthermore,
our in vitro minigene analysis revealed c.228A > C, c.1053-1G > A, and c.1228-2A > G
cause the skipping of exon 3, exon 12, and exon 13, respectively.

Conclusion: Our results support that the whole CLCNKB gene deletion is the most
common mutation in Chinese patients with type III BS, and truncating and whole gene
deletion variants may account for a more severe phenotype of patients. We verified the
pathogenic effect of three splicing variants (c.228A > C, c.1053-1G > A, and c.1228-2A >
G) which disturbed the normal mRNA splicing, suggesting that splice variants play an
important role in the molecular basis of type III BS, and careful molecular profiling of these
patients will be essential for future effective personalized treatment options.
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INTRODUCTION

Bartter syndrome (BS) is an autosomal recessive inherited renal
disorder characterized by renal salt wasting, hypokalemic
metabolic alkalosis, elevated renin-aldosterone levels with
normal-to-low blood pressure, hypercalciuria and normal
serum magnesium levels (Bartter et al., 1962). In recent years,
Bartter syndrome has been classified into five types (types I–V)
based on the different underlying disease-causing genes
SLC12A1, KCNJ1, CLCNKB, BSND and MAGED2 (Seyberth,
2008; Al Shibli and Narchi, 2015; Laghmani et al., 2016).

Among them, BS type III (OMIM, #607364) is a highly
heterogeneous presentation characterized by an onset in early
ch i ldhood , hypoca l c iur i a , o r normoca l c iur i a and
nephrocalcinosis (Rodriguez-Soriano et al., 2005). BS type III is
due to loss of function of the chloride channel protein ClC-Kb
encoded by the CLCNKB gene (OMIM, #602023) (Simon et al.,
1997). The ClC-Kb channel belongs to the voltage-dependent
chloride channel (ClC) family, which has 12 transmembrane
domains and intracellular amino and carboxy termini. ClC-Kb is
expressed in the thick ascending limb of Henle's loop, distal
tubule, and cortical collecting tubule, and predominantly
mediates the tubular reabsorption of chloride in the kidney
(Jentsch et al., 2002). Impaired ClC-Kb function reduces
chloride and sodium reabsorption in the renal tubules,
resulting in salt loss in urine (Naesens et al., 2004).

According to the HGMD (Human Gene Mutation Database;
http://www.hgmd.cf.ac.uk), more than 152 mutations have been
reported in the CLCNKB gene, including 86 missense mutations or
nonsense mutations, 17 splice site mutations, 40 large and small
deletions, 5 small insertions and 2 complex rearrangements.

In this study, we identified four patients with clinical
manifestations of Bartter syndrome, which expands the
spectrum of mutations of the CLCNKB gene in the Chinese
population. The novel synonymous variant c.228A > C and two
classical splice site variants (c.1053-1 G > A and c.1228-2A > G)
were predicted to be deleterious in mRNA splicing. Our
minigene assay verified the pathogenic effect of three splicing
variants (c.228A > C, c.1053-1 G > A, and c.1228-2A > G) which
disturbed the normal mRNA splicing in vitro, suggesting that a
significant portion of synonymous and splice site variants play an
important role in the molecular basis of type III BS.
MATERIALS AND METHODS

Whole-Exome Sequencing
Genomic DNA was extracted from the peripheral blood of all
participants using the DNA isolation kit (Tiangen, China),
according to the manufacturer's protocol. Genomic DNA was
sheared into fragments and then hybridized with the xGen
Exome Research Panel v1.0 probe sequence capture array from
IDT (Integrated Device Technology, USA) to enrich the exonic
region. The enriched libraries were analyzed on an Illumina
HiSeq XTen (Illumina, USA) platform. Low-quality variations of
the quality score < 20 (Q20) were filtered out. Sequencing reads
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were mapped to the GRCh37/Hg19 reference genome via
Burrows-Wheeler Aligner (BWA) software. All identified
variants were annotated using the 1000 Genomes Project
(Chinese), dbSNP, Genome Aggregation Database (gnomAD),
and ExAC database. Variants with a minor allele frequency
higher than 5% were filtered out. Finally, the candidate
variants were evaluated using the ACMG (American College of
Medical Genetics and Genomics) criteria and further validated
by direct Sanger sequencing.

Direct Sequencing of the CLCNKB Gene
All the primer pairs were designed to amplify the exons of the
CLCNKB gene (Supplementary data Table 1). The PCR mixture
contained 1.5 ml of primers, 2.0 ml of DNA, 12.5 ml of 2 × Taq
Master Mix (Vazyme Biotech Co., Ltd), 9 ml of ddH2O, in a total
volume of 25 ml. Cycling conditions included a predenaturation
step at 94°C for 5 min, followed by 34 cycles at 94°C for 30 s, 59°
C for 30 s and 72°C for 30 s, with a final extension at 72°C for 5
min. The PCR products were first purified and then sequenced
by BigDye Terminator (Applied Biosystems). In addition, 50
healthy unrelated controls from the Chinese population were
screened by Sanger sequencing to exclude novel variants such as
nondisease-associated variations. The CLCNKB gene variant
(GenBank association number NM_000085.5) was used as a
reference sequence.

Copy Number Variation Analysis
Confirmation of the Whole Gene Deletion
Using the primer pair sequences listed in Supplementary Table 1,
copy number variation (CNV) analysis was performed.
Quantitative PCR (qPCR) was performed using AceQ qPCR
SYBR Green Mix (Vazyme Biotech Co., Ltd). The relative
CLCNKB gene expression was measured by subtracting the Ct
values of the three exons (E2, E10, and E20) from an endogenous
control (GAPDH) gene, using the 2-DDCt method.

Plasmid Construction
To create hybrid minigene constructs, we used the pSPL3
minigene reporter vector, which includes a conventional
expression system with two exons (SD6 and SA2) to analyze
the resultant mRNA transcripts. The minigene vector mainly
produces two transcripts, one composed of exon SD6, an inserted
exon, and exon SA2 (upper), and the other composed only of
exon SD6 and SA2 (lower) (Figure 2A). To perform a minigene
assay, we generated fragments containing the target exons (3, 12,
and 13) where the variants were located, and 150-200 bp of
flanking intronic regions with XhoI and BamHI restriction sites.
These inserts were amplified by PCR from the patients' genomic
DNA using primers described in Supplementary Table 2. Both
edges of the shortened introns were properly designed by the
Human Splicing Finder to avoid the activation of cryptic splicing.
The pSPL3 vector was digested by restriction enzymes XhoI and
BamHI, and then ligated with the purified PCR products to
construct the wild-type and mutant minigene vectors using the
ClonExpressTM II One Step Cloning Kit (Vazyme Biotech Co.,
Ltd). All constructs were confirmed by bidirectional sequencing.
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In Vitro Splicing Assay
HEK293 and HeLa cells were seeded in 12-well plates, with 1 mL
of DMEM in each well, at 37°C in 5% CO2. When the cells were
90% confluent, cells were transfected with 1 mg pSPL3, wild-type
and mutant constructs purified plasmids using Lip2000 DNA
transfection reagents (Invitrogen). After 24 hours, the cell total
RNA was extracted by TRIzol Reagent (Takara, Japan). The first
cDNA strand was reverse-transcribed using the HiScript III RT
SuperMix (Vazyme Biotech Co., Ltd). The resulting cDNA was
used as a template to amplify the product, including exon 3 with
the SD6 forward primer (5'-TCTGAGTCACCTGGACAACC-3')
and the SA2 reverse primer (5'- ATCTCAGTGGTATTTGTGA
GC-3'). RT-PCR amplification for aberrant splice transcripts,
agarose gel separation, and subsequent direct Sanger sequencing
were performed. Quantification of the abnormal splicing
percentage was calculated as the percentage of exclusion (%) =
(lower band/[lower band + upper band]) x 100. Error bars
represent SEM (n=3). *P < 0.05, unpaired Student's t-test.
RESULTS

Clinical Analysis
We report four cases of Batter syndrome (two females and two
males). The mean age of the patients at diagnosis was 8.7 months
(range, 3 m–1 y9 m). Three patients were sent to our hospital
because of repeated vomiting, diarrhea, dehydration, and fever,
and patient 2 because of vomiting and growth retardation.
Patient 3 and patient 4 both had fevers and patient 1 presented
a special face with protruding forehead.

The clinical features of our patients are listed in Table 1.
Serum electrolytes revealed hyponatremia, hypokalemia, and
Frontiers in Genetics | www.frontiersin.org
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hypochloremia; blood gas analysis showed metabolic alkalosis in
all patients. The serum aldosterone level and the angiotensin II
activity were high in all patients, and the rennin activity was
activated in patients 2 and 4. No hypocalciuria was found in our
patients. Electrocardiography showed that patient 1 and patient 3
had a low and flat T wave, and liver function injury was found in
patient 4.

All patients were treated with indomethacin and salt
(potassium and/or sodium) supplementations, as required.
According to our follow-up, all patients showed growth
retardation. Patient 2, after eleven years of follow-up and
obvious growth retardation, [weight 10 kg (≤2 SD), height 79
cm (≤2 SD)] was still observed. Renal ultrasound examination
showed a blurred structure in both kidney and pelvis separations
in the right renal.

Genetic Analysis
All four patients and parents underwent genetic analysis on
extracted DNA from peripheral blood. By whole-exome
sequencing and subsequent direct sequencing of the CLCNKB
gene, we identified three point variants, c.239G > A, c.1053-1G >
A, and c.1228-2A > G (Figure 1A). c.239G > A and c.1053-1 G >
A were novel variants which have not been reported in the
genomic databases or the literature at the time of query. The
c.239G > A in exon 3 was predicted to create a stop codon at 80
(p.(Trp80*)); c.1053-1G > A was located at the -1 position of the
splicing acceptor site, which may result in abnormal splice of
exon 12. The c.1228-2A > G was a previous reported variant at
the -2 position of the splicing acceptor site, which may result in
the abnormal splice of exon 13. Patient 1 and patient 2 carried
compound heterozygous variants c.[239G > A]; c. [1053-1G > A]
and c.[239G > A]; c.[1228-2A > G], respectively, which were
inherited from their mother and father, respectively.

Whole-exome sequencing revealed that patient 3 carried a
heterozygous whole gene deletion (Ex2_20 del) (Figure 1B), and
patient 4 had a homozygous whole gene deletion (Ex2_20 del).
Copy number variant analysis by qPCR confirmed the CLCNKB
gene exon deletion in the two patients, and patient 4 inherited
the large homozygous loss of exons 2–20 (Ex2_20 del) from his
parents (Figure 1C).

In patient 3, we also identified a heterozygous synonymous
variant c.228A > C (p.(Arg76Arg)) located at -2 bp of the splice
donor site in exon 3 (Figure 2B). This variant has not been
reported in the genomic databases and was not found in 50
matched healthy controls. The Human Splicing Finder
prediction suggested that c.228A > C may alter the WT donor
site (decreasing the score from 76.76 to 47.81); the BDGP
prediction showed that c.228G > A decreased the donor score
from 0.95 to 0.84.

Splicing Minigene Reporter Assay
To verify whether the c.228A > C (p.(Arg76Arg)) variant affected
mRNA splicing, we next performed a minigene splicing assay in
vitro. After the minigene plasmids with the inserted c.228A > C
fragment were transfected into HEK293 and HeLa cells, total
RNA was extracted and transcribed to cDNA. RT-PCR was
performed using flanking primers and then visualized on an
TABLE 1 | Clinical and genetic analysis of four Type III Bartter
syndrome patients.

P1 P2 P3 P4

Gender female female male male
Onset age 6M 5M 1Y9M 3M
Variants c.239G > A/

c.1053-1G >
A

c.239G > A/
c.1228-2A >

G

c.228A >
C/Ex2_20

del

Ex2_20del
Ex2_20 de

Blood
Na (mmol/L) 127 133 131.4 123
K (mmol/L) 1.75 1.8 1.95 1.9
Cl (mmol/L) 84.0 89 84.6 74.6
Ca (mmol/L) 2.94 1.11 1.25 2.54
Mg (mmol/L) 1.05 0.76 1.13 0.92
PH 7.74 7.49 7.46 7.507
HCO3 (mmol/L) 40.3 26.5 125.7 37
PRA (ng/ml/h) 0.06 1.61 0.24 1.25
ANG I (pg/ml) 15.62 13.73 15.91 14.36
ANG II (pg/ml) 990.79 1313.25 864.70 1241.12
Aldosterone (pg/ml) 195.15 174.3 153.41 183.24

Urine
Na (mmol/kg.d) 51 15.3 25 12.3
K (mmol/kg.d) 62.8 10.6 60.14 7.37
Cl (mmol/kg.d) 95.0 19.7 50.9 17.33
Ca (mmol/kg.d) 2.93 0.19 0.29 0.54
Mg (mmol/kg.d) 1.62 0.22 3.4 0.29
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agarose gel (Figure 2C). As a result, two fragments were
uniquely detected from the RT-PCR products of the E3-WT
and c.228A > C in double cells. The product sequencing
revealed that the larger amplicon of 392 bp was the exon 3–
included transcript, while the smaller splice of 263 bp was the
exon 3–excluded transcript (Figures 2C, D). The amount of
exon 3-skipping transcripts of c.228A > C were significantly
increased compared with E3-WT (47% versus 80.2% in
HEK293 and 45% versus 79.3% in Hela cells, respectively)
(Figure 2E).

We also evaluated the effect of the c.1053-1 G > A and c.1228-
2 A > G variants on splicing using the pSPL3 minigene reporter
in HEK293 and Hela cells. Analysis of cDNA prepared from
HEK293 and Hela cells revealed that the c.1053-1G > A and
c.1228-2A > G variants produce the complete skipping of exon
12 and exon 13, respectively (Figure 3), indicating that both
splice site variants disturbed the normal splicing in vitro.
DISCUSSION

In this study, we identified four patients who had compound
heterozygous variants or homozygous variants of the CLCNKB
gene, including a novel nonsense variant c.239G > A
(p.(Trp80*)), two splice site variants (c.1053-1G > A and
c.1228-2A > G), a whole gene deletion and a novel
synonymous variant c.228A > C. The clinical features present
in our four patients are generally consistent with the
pathophysiology found in Bartter syndrome, including
Frontiers in Genetics | www.frontiersin.org 4
hyponatremia, hypokalemia, hypochloremia, repeated vomiting
and growth retardation. By gene analysis, all four patients were
diagnosed with type III BS.

In the clinic, type III BS manifests highly variable phenotypes,
ranging from an early-onset and severe antenatal BS to a late-
onset and mild Gitelman's syndrome (GS) (Zelikovic et al., 2003;
Fukuyama et al., 2004; Gorgojo et al., 2006; Tajima et al., 2006).
The functional severity of the mutant channel has been proposed
to explain this phenomenon. Cheng et al. established a genotype-
phenotype association and revealed that the functional severity
of CLCNKB genotypes correlated with age at onset, plasma
chloride concentration, and urine calcium excretion rate
(Cheng et al., 2017). Keck et al. also reported that CLCNKB
mutations with milder functional outcomes were linked to older
age at diagnosis of classic BS (Keck et al., 2013). In this study,
patient 1 and patient 2 both carried compound heterozygous
variants c.[239G > A]; c.[1053-1G > A] and c.[239G > A];
c.[1228-2A > G], respectively. Our minigene assay suggested
that c.1053-1G > A caused exon 12 skipping, which keeps the
reading frame, and would produce the loss of 58 amino acids
(codons 352-409). This region contained a part of a highly
conserved D8 transmembrane domain, which many variants
have been reported to be involved in with regards to the
impaired CIC-Kb function (Keck et al., 2013). Likewise,
c.1228-2A > G induces exon 13 skipping, which introduces a
PTC 46 codons downstream (F410Efs*46), which would truncate
the protein and subsequently lose the C-terminal region that
would compromise CIC-Kb function. The two patients were
diagnosed early in their infancy with severe hyponatremia,
FIGURE 1 | CLCNKB gene variants identified in type III Bartter syndrome patients. (A) Direct sequencing showing four point variants of the CLCNKB gene (arrows),
the c.228G > A show only C because another allele is deleted; the wild-type sequence is also shown. (B) CLCNKB gene qPCR analysis of patient 3 showed a
heterozygous loss of exons 2, 10 and 20 in CLCNKB. (C) CLCNKB qPCR analysis of patient 4 showed a homozygous loss of exons 2, 10 and 20 in CLCNKB, while
both parents appeared heterozygous.
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hypokalemia, and hypochloremia, supporting the hypothesis
that truncating variants of CLCNKB may be correlated with a
severe phenotype in type III BS patients.

Patient 4, whose onset age was 3 months with more severe
dehydration, electrolyte imbalance, vomiting, and growth
retardation, was homozygous for the whole CLCNKB gene
deletion. Shao et al. reported that deletion of the complete
CLCNKB gene was the most common variant in Chinese
patients with cBS, and the frequency of whole gene deletion
was up to 9/28 (32%). Patients who carried the whole CLCNKB
gene deletion variant showed an early-onset, severe phenotype
with greater urinary salt wasting (Han et al., 2017; Seys et al.,
2017; Li et al., 2019). Taken together, our results support that the
whole CLCNKB gene deletion may account for a more severe
phenotype of patients.
Frontiers in Genetics | www.frontiersin.org 5
In patient 3, we identified a novel synonymous variation
c.228A > C (p.(Arg76Arg)), in addition to a heterozygous whole
CLCNKB gene deletion. In silico analysis suggested that this
synonymous variation may affect the WT donor splice site. Our
minigene assay in HEK293 and Hela cells both showed that the
c.228A > C change disturbed normal splicing by increasing ~30%
exon 3 exclusion compared with WT. Interestingly, in the case of
the exon 3 minigene, we observed that ~45% of transcripts of the
wild type minigene do not include exon 3. In fact, exon 3 is
alternatively spliced in physiological conditions. This similar
alternative splicing was also reported in several large multiexon
minigenes of the BRCA2 gene (Acedo et al., 2015; Fraile-
Bethencourt et al., 2017). The CLCNKB gene has a natural
transcript (NM_001165945, ENST00000375667.7) in which
exon 3 is excluded, producing a smaller isoform (517aa). Thus,
FIGURE 2 | Effect of CLCNKB gene c.228A > C variant by Minigene assays. (A) RT-PCR amplified products of hybrid minigene transcripts in HEK293 cells. The
transcripts produced by the hybrid minigene are schematically shown, and the arrows show the primers used to amplify (inset) (Wang et al., 2018b). (B) Exon 3 and adjacent
structures of the CLCNKB gene. The arrow shows the location of the splice site variant c.228A > C in exon 3. (C)Gel electrophoresis of the RT-PCR product of minigene
transcripts in HEK293 cell. Lane 1: marker; Lane 2: pSPL3 (263 bp); Lane 3: E3-WT (392 bp and 263 bp); Lane 4: c.228A > C (392 bp and 263 bp). The two fragments were
directly sequenced (right panel). (D)Gel electrophoresis of the RT-PCR product of minigene transcripts in Hela cell. Lane 1: marker; Lane 2: pSPL3 (263 bp); Lane 3: E3-WT
(392 bp and 263 bp); Lane 4: c.228A > C (392 bp and 263 bp). (E)Quantification of the splicing percentage in HEK293 and Hela cells was densitometrically calculated on a
molar basis as the percentage of exclusion (%) = (lower band/[lower band + upper band]) x 100. Error bars represent SEM (n=3). **P < 0.01, unpaired Student's t-test.
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in the in vitro pSPl3 minigene assay, E3-WT also detected exon3
skipping transcript from the RT-PCR products. Given that this
patient carries a whole CLCNKB gene deletion in trans-allele, the
low amount (20%) of the full-length transcript produced by the
c.228A > C allele is not enough to keep ClC-Kb activity. Taken
together, we believe that the compound heterozygous variants
(c.228A > C and whole CLCNKB deletion) are the molecular
basis of this BS patient. In our previous study, we identified that a
synonymous variant c.1755A > G (p.(Thr585T)) in a type III BS
patient located in exon 15 resulted in abnormal mRNA splicing
and a subsequent defect in the chloride transport function of
ClC-Kb (Wang et al., 2018).
CONCLUSION

In conclusion, we reported five CLCNKB gene variants leading to
type III BS in four patients. Our results support that truncating
and whole gene deletion variants of the CLCNKB gene correlated
with the severe phenotype of type III BS patients. Notably, we
identified that the synonymous variant c.228A > C and two
classical splice site variants (c.1053-1G > A and c.1228-2A > G)
disturbed the normal mRNA splicing in vitro and subsequently
caused type III BS. Our study suggests that a significant portion
Frontiers in Genetics | www.frontiersin.org 6
of synonymous substitutions and splice site variants play an
important role in the molecular basis of type III BS, and careful
molecular profiling of patients will be essential for future effective
personalized treatment options.
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