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analysis and transcript
expression of ABCC8 and
KCNJ11 in focal form of
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Background: The focal form of CHI is caused by an autosomal recessive

pathogenic variant affecting the paternal homologue of genes ABCC8 or

KCNJ11 and a second somatic event specifically occurring in the affected

islet of Langerhans. The approach of this study was to integrate the genetic

changes occurring in pancreatic focal lesions of CHI at the genomic and

transcriptional level.

Research Design andMethods: Patients receiving therapeutic surgery andwith

proven ABCC8 or KCNJ11 pathogenic variants were selected and analyzed for

loss of heterozygosity (LOH), changes in copy number and uniparental disomy

(UPD) on the short am of chromosome 11 by molecular microarray analysis and

methylation-specific MLPA. Gene expression was analyzed by RT-PCR and

Massive Analysis of cDNA Ends (MACE).

Results: Both genes, ABCC8 and KCNJ11, are located in proximity to the

Beckwith-Wiedemann (BWS) imprinting control region on chromosome

11p15. Somatic paternal uniparental isodisomy (UPD) at chromosome 11p

was identified as second genetic event in focal lesions resulting in LOH and

monoallelic expression of the mutated ABCC8/KCNJ11 alleles. Of five patients

with samples available for microarray analysis, the breakpoints of UPD on

chromosome 11p were different. Samples of two patients were analyzed further

for changes in gene expression. Profound downregulation of growth

suppressing genes CDKN1 and H19 was detected in focal lesions whereas

growth promoting gene ASCL2 and pancreatic transcription factors of the

endocrine cell lineage were upregulated.

Conclusions: Paternal UPD on the short arm of chromosome 11 appears to be

the major second genetic event specifically within focal lesions of CHI but no
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common breakpoint for UDP can be delineated. We show for the first time

upregulation of growth promoting ASCL2 (achaete-scute homolog 2)

suggestive of a driving factor in postnatal focal expansion in addition to

downregulation of growth suppressing genes CDKN1C and H19.
KEYWORDS

ABCC8, Achaete-scute complex homolog 2, CHI, KCNJ11, UPD 11p
Introduction

Congenital hyperinsulinism (CHI) causes persistent

hypoglycemia due to uncontrolled insulin secretion in newborns

and infants (1, 2). The most severe form of CHI is caused by

inactivating pathogenic variants in the ABCC8 (MIM 600509) and

KCNJ11 (MIM 600937) genes encoding subunits SUR1 and Kir6.2

of the ATP-sensitive K(+) channel (3, 4). This channel is primarily

expressed in the pancreas and to a much lesser degree in other

tissues. Genetic testing in several larger patient cohorts revealed

more than 100 pathogenic variants in these genes. Most of them are

small pathogenic variants detectable by standard sequence analysis

(5). To improve patient care, genetic testing has now been

implemented in clinical management of CHI (6, 7).

Two major clinical forms of CHI are known. The diffuse

form affects all ß-cells in the pancreas and is mainly caused by

biallelic recessive inheritance of inactivating pathogenic variants

and less frequently by dominantly acting pathogenic variants.

Medical therapy, frequent feeding and subtotal pancreatectomy

are the current treatment regimens for the diffuse form (8). The

focal form is characterized by ß-cell hyperplasia in an affected

islet of Langerhans within the pancreas. Surgical resection of a

focal lesion potentially cures the patient (9, 10). The focal form

appears to be caused by an autosomal recessive pathogenic

variant affecting the paternal homologue of either the ABCC8

or KCNJ11 gene combined with somatic loss of heterozygosity

(LOH) in the lesion (11–13).

ABCC8 and KCNJ11 are neighboring genes and they are

located on the short arm of chromosome 11 in region 11p15

proximal to the imprinting region that when disrupted causes

imprinting disorders Beckwith-Wiedemann syndrome (BWS)

and Russell-Silver syndrome (RSS). The critical genomic

imprinting region is responsible for the expression of growth

regulatory genes depending on the parental origin (14, 15). The

IGF2 gene (MIM 147470) encoding insulin-like growth factor 2

is expressed from the paternally derived chromosome and

functions as growth promoting factor during embryogenesis

and fetal development. The non-coding RNA of the H19 gene

(MIM 103280) is expressed from the maternally derived

chromosome and it is a negative regulator of IGF2 and other
02
genes (16–18). Likewise, the CDKN1C gene (MIM 600856)

encoding the inhibitor of G1 cyclin dependent kinases p57kip2,

is preferentially expressed from the maternal allele. In BWS the

clinical features are variable manifestations of macrosomia,

visceromegaly of intra-abdominal organs and additional

features including hyperinsulinism in a small amount of

patients. However, BWS patients usually do not carry

pathogenic variants in either ABCC8 or KCNJ11 and the

underlying mechanism responsible for hyperinsulinism in

these patients is not known. In BWS, expression from the

maternal chromosome 11p15.5 is compromised either by

imprinting defects or by paternal uniparental isodisomy

(UPD) in 25% of patients and copy number variations (CNVs)

in 9% of patients (14, 19). The focal form of CHI appears to

represent a highly restricted type of UPD11p15 somatic

mosaicism. In focal lesions LOH at 11p15 was first described

using microsatellites and was later confirmed by loss of the

maternal allele (12, 20, 21). Further studies showed an imbalance

of gene expression in focal lesions (22).

In this study, we performed an integrative analysis of LOH,

copy number changes and methylation at the BWS/RSS region

followed by changes in gene expression in focal pancreatic

lesions of patients harboring pathogenic variants in ABCC8

and KCNJ11, respectively.
Materials and methods

Patients and pancreatic tissue samples

Patients were from the German Registry for Congenital

Hyperinsulinism (23). Written informed consent was obtained

from the parents of patients and in accordance to the approval by

the local ethics committees. Patients were treated by surgical

therapy because of the clinical and genetic indication of focal CHI

and localization of lesions by imaging diagnostics (10). Histological

examination of resected pancreatic tissue presented with a lobular

structure. Focal accumulation of atypical islet cells of Langerhans

showed only a small rim of adjacent exocrine parenchyma. The

endocrine cells exhibited huge nuclei and a broad eosinophilic
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cytoplasm. By immunohistochemistry the endocrine cells showed a

strong positive reaction with insulin, whereas no reaction with p57

antibody was observed.
Mutation/variant analysis

Following histological examination of resected pancreatic

lesions DNA and RNA was simultaneously extracted from deep

frozen tissues using the QIAamp DNeasy Blood & Tissue Kit and

QIAmp RNeasy Mini Kit (QIAGEN GmbH, Hilden, Germany).

Pathogenic variants and LOH in genes ABCC8 and KCNJ11

were analyzed by PCR amplification of the corresponding exons

followed by Sanger sequencing using the Big Dye Terminator Cycle

Sequencing kit and ABI 3500XL sequencer (Applied Biosystems,

Foster City, USA). Coding SNPs in ABCC8 (dbSNP, NCBI)

rs1799858 (exon 14), rs1805036 (exon 21), rs1799859 (exon 31),

rs757110 (exon 33) and in KCNJ11 rs5213, rs5215, rs5218, rs5219

were also included in LOH analysis.

Sequences were processed by SeqPilot software 4.2.1 (JSI

Medical Systems GmbH, Ettenheim, Germany). The sequencing

data were compared with reference sequence NM_001287174.1

(ENST00000302539 ; ABCC8 ) and NM_000525 . 3

(ENST00000339994; KCNJ11).
Methylation-specific MLPA

Methylation-specific (MS) Multiplex Ligation-dependent

Probe amplification (MLPA) analysis was carried out using

probemix ME030-C3 as described by the manufacturer (MRC

Holland, Amsterdam, The Netherlands). Amplification products

were identified and quantified by capillary electrophoresis on an

ABI 3500XL genetic analyzer. MLPA profiles were analyzed with

the module MLPA of SeqPilot (JSI Medical Systems GmbH,

Ettenheim, Germany).
Molecular microarray analysis

SNP-based chromosomal microarray (CMA) analysis was

performed using a CytoScan™ HD microarray and the

Chromosome Analysis Suite v4.3.0.71 (Thermo Fisher Scientific,

Waltham, MA USA). All genomic positions were according to the

GRCh37/hg19 build of the human reference genome.
RT-PCR, massive analysis of cDNA ends
(MACE)

Expression analysis of ABCC8 and KCNJ11 was performed

by RT-PCR. The same pancreatic tissue samples were examined

for genomic and RNA changes. Total RNA was reverse
Frontiers in Endocrinology 03
transcribed using the Super ScriptIII™ RT-PCR kit

(Invitrogen, Carlsbad, USA) as recommended by the supplier.

RT-PCR was performed with primers from the coding regions of

the genes using internal exon-spanning primers for ABCC8. For

the single exon gene KCNJ11 the RNA was treated with DNAse

prior to reverse transcription in order to exclude amplification of

residual genomic DNA in the reaction. For controlling specific

transcript amplification of KCNJ11, coding SNPs of ABCC8 were

analyzed in parallel by exon-spanning RT-PCR. RT-PCR

products were analyzed by direct sequencing as outlined above.

MACE was performed on extracted RNA from focal lesions

and adjacent pancreatic normal tissue of the same patients

(Patient 3 and 8) and expression was compared within the

same patient. Data were analyzed as described previously (24)

by GenXPro GmbH, Frankfurt a.M., Germany.
Results

Pathogenic variants in KATP-channel
genes ABCC8 and KCNJ11

Paternally transmitted heterozygous pathogenic variants in

either ABCC8 or KCNJ11 were previously identified during

molecular genetic analysis in blood cells of the patients and

their parents and have been described by Mohnike et al. (23) and

Barthlen et al. (10). Of the 10 patients included in this study, 6

harbored pathogenic variants in ABCC8 and 4 harbored

pathogenic variants in KCNJ11 (Table 1).

The DNA of pancreatic samples was analyzed for LOH

following histological examination of frozen tissue biopsies.

Focal lesions and adjacent normal pancreatic tissue if available

were examined. LOH analysis performed at the pathogenic

variant site in the respective sample in addition to informative

intragenic single nucleotide polymorphisms (SNPs) of both,

ABCC8 and KCNJ11 , genes was close to 100% in 7

samples (Table 1).
Paternal uniparental isodisomy in
focal lesions

Copy number-neutral LOH at the ABCC8/KCNJ11 locus as

determined by MLPA suggested uniparental isodisomy (UPD)

of chromosomal region 11p15 including the ABCC8 and

KCNJ11 loci. At both imprinting centers of the BWS/RSS

region on 11p15.5, an imbalance in methylation typically

found in BWS patients with paternal UPD 11p15 was detected

in 7 focal samples (Table 1; Figure 1). In 3 patients (Patient 6, 7,

10) with intermediate LOH in genomic DNA, paternal UPD

11p15 was similar in pattern but differences were less

pronounced than in the other samples, thus suggesting a

mosaic status for UPD 11p15 in these samples.
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In DNA from pancreatic tissue specimens of patients 1, 3, 7, 8,

and 9 we could demonstrate regions of copy neutral loss of

heterozygosity (LOH) on the short arm of chromosome 11,

suggesting segmental uniparental disomy (UPD) 11. All samples

showed different dimensions of the UPD region with the smallest

region in patient 3 (20,3Mb) and the largest region in patient 7

(43,2Mb) (Figure 1 and Table 2). In all patients the ABCC8 gene is

located within the UPD region. Furthermore the samples showed

different levels of mosaicism ranging from <50% to >75%.
Monoallelic expression of ABCC8 and
KCNJ11 transcripts from paternally
transmitted mutant alleles

In normal pancreatic tissue biallelic expression of ABCC8 and

KCNJ11 was found by sequencing and fragment analysis. In the

normal pancreatic tissue of patient 3 only the ABCC8 transcript

from the maternal wild-type allele was detectable (Figure 2A). This

patient harbors a paternally inherited nonsense pathogenic variant

in ABCC8 resulting in a premature termination codon that is likely

to cause nonsense-mediated RNA decay (NMD). By RT-PCR the

amount of mutant ABCC8 transcripts was below limit of detection

despite apparent heterozygosity at the DNA level. Accordingly,

there are no ABCC8 transcripts identified beyond background level

in the focal lesion when the maternal wild-type allele is lost

(Figure 2A, Patient 3). Monoallelic expression of the mutant
Frontiers in Endocrinology 04
transcripts encoded by the paternally inherited alleles was

observed for all other focal lesions from the remaining patients in

this series (Table 1; Figure 2A). Patient sample 7 showed residual

expression of 10-25% of the wild-type transcript from the maternal

allele concomitant with incomplete LOH in genomic DNA.
Gene expression analysis

Expression analysis for genes located in 11p15 in focal lesions of

patient 3 and 8 revealed downregulation of the imprinted geneH19

(log2: 5.8- and 2.6-fold, resulting from 690 766 and 568 794 reads in

non-lesional pancreatic tissue as compared to 12 659 and 93 624

reads in focal lesions, respectively). Likewise, we found for the

CDKN1 gene 50 766 and 27 339 reads in non-lesional pancreatic

tissue compared to 2 685 and 11 102 reads in focal lesions of

patients 3 and 8, respectively, resulting in changes of log2: 4.2- and

1.3-fold. On the other side, we found for ASCL2 read numbers of 7

002 and 3 417 in non-lesional pancreatic tissue versus 34 140 and 23

683 reads in focal lesions of patient 3 and 8, respectively (Figure 2C).

This suggests a lower expression of ASCL2 in non-lesional tissue

and upregulation of ASCL2 (achaete-scute homolog 2, MIM

601886) relative expression in focal lesions by more than log2:

2.3- and 2.8-fold, respectively. Upregulated gene expression was also

observed for several pancreatic transcription factors involved in

differentiation of the endocrine cell lineages of alpha and beta cells

in both samples investigated (Figure 2C).
TABLE 1 Genetic and expression analysis of pancreatic lesions from focal CHI.

Patient Exon Pathogenic Variant
Nucleotide Protein

Observed freq. [Ref.] Age at surgery (months) mRNA expression LOH Paternal UPD11p15

ABCC8

1 1 c.50T>C p.Val17Ala 2† 10 monoallelic
mutant

++ ++

2 10 c.1530G>T p.Lys510Asn 1 10 monoallelic mutant ++ ++

3 12 c.1792C>T p.(Arg598*) Multiple [CM050968] 7 no (NMD) ++ ++

4 34 c.4162_4164delTTC p.Phe1388del Multiple [CD962164] 9 monoallelic
mutant

++ ++

5 35 c.4241C>T p.Pro1414Leu Multiple
[CM068331]

6 monoallelic
mutant

++ ++

6 35 c.4259C>T p.Ser1420Leu 1 2 monallelic mutant + +

KCNJ11

7 1 c.286G>A p.Ala96Thr 1† 2 mutant/wt
75%/25%

+ +

8 1 c.612C>A p.Asp204Glu 2
[CM083531]

2 monoallelic mutant ++ ++

9 1 c.844G>A p.Glu282Lys 3 [CM071810] 17 monoallelic mutant ++ ++

10 1 c.901C>G p.Arg301Gly Multiple [CM088147] 6 monoallelic mutant (+) +s
Patients described in Mohnike et al. (23) and Barthlen et al. (10).
Pathogenic variants were of paternal origin and heterozygous in blood or adjacent pancreatic tissue.
ABCC8 RefSeq NM_001287174.1, KCNJ11 RefSeq NM_000525.3.
†ABCC8 c.50T>C was recorded once in ExAC (11:17498274 A/G), allele frequency 1.297e-05; KCNJ11 c.286G>A was recorded once in ExAC (11:17409353 C/T), allele frequency of 8.269e-06
[Ref.] pathogenic variants reported in Human Gene Mutation Database (HGMD).
LOH, loss of heterozygosity; ++, >80-100% loss of the maternal allele; +, >50-80% loss of the maternal allele; (+), >20-50% loss of the maternal allele; UPD 11p15, uniparental isodisomy
including paternal imprint; ++, complete pUPD; +, incomplete pUPD.
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Discussion

Our comprehensive molecular analysis of native frozen

pancreatic lesions from 10 focal CHI patients revealed

monoallelic expression of the KATP-channel genes ABCC8 and

KCNJ11 confined to focal lesions. The unaffected pancreatic

tissue showed biallelic expression from both parental alleles at

about similar ratios providing further evidence that both genes

are not subject to parental imprinting in the pancreas. Our

results also demonstrate that the recurrent nonsense pathogenic

variant c.1792C>T (p.Arg598*) leads to loss of the mutated

ABCC8 transcript independent of the second genetic event

presumably due to nonsense-mediated mRNA decay [NMD;

(25)] as shown for patient 3. Monoallelic expression in focal

lesions coincided with LOH at the DNA level. This agrees well

with the concept of somatic mosaicism in focal CHI that

occurred in an islet by loss of the maternal allele in a

progenitor cell and subsequent massive clonal expansion of

the progeny cells (22). Incomplete LOH at the DNA level in 3
Frontiers in Endocrinology 05
samples may be explained by admixture of a small cell

population with features of non-lesional pancreatic cells

residing within that lesion.

In all samples showing LOH, no imbalance in copy numbers

was observed on 11p15 by MLPA. This suggests that neither

deletion nor duplication at 11p15 is involved in focal CHI.

Methylation-sensitive MLPA, however, showed an imprinting

pattern of paternal UPD. These results further support the

proposed paternal isodisomic UPD 11p15 as the major second

genetic event causing LOH in focal CHI (21). Breakpoint-

mapping in pancreatic lesions revealed no common breakpoints

but encompassed the ABCC8 and KCNJ11 genes in the

recombination interval as expected (11, 26). Somatic segmental

UPD also occurs in many types of cancers and may convey a

permissive growth advantage in light of Knudson’s two-hit

hypothesis. A possible mechanism proposed in formation of

segmental UPD in cancerous cells has been mitotic

recombination events of homologous non-sister chromatids.

Alternatively, an initial deletion may be compensated by re-
FIGURE 1

Allele difference plots of chromosome 11 on DNA extracted from pancreatic lesions of patient 1 (green panel), patient 3 (purple panel), patient 7
(blue panel), patient 8 (magenta panel) and patient 9 (orange panel) show a mosaic pattern of segmental uniparental disomy (UPD) of the short
arm of chromosome 11 of different sizes. The extent of the UPD regions indicated by the black rectangles. The vertical dotted line and the
arrow indicates the location of the genes KCNJ11 and ABCC8, which are located within the UPD region in all five patient samples.
TABLE 2 Molecular microarray analysis.

Patient Karyotype according ISCN2020 Level of mosaicism

1 arr[GRCh37] p15.5p14.1(1_27500235)x2 hmz > 75%

3 arr[GRCh37] p15.5p15.1(1_20328840)x2 hmz 50-75%

7 arr[GRCh37] p15.5p12(1_43161203)x2 hmz > 50%

8 arr[GRCh37] p15.5p13(1_33012493)x2 hmz > 50%

9 arr[GRCh37] p15.5p13(1_35381495)x2 hmz 50-75%
Positions were according to the GRCh37/hg19.
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A B

C

FIGURE 2

LOH and expression analysis performed in pancreatic normal tissue and focal lesions of Patient 3 (ABCC8 c.1792C>T) and Patient 8 (KCNJ11
c.612C>A). Heterozygosity of the pathogenic variants and biallelic expression (A) is evident in normal pancreatic tissue (upper panel), whereas
focal lesions show monoallelic expression and LOH (lower panel). Sequencing profiles show the respective pathogenic variants in ABCC8 and
KCNJ11 (indicated by an arrowhead) obtained from genomic DNA and reverse transcribed cDNA from focal lesion and pancreatic (Pancr.)
normal tissue. In cDNA of Patients 3 pathogenic variant c.1792C>T causes NMD of the transcript resulting in lack of the respective ABCC8
transcripts. Epigenetic and copy number analysis (B) at the BWS/RSS imprinting region on 11p15.5 by MS-MLPA demonstrating paternal
UPD11p15.5 in pancreatic focal lesions of Patient 3 (ABCC8 c.1792C>T) and Patient 8 (KCNJ11 c.612C>A). The pattern of hypermethylation of
imprinting center 1 (IC1) at probes for H19 and hypomethylation of IC2 at probes for KCNQ1OT1 indicate paternal UPD11p15.5 typically found in
BWS with UPD. Dark blue bars are results of three controls compared to the focal DNA (light green bars). Differences of controls and patient
DNA shown below each profile. Relative gene expression (log2-fold changes) of BWS/RSS-Region 11p15 (upper panel) and pancreatic
transcription factors (lower panel) by MACE analysis in focal lesions of Patient 3 (light blue) and Patient 8 (dark blue) compared to non-lesional
tissue of the same patient (C). Genes ASCL2 located at imprinting center IC2 and INS are both not subject to genomic imprinting in humans.
Pancreatic transcription factors expressed in progenitors (prog) of the endocrine lineage and in mature a- and b-cells are indicated.
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duplication of the homologous region from the remaining

chromosomal region of the other chromosome (27). In non-

neoplastic tissue, less information exists on tissue-restricted UPD

contributing to disease development. The focal form of CHI

represents one of few examples of a cell-type restricted

segmenta l pa te rna l UPD 11p re sembl ing a BWS

micromosaicism. Based on the prevalence of focal compared to

diffuse CHI, the risk of focal CHI in a child who carries a

paternally inherited recessive pathogenic variant in ABCC8 or

KCNJ11 was estimated to be around 1:270 (28). This may suggest

that cell and tissue restricted segmental UPD are not rare somatic

genetic events in pancreatic and possibly in other tissues. In fact,

late onset ß-thalassemia and sickle cell anemia are other diseases

with a similar mechanism of mosaic segmental paternal isodisomy

at 11p15 unmasking a pathogenic variant in the HBB gene

followed by clonal selection of hematopoetic progenitor cells

due to enhanced proliferation (29, 30).

In focal pancreatic lesions the growth suppressing imprinted

genes H19 and CDKN1C located in 11p15 are downregulated,

while no substantial change in growth promoting IGF2 expression

was detected. However, we observed upregulation of ASCL2

(achaete-scute homolog 2) also located in 11p15 but not subject

to imprinting in humans. The gene encodes a basic helix-loop-

helix transcription factor, which is target of WNT signaling in

intestinal stem cells and exerts oncogenic function in cell culture

(31). In a mouse model, transgenic rescue of Ascl2 expression

leads to placentomegaly associated with BWS indicating a critical

role of Ascl2 in placental overgrowth (32). Our results suggest that

in fact upregulated ASCL2 is a driver in focus formation in

postnatal CHI in addition to downregulated H19 and CDKN1.

Currently, it is not known whether downregulated expression of

H19 or additional components are responsible for upregulation of

ASCL2 in focal lesions of the pancreas. Concomitantly, several key

transcription factors of the endocrine pancreatic linages including

premature stages (33) were upregulated in focal lesions.
Conclusion

In conclusion, our results support the hypothesis of paternal

UPD 11p15 in focal CHI that leads to monoallelic expression of

the mutated channel genes and appears to be the major second

genetic event specifically in the pancreatic endocrine lineage.

Clonal expansion of focal lesions appears to be driven by

upregulation of growth promoting ASCL2 (achaete-scute

homolog 2) in addition to downregulation of growth

suppressing genes CDKN1 and H19.
Frontiers in Endocrinology 07
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