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Background: Immunogenic cell death (ICD)-mediated immune response

provides a strong rationale to overcome immune evasion in acute

lymphoblastic leukemia (ALL). ICD will produce damage-associated molecular

patterns (DAMPs) in tumor microenvironment. However, there are few

studies on the application of DAMPs-related molecular subtypes in clinically

predicting stage III of ALL prognosis. The current study is to identify the

DAMPs-associated genes and their molecular subtypes in the stage III of ALL

and construct a reliable risk model for prognosis as well as exploring the

potential immune-related mechanism.

Materials and methods: We used Target and EBI database for differentially

expressed genes (DEGs) analysis of the stage III pediatric ALL samples. Three

clusters were identified based on a consistent clustering analysis. By using Cox

regression and LASSO analysis, we determined DEGs that attribute to survival

benefit. In addition, the Gene Set Enrichment Analysis (GSEA) was performed

to identify potential molecular pathways regulated by the DAMPs-related

gene signatures. ESTIMATE was employed for evaluating the composition of

immune cell populations.

Results: A sum of 146 DAMPs-associated DEGs in ALL were determined

and seven transcripts among them were selected to establish a risk

model. The DAMPs-associated gene signature significantly contributed to

worse prognosis in the high-risk group. We also found that the high-

risk group exhibited low immune cell infiltration and high expression of

immune checkpoints.
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Conclusion: In summary, our study showed that the DAMPs-related DEGs

in the stage III of children ALL could be used to predict their prognosis.

The risk model of DAMPs we established may be more sensitive to

immunotherapy prediction.

KEYWORDS

damage-associated molecular patterns (DAMPs), immunogenic cell death, immune
microenvironment, prognosis, acute lymphoblastic leukemia

Introduction

Acute lymphoblastic leukemia (ALL) is the most common
type of cancer that affecting children and teenagers (1,
2). The rising incidence rates of ALL are mainly caused
by inherent mutations in genes that lead to uncontrolled
cell growth, infectious, and environmental factors especially
ionizing radiation (3–5). For childhood ALL, the peak incidence
occurs at approximately 2–5 years of age and remains relatively
constant before 20 years of age (6, 7). Obvious improvements
in survival for ALL have been achieved in the past decades.
However, progress is still slow due to the failure in the
identification of genetic and/or molecular loss.

Cancer immunotherapy is an emerging therapy that
activates host immune systems to eliminate tumor cells (8, 9).
Recent studies have demonstrated significant clinical advances
in inhibiting immune checkpoint pathways and provided
a promising strategy for tumor-specific T cell response in
solid tumors (10–12). Unfortunately, immune checkpoint
blockade therapy has not been authorized to treat leukemia
due to most patients failing to revive antitumor immune
response (13–15). Based on clinical evidence of chemotherapy,
the apoptosis of tumor cells can release tumor-associated
antigens and sequentially stimulates an antigen-specific immune
response (16, 17). Thus, tumor cell death induces the
non-immunogenic tumor microenvironment transforming to
immunogenic condition to mediate antitumor immunity, which
is called immunogenic cell death (ICD) (18, 19). When ICD
is developed in tumor microenvironment, it will produce
a series of signaling molecules especially damage-associated
molecular patterns (DAMPs) (20), mainly including calreticulin
expressed on the cell surface, high mobility group box 1
(HMGB1) and ATP molecules secreted by cells, and heat shock
proteins (HSP70, HSP90) (21–23). DAMPs released during
ICD can bind to pattern recognition receptors (PRRs) on
the surface of dendritic cells to initiate the downstream cell
singling responses, and finally activate innate and adaptive
immune responses (24–26). Reviving the patients’ own immune
system to Target leukemia cells is a highly attractive treatment
modality. ICD-mediated immune response provides a strong
rationale to overcome immune evasion in ALL for desired
therapeutic efficacy.

To understand the potency and mechanism of ICD, we
collected ALL patient (0–18 years old) samples at stage III
through Target and EBI database to decipher the singling
molecules that govern the crosstalk between DCs and tumor
cells through DAMPs. To analyze the function of DAMPs
and their immune activation induced by ICD, the DAMPs-
associated genes and molecular subtypes were analyzed through
cell signaling pathways and immune-related responses.

Materials and methods

Datasets for acute lymphoblastic
leukemia patients

The RNA-seq data of ALL patients at stage III (Target-ALL-
P3), within 0–18 years, was downloaded from the Target dataset
(27), and samples lacking survival time and survival status were
removed, and finally 105 patient samples with ALL and 19611
encoding genes were obtained. The expression data of E-MTAB-
1205 was obtained from the EBI database (28), and samples
lacking survival time and survival status were removed, and
finally 50 ALL patient samples and 21,656 genes were obtained.

Acquisition of damage-associated
molecular patterns-related genes

The DAMPs-related genes and expression pattern of protein
were obtained from previous study (29) and 32 related genes
were summarized in Supplementary Table 1.

Preprocess RNA-seq data

For the Target’s RNA-seq data, we first removed the samples
without clinical follow-up information such as survival time
or status. Then, ensemble was converted to gene symbol and
the average of the expressions with multiple gene symbols were
performed. After that, we took the base 2 logarithm of the
expression file (FPKM). For E-MTAB-1205 data analysis, we re-
annotated the dataset through hgu133a.db in the R language to
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remove probes that matched one probe to multiple genes. When
a gene symbol was matched with multiple probes, the mean was
taken as the gene expression value.

Damage-associated molecular
patterns-associated genes for the
consistent clustering of molecular
subtypes in acute lymphoblastic
leukemia

We used the ConsensusClusterPlus R package to determine
subtypes of DAMPs-related genes via consistent clustering (30).
Samples are classified into clusters by using the Canberra
distance metric and the Pam algorithm with setting from 2 to
10. The optimal classification was determined by calculating the
consistency matrix and the consistency cumulative distribution
function (CDF) to obtain the molecular subtypes of the
samples. Each bootstrap contained around 80% of the samples,
compiling the results for 500 bootstraps. The results are shown
in the heatmaps of the consistency matrix generated by the
heatmap package in the R software (30, 31). Generally, the
heatmaps of differential gene expression were generated by
ComplexHeatmap package, in which the clusterProfiler package
and anno GO_keywords were utilized to perform gene ontology
(GO) enrichment analysis on the differential genes and word
clouds were added to represent GO enrichment results.

Establishment and validation of a
damage-associated molecular patterns
risk model

To determine the prognostic value for DAMPs-related
genes, we performed the Cox regression analysis with a P < 0.05
and log(Fold Change) > 1.5, which were considered statistically
significant. The Akaike Information Criterion (AIC) was applied
for the regression analysis, which considered the statistical fit
of the model and the number of parameters used for fitting
by stepAIC in the MASS package (32). Generally, the method
starts with the most complex model and deletes one variable
in turn to reduce the AIC. The smaller AIC value indicates
better efficacy of the model that obtains sufficient fit with fewer
parameters. The LASSO method obtains a more refined model
by constructing a penalty function and further compressing
and setting some coefficients to zero (33). The advantage of
subset shrinkage is retained, and it is a biased estimation for
analyzing data with complex collinearity. Then, we conducted
the LASSO Cox regression to reduce the gene screening scope
and the prognostic significant genes were obtained (34). Lastly,
DAMPs-associated genes and prognostic gene signature were
determined by the multivariate Cox regression analysis. We
then calculated the risk score for each patient sample using the

following formula: RiskScore=6βi× Expi, in which Expi refers
to the gene expression level of the DAMPs-related phenotype
and prognosis-related gene signature, and βi is the regression
coefficient for the corresponding gene. Based on the threshold
“0”, the patients were divided into high and low risk groups,
the survival curve was drawn by the Kaplan–Meier method
for prognostic analysis, and the significance was determined by
using the log-rank test.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed to
identify signaling pathways regulated by the different molecular
subtypes (35). The Molecular Signatures Database (MSigDB)
(36) was developed and utilized for GSEA analysis. All the
DAMPs-related gene candidates from KEGG pathway were
analyzed by GSEA through clusterProfiler package (37). P-value
(calculated by R software) smaller than 0.05 was determined
as statistically significant. The correlation coefficients were also
calculated by R.

Evaluation of immune cell abundance
in tumor microenvironment

We used the ssGSEA algorithm (38) to quantify the relative
abundance of immune cells in tumor tissue. Meanwhile, we also
utilized the ESTIMATE (39) to calculate the fractions of immune
cell types between low- and high-risk groups. The immune
cell type score of each sample was estimated by MCPcounter
package (40).

Prediction of responsiveness to
immunotherapy

We used the tumor immune dysfunction and exclusion
(TIDE) algorithm1 to verify the effect of immune checkpoint
inhibitor score (IMS) in the prediction of clinical responsiveness
to immune checkpoint blockade (ICB). The TIDE algorithm is a
computational method for predicting ICB responsiveness using
gene expression profiling (41).

Differential expression analysis

Limma package was used to identified differentially
expressed genes (DEGs) with threshold value logFC > 1.5 and
p < 0.05.

1 http://tide.dfci.harvard.edu/
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Statistical analysis

The data analysis in this study was supported by Sangerbox
platform (42). Data were expressed as the mean ± standard
deviation (s.d.). Statistical significance was determined by
Wilcox test through R software when different groups were
compared. The comparison between different DAMP subgroups
were performed by the Kruskal-Wallis test. Kaplan Meier curves
were plotted to show the survival time differences. Log-rank
Mantel-Cox test was used for survival curves.

Results and discussion

Using the damage-associated
molecular patterns-associated genes
for the consistent clustering of
molecular subtypes in acute
lymphoblastic leukemia

To understand the expression patterns of DAMPs-related
genes in ALL, the tumor tissue samples were obtained from the
Target dataset containing clinical information and 32 DAMPs-
related genes. Among these genes, 29 genes were detected in
the Target dataset, while P2Y2R, P2Y6R, and P2Y12R were
not identified. Then we constructed consistent clustering of
29 DAMPs-related gene expression profiles. CDF was utilized
to decide the optimal cluster number. When k = 3, the
clustering output was relatively consistent (Figure 1A). The
CDF delta area curve analysis showed similar trend after three
clusters (Figure 1B). We therefore selected k = 3 to obtain
three molecular subtypes for further analysis. The heatmap
of DAMPs-related genes in the three clusters was shown in
Figure 1C. Further prognostic analysis of these three subtypes
were performed. The results showed the significant differences
in survival probability among these three subtypes. Compared
to the other two clusters, the samples in clust1 had the best
prognosis (Figure 1D). We further calculated DAMPs-related
scores by using ssGSEA method. As shown in Figure 1E, we
found that the clust1 subtype with the best prognosis had a
significantly higher DAMPs score than the other two subtypes.
The heatmap of DAMPs-related gene expression in these three
isoforms was shown in Figure 1F, and most genes were relatively
low expression in the clust3 subtype.

Pathway analysis for molecular
subtypes in acute lymphoblastic
leukemia

To better understand the functional characteristics of these
three clusters, we performed differential expression analysis

through the limma package and sorted the genes based on
log2 fold change (LogFC > 1.5, P < 0.05) values. GSEA
was further performed based on differentially expressed genes
(DEGs) for each cluster to analyze KEGG pathway. The results
showed that cluster-2 has no significantly regulated pathways,
and clust1 has three inhibited pathways and 21 activated
pathways, while 21 inhibited pathways were shown in clust3
(Figures 2A,B). Particularly, compared to clust3, clust1 showed
significant activation of immune-related signaling pathways
including cytokine and its receptor interaction, Toll like
receptor downstream signaling, chemokine signaling pathways
and intestinal immune network for IGA production, indicating
the immune response to ALL tumor in clust1. Next, we
calculated each patient’s score for each KEGG pathway using
the ssGSEA method under the GSVA package. Each pathway’s
scores across three clusters were compared. Pathways with
p-values smaller than 0.05 are selected as key pathways. As
shown in Figure 2C, clust3 showed suppressed immune-related
signaling pathways due its poor prognosis, while clust1 has
obvious activation of immune associated pathways in ALL
tumor microenvironment.

Immune signature of molecular
subtypes in acute lymphoblastic
leukemia

To further elucidate the differences in the immune
microenvironment of patients between different molecular
subtypes, we first calculated the scores of 28 immune cells
by the ssGSEA method through immune cell-related gene sets
(38). We found significant differences in some immune cells
such as macrophages among these three subtypes (Figure 3A).
Moreover, the immune score in each sample was calculated by
the ESTIMATE method and the increased immune infiltration
inside tumor tissues was observed in the clust1 subtype with
the best prognosis (Figure 3B). Tumor-associated macrophages
play a critical role in immune regulation including the capability
of antigen presentation, Toll-like receptor signaling pathway-
induced immune activation and FC receptors existing on the
surface of macrophages, which can kill tumor cells through
natural killer (NK) cell-mediated specific antibody-dependent
cellular cytotoxicity (ADCC). As shown in Figure 3A, we
found significant change in the macrophages among the three
molecular subtypes. Therefore, we used the ssGSEA method to
calculate the score of Toll like receptor core, NK cytotoxicity,
and antigen processing and presentation of each sample through
the signaling pathways. As shown in Figure 3C, there were
significant differences in the macrophage-related scores of the
three subtypes. Finally, we downloaded the immune checkpoint-
related genes reported from previous study (43) and compared
the expression of immune checkpoints in the three subtypes
(Figure 3D). We found significant differences in the expression
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FIGURE 1

Consensus clustering of molecular subtypes in acute lymphoblastic leukemia depending on damage-associated molecular patterns-associated
differentially expressed genes. (A) Cumulative distribution function (CDF) curve of Target dataset samples. (B) CDF Delta area curve. The relative
change in the area under the curve for each category number k in comparison with k−1 is displayed. The number k is indicated by the
horizontal axis and the relative change in the area under the curve is represented by the vertical axis. (C) The heatmap for the consensus matrix
with k = 3. (D) K-M survival curves showed the differences of among the three clusters. (E) Comparison of DAMPs scores of the three subtypes
in the Target dataset. (F) Heatmap of DAMPs-related gene expression between different molecular subtypes. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001; ns: no significance.

of some immune checkpoints among the three subtypes. Our
findings indicated that immune microenvironment and their
related signaling pathways may be responsible for the prognosis
of ALL among the three DAMPs-related molecular subtypes.

Identification of key genes for
damage-associated molecular patterns
phenotype and construction of
damage-associated molecular
patterns-related risk models

In the previous analysis, we have identified three molecular
subtypes based on DAMPs-associated genes and found
differences among the subtypes in immune signatures and
pathways. Among the three subtypes, clust3 had a poor
prognosis, clust2 was the second, and clust1 had the best
prognosis. Then, we performed differential expression analysis
on clust1 vs. no_clust1 subtypes, clust2 vs. no_clust2, clust3
vs. no_clust3 subtypes to screen differential gens. In clust1 vs.
no_clust1, 379 genes were upregulated, and 90 downregulated

genes were screened, while 109 upregulated genes and 86
downregulated genes were found in clust2 vs. no_clust2. There
were 821 upregulated genes and 1893 downregulated genes in
clust3 vs. no_clust3. The volcano plots of difference analysis
were shown in Supplementary Figures 1A,C,E. Finally, we
screened a total of 2,927 differential genes for further analysis.
The heatmaps of differential gene expression were generated
(Supplementary Figures 1B,D,F).

Next, we performed univariate cox analysis on the 2,927
differential genes and identified a total of 146 genes with
a significant impact on prognosis (P < 0.001), including
85 genes in Risk group and 61 genes in Protective group
(Figure 4A). We further performed a LASSO-Cox regression
analysis to shrink the scope of gene screening among these
146 key genes. As shown in Figure 4B, the trajectory-based
change of each independent variable was analyzed. With the
gradual increase of lambda, the number of independent variable
coefficients tending to zero also gradually increased. The penalty
parameter was established through 10-fold cross validation and
the confidence interval under each lambda was analyzed. As
shown in Figure 4C, the model reaches the optimum when
lambda is 0.0706. Therefore, we selected 14 genes as the Target
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FIGURE 2

Pathway analysis for molecular subtypes in ALL. (A) GSEA analysis of clust1 vs. no_clust1 in the Target dataset; (B) GSEA analysis of clust3 vs.
no_clust3 in the Target dataset; (C) GSVA analysis of pathway enrichment scores for each of the three subtypes (*P < 0.05; **P < 0.01;
***P < 0.001; and ****P < 0.0001).

genes and further performed stepwise multivariate regression
analysis. As shown in Figure 4D, by analyzing a multivariate
Cox regression, seven genes (HLA-DQB2, HIST1H1A, MEST,
ALX3, KIF12, CCDC175, and HOXA11) were selected to build
a gene signature model as follows:

RiskScore = −0.327×HLA− DQB2− 0.476×HIST1H1A

− 0.417×MEST + 0.291× ALX3+ 0.538

× KIF12+ 0.449× CCDC175+ 0.25

×HOXA11.

We then used the Target data as the training data set and
the risk score of each sample was calculated based on the
expression levels of the seven genes. As shown in Figure 5A, the
classification efficiency of prognostic prediction demonstrated
that the area under the time-dependent ROC curves (AUC)
reached 0.9 in 1–5 years, indicating the predictive capability of
this model. Z-score was also performed on RiskScore and the
samples with RiskScore more than zero were assigned into high-
risk group, and the samples with less than zero risk belonged

to low-risk group. As shown in Figure 5B, the low-risk group
showed excellent survival benefit compared to high-risk group
(p < 0.0001).

To better verify the robustness of the model, we used
the E-MTAB-1205 dataset for validation and the risk model
established by these seven genes was used to perform prognostic
classification on RiskScore. As shown in Figure 5C, the
classification efficiency of prognosis prediction was analyzed in
1–5 years, and the AUC reached 0.7 in 2 and 3 years. As shown in
Figure 5D, the K–M curve of low-risk group showed prolonged
survival time than that of high-risk group (P < 0.05).

Clinical phenotypic differences
between damage-associated
molecular patterns-related subtypes
and risk models

Then, we showed the distribution of high- and low-risk
groups in age, gender, and DAMPs type by Sankey diagram
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FIGURE 3

Immune signature among molecular subtypes of ALL in the Target dataset. (A) Differences of 28 types of immune cell scores between different
molecular subtypes; (B) Differences in immune infiltration between different molecular subtypes through ESTIMATE; (C) Differential analysis of
macrophage-involved pathways between different subtypes; (D) Differentially expressed immune checkpoints between different subtypes
(*P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001).

(Supplementary Figure 2A). The difference in RiskScore
between age, gender, and DAMPs type was further analyzed.
The results showed that clust3 with the worst prognosis
had higher risk values compared to the other two subtypes.
Moreover, patients with death status showed higher risk
scores than those in alive group (Supplementary Figure 2B),
indicating the risk model we established showed high sensitivity
and specificity.

RiskScore analysis of immune
microenvironment and signaling
pathways

We first analyzed the immune checkpoint-related gene
expressions between high- and low-risk groups in the
Target dataset and found that some immune checkpoints
showed significant differences between these two groups. The

correlation analysis between 28 immune cell scores and risk
scores were performed and we found that some immune cells
including activated B cells, NK cells, effector memory CD4
and CD8 T cells were negatively correlated with risk scores
(Supplementary Figure 3), indicating that high immune cell
infiltration may suppress the tumor progression. Further,
we calculated the scores of 10 different cell types through
MCP-counter. The scores of some cell types such as NK cells,
monocytic lineage, neutrophils, and endothelial cells were
significantly different between high- and low-risk groups
(Figure 6A).

Finally, we used the GSVA package (44) to estimate the
pathway score of each sample for each KEGG pathway. The
correlation analysis between these pathways and their risk
score through Hmisc package (cor > 0.4 and p < 0.001)
was performed to screen the pathways significantly related to
the risk score. Figure 6B showed eight signaling pathways
were significantly correlated with the risk score, of which the
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FIGURE 4

Identification of prognostic genes. (A) A total of 961 promising candidates were identified among the DEGs; (B) The trajectory-based change of
each independent variable with lambda; (C) The optimal λ selection by cross-validated deviance of LASSO fit; (D) Multivariate cox analysis and
the coefficients of prognosis-related genes.

T cell receptor signaling pathway was positively correlated,
while the other seven pathways had significant negative
correlations.

Correlation analysis between the
expression of key damage-associated
molecular patterns-related genes in
risk models and immune infiltration

We established a risk model for seven key DAMPs-related
genes and found no significant difference in the distribution

of risk models in terms of age and gender, which indicated
that these two factors were not associated with ICD in ALL
disease. To better analyze the DAMPs-related risk model, data
showed that four of the seven genes belong to risk group and the
other three genes were related to protective group (Figure 7A).
Moreover, three protective-related genes were highly expressed
in the low-risk group, while the expression of other risk-
related genes were increased in the high-risk group. We further
analyzed their survival benefit and the results showed that three
protective-related genes with low expression or four risk-related
genes with high expression had a worse prognosis than that in
other groups (Figure 7B). We further calculated the immune
score of patients by ESTIMATE and the relationship between
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FIGURE 5

Validation of DAMPs-related risk model. (A,B) ROC curve (A) and K–M survival curve (B) of risk model constructed by seven genes in Target
dataset; (C,D) ROC curve (C) and K–M survival (D) of risk model constructed by seven genes in E-MTAB-1205 dataset.

these seven genes and immune infiltration were estimated by
Pearson’s correlation analysis (Figure 7C), in which HLA-DQB2
and CCDC175 genes were significantly positively correlated
with immune infiltration.

Performance comparison between risk
model and tumor immune dysfunction
and exclusion

Through the existing analysis, we collected the clinical
samples after immunotherapy (IMvigor210 and GSE135222)
and constructed DAMPs risk model scores by using these
seven screened genes. The online tool TIDE was utilized to
evaluate the TIDE score of immunotherapy effect. As shown in
Figures 8A,D, we divided the high and low risk groups by the

median value using the model we established and found poor
prognosis in high-risk group. Next, we compared the prognosis
of the response to immunotherapy predicted by TIDE between
the two datasets. The result showed no significant difference
in the prognosis (Figures 8B,E). We further calculated the
AUC of the DAMPs risk model and TIDE on the effect
of immunotherapy and found that the effect of the DAMPs
risk model on immunotherapy was better than that of TIDE
(Figures 8C,F).

Discussion

Acute lymphoblastic leukemia is one of the leading
causes of cancer-related mortality in children and teenagers.
Extensive studies have demonstrated that various factors such
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FIGURE 6

RiskScore analysis of immune microenvironment and signaling pathways. (A) Differences in 10 different cell types predicted by the MCPcounter
method between high- and low-risk groups; (B) Heatmap of the correlation analysis between risk scores and potential immune modulations
(*P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001).

as genetic condition and radiation/chemical exposures
contribute to ALL development (45). While improved
survival for adult ALL have been achieved during the past
decades, the prognosis for pediatric ALL is still poor due
to limited understanding in disease-related gene signatures
and/or failure in determination of certain molecular loss.
Bioinformatic analysis on next-generation sequencing data

has recently emerged as a powerful tool for the exploration
of molecular mechanisms, which allows to determine various
molecular subtypes and gene signatures as well as facilitates
the establishment of risk models for disease development
prediction. By using RNAseq data generated from pediatric
(0–18 years old) ALL patient samples, we performed gene
signature analysis, identified DAMPs-related subtypes and
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FIGURE 7

Correlation analysis between the expression of key DAMPs-related genes in risk models and immune infiltration. (A) The expression of seven key
genes in high- and low- risk groups; (B) K–M survival curve of high- and low- gene expression group; (C) Pearson correlation analysis between
gene expression and immune score (*P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001).

FIGURE 8

Performance comparison between risk model and TIDE. (A) K–M curve and ROC curve of DAMPs risk score in IMvigor210 dataset; (B) K–M
curve and ROC curve of immunotherapy response predicted by TIDE in IMvigor210 dataset; (C) DAMPs risk score in IMvigor210 dataset and
ROC curve of immunotherapy effect predicted by TIDE; (D) K–M curve and ROC curve of DAMPs risk score in GSE135222 dataset; (E) K–M
curve and ROC curve of immunotherapy response predicted by TIDE in GSE135222 dataset; (F) DAMPs risk score of GSE135222 dataset and
ROC curves of immunotherapy effect predicted by TIDE.

signaling pathways, and established risk prediction models and
scoring systems.

Herein, we found that clust1 was associated with better
prognosis and responsiveness to immunotherapy. A sum
of 146 DAMPs-associated DEGs in pediatric ALL samples
were identified. By screening of gene signatures, we obtained
seven significant genes including HLA-DQB2, HIST1H1A,
MEST, ALX3, KIF12, CCDC175, and HOXA11, showing
robust correlation with ALL development. Among these
genes, the partial control of human leucocyte antigen (HLA)

genes like HLA-DQB2 on immune response to infection
(45, 46) could be used as a reasonable therapeutic target,
which will be further explored to revive the antitumor
immunity in ALL. Some studies have demonstrated
that MEST promotes invasion and metastasis of solid
tumors and by coordinating and activating the NF-κB
and Wnt/β-catenin signaling pathways (47, 48), which is
consistent with our findings of MEST gene and its related
signaling pathways in ALL. The functional and clinical
significance of MEST and its potential target against ALL
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could be considered. Overall, the correlation between above
mentioned genes and ALL prognosis may provide potential
molecular targets for the treatment of pediatric ALL patients.

We further established a prognostic model based on those
genes and performed validation studies to test the prediction
efficiency on high- and low-risk groups. The results showed that
DAMPs-associated gene signature was significantly associated
with worse prognosis in the high-risk group. We also found that
the high-risk group exhibited lower immune cell infiltration and
higher expression of immune checkpoints compared to low-risk
group. The tumor-infiltrating immune cells and immune scores
were estimated by ESTIMATE and ssGSEA for each ALL-patient
sample. We found that the activated B cells, NK cells, effector
memory CD4 and CD8 T cells was enriched in the low-risk
group and correlated with good clinical outcome. Patients with
higher effector T cells, NK cells, and B cells infiltration showed
better prognosis, which was similar with previous observations
(49, 50). As is reported, high expression of immune checkpoints
indicates an immunosuppressive microenvironment in the
tumor (51). High-risk patients showed up-regulation of immune
checkpoints-related signaling pathways, which is associated
with poor survival benefit and low immune cell infiltration
inside ALL. Collectively, the model we established has also
been evaluated by clinical datasets of immunotherapy which
showed robust antitumor immunity in the low-risk group
than that in the high-risk group. The results demonstrated
that our risk model had high accuracy and sensitivity to
predict the prognosis.

The findings here await further validation in experimental
settings, which can be a potential future research direction.
Additionally, the comprehensive tumor microenvironment
within pediatric ALL including the interaction between tumor
cells and immune cells is another promising direction worth
further exploration.

Conclusion

In this study, three molecular subtypes related to prognosis
were constructed by DAMPs-related genes and their function
and immune-related pathways in stage III ALL were analyzed
through signaling pathway and immune analysis. The seven
key DAMPs-related genes were analyzed and screened through
univariate cox analysis, LASSO, and stepwise regression.
Finally, a risk model was constructed through multivariate
cox analysis. The clinical phenotype differences, immune and
pathway characteristics were used to estimate the DAMPs risk
model, which was further verified by two clinical datasets in
immunotherapy. The risk model of DAMPs we established may
be more sensitive to immunotherapy prediction.
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