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Abstract: Electromyography (EMG) is sensitive to neuromuscular changes resulting from ischemic
stroke and is considered a potential predictive tool of post-stroke gait and rehabilitation management.
This study aimed to evaluate the potential myoelectric biomarkers for the classification of stroke-
impaired muscular activity of the stroke patient group and the muscular activity of the control healthy
adult group. We also proposed an EMG-based gait monitoring system consisting of a portable EMG
device, cloud-based data processing, data analytics, and a health advisor service. This system was
investigated with 48 stroke patients (mean age 70.6 years, 65% male) admitted into the emergency
unit of a hospital and 75 healthy elderly volunteers (mean age 76.3 years, 32% male). EMG was
recorded during walking using the portable device at two muscle positions: the bicep femoris muscle
and the lateral gastrocnemius muscle of both lower limbs. The statistical result showed that the mean
power frequency (MNF), median power frequency (MDF), peak power frequency (PKF), and mean
power (MNP) of the stroke group differed significantly from those of the healthy control group. In the
machine learning analysis, the neural network model showed the highest classification performance
(precision: 88%, specificity: 89%, accuracy: 80%) using the training dataset and highest classification
performance (precision: 72%, specificity: 74%, accuracy: 65%) using the testing dataset. This study
will be helpful to understand stroke-impaired gait changes and decide post-stroke rehabilitation.

Keywords: electromyography; physiological biomarker; gait; stroke; machine learning

1. Introduction

Stroke is one of the leading causes of disability and death in the elderly community [1].
Stroke happens due to brain-cell death in the absence of blood flow to brain cells. The
blood flow is hampered due to rupture and the block in blood vessels. The neuro-electrical
activity of the representative cortical lobe is disturbed due to this damage to brain cells
and destabilizes the overall neural system. Acute ischemic stroke and intracerebral hemor-
rhage are the leading causes of neurological disorders among the elderly population, and
affect millions of people with neurological deficits, physical disabilities, and dependent
lifestyles [2,3]. An ischemic lesion affects the functional network architecture of cortical ar-
eas and hampers functional motor and cognitive outcomes [4–6]. Neurological impairment
due to stroke contributes to disability, poor functional improvement, and lower quality of
life. In addition, the cognitive deficit can reduce the usefulness of post-stroke rehabilitation
and vastly increase the risk for psychological disorders such as depression and anxiety.
Moreover, the economic burden of post-stroke treatment of patients with physiological
impairment is significantly greater than those without.

Although significant advances have been made in early interventions to treat post-
stroke patients, most survivors have remaining ambulation difficulties and hemiplegia.
Hemiplegia generally reveals asymmetrical deficits in gait and is one of the most common
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disabilities observed in the post-stroke phase. Asymmetrical gait can result from muscle
weakness, leading to incompetent mobility, lack of balance, and the threat of muscular
wounds to healthy limbs [7,8]. Post-stroke recovery depends on neural adaptation and
task-specific repetitive exercise according to the basics of neuroplasticity [9]. Frequent task-
based ambulation can recover muscular injury and improve motor control and movement
coordination in post-stroke patients.

Precise identification of aspects that predict cognitive and functional outcomes is
needed for making clinical decisions, setting feasible targets and plans for rehabilitation,
and directing patients accordingly. Functional motor and cognitive deficits are usual and
persistent consequences of stroke and a significant factor responsible for physical dysfunc-
tion, slow physiological recovery, and a worse post-stroke lifestyle [10]. Conventional
mental and neurological evaluations cannot be conducted immediately after stroke due
to the medical aspects (e.g., fluctuating levels of arousal, pain, confusion, tiredness) and
functional obstacles (e.g., sensory, linguistic, motor shortfalls) that hamper the patients’
capability to approach physiological examinations [11].

The physiological signal can be an effective tool of a real-time physiological monitor-
ing system for early prognostics in daily life and a clinical environment [5,12–16]. Tracking
muscular activity is essential for identifying gait impairment due to stroke [5,15]. Electroen-
cephalography (EMG) is a non-invasive muscular activity monitoring method sensitive to
irregularities of neuromuscular coordination caused by stroke. Several real-life applications
of EMG have been investigated, such as an assistive tool for pedal-switching operation
for elderly drivers [17] and controlling robotic hands [18]. During the rehabilitation of
stroke patients, EMG changes can help to trace post-stroke patients in the non-clinical and
clinical environments. Myoelectrical activity may vary with the selection of muscles of
lower limbs. Understanding stroke-impaired changes in muscle and associated biomechan-
ical properties guides post-stroke rehabilitation. In particular, the bicep femoris and the
lateral gastrocnemius showed greater differences in myoelectrical activities of lower limb
movement between stroke and control groups in previous studies [19,20].

EMG is the most widely used technique to gather information about the neuro-
muscular control of muscles and is commonly studied in research and clinical environ-
ments [21,22]. EMG is successfully practiced in clinics for diagnostic support [23], surgical
interventions [24], and personalized rehabilitation protocols, including myoelectric control-
based biofeedback [25], supporting clinical decisions [26], evaluating therapy, following up
patients, evaluating fatigue [27], and supporting forensics medicine [28]. Researchers are
successfully utilizing EMG to increase the quality of life of post-stroke patients. Surface
EMG-based machine learning has been applied in gait-assistive robotic technologies [29,30]
and treadmills [31] for motor rehabilitation, movement analysis for gait disorders, and re-
covery assessments [32]. Recently, EMG has been studied as an alternative brain–computer
interaction (BCI) for detecting movement intention [33]. Moreover, feasibility studies have
been performed to use EMG for muscle–computer interfaces [34] and human–computer
interfaces [35]. EMG has also been investigated to assess post-stroke gait recovery. F.
Infarinato et al. have reported EMG outcomes of eight post-stroke patients to understand
the association of conventional therapy and robot-assisted gait training with changes in
gait kinematics and EMG for functional gait recovery [29]. This study reported a significant
difference in bilateral symmetry in the anterior tibialis muscles during the progression
of rehabilitation and no significant changes in muscle activation patterns associated with
functional gait recovery. Although most of the related studies reported non-significant
alternations of muscle activity during the progress of gait rehabilitation [29–31,36,37], a few
controversies have been reported for stroke patients [38] and spinal cord injury patients [39],
showing significant changes in the myoelectric pattern.
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Time-domain and frequency-domain analysis are most commonly used for surface
EMG analysis to assess motor neurons and innervation zones and evaluate muscle contrac-
tion velocity [40]. Time-domain features, such as waveform length (WL), root mean square
(RMS), and Willison amplitude (WAMP), have been utilized to develop the optimal feature
vector [40,41]. Among frequency-domain analysis, mean frequency (MNF) and median
frequency (MDF) are the most effective and widely used frequency-domain features for
assessing muscle fatigue [40]. However, the frequency-domain power spectrum approach
showed better accuracy to assess muscle fatigue [42]. Most of the studies reported either
statistical and hypothesis tests or machine-learning analysis [43]. Simultaneous studies of
statistical and machine-learning approaches have remained limited. Moreover, the majority
of studies reported the outcomes of a small sample group. The machine learning model,
developed with a small dataset, may cause overfitting problems, which could lead to
flawed and misguided predictions. In addition, wearable sensors, big-data, and machine-
learning-based cloud computing frameworks are becoming state-of-art technology in health
monitoring [4], sleep monitoring [4,44], gait monitoring [5], driving monitoring [6], etc.
Therefore, studies are needed to check the feasibility of an EMG-based gait monitoring
system including wearable sensors, cloud data processing and a machine learning approach
for muscular disorders, in particular, stroke-impaired gait.

We hypothesized that variations in the muscle activity due to the stroke-affected
neuromuscular deficit would be acknowledged by the EMG measurements. Feature
extraction using signal processing and dimensionality reduction, feature ranking, and
machine learning (ML) methods would be a trustworthy technique for understanding the
post-stroke muscular impairment of stroke patients.

We explored the neuro-electrical activity of the stroke group and the control group
through EMG during gait. Our objective was to quantify EMG features for understanding
myoelectrical changes because of stroke-derived physiological impairments and to iden-
tify the biomarkers to distinguish between stroke patients and healthy adults. The key
contributions of this paper can be summarized as follows:

• We established an EMG-based neuromuscular disease prediction platform integrating
the wireless EMG device, data streaming to a big data server, live signal processing in
a big data platform, dashboards for the clients and clinicians for machine learning,
and rule-based predictions of neuromuscular diseases;

• We investigated stroke-impaired EMG indices, including power spectrum features
using statistical methods and hypothesis tests;

• We utilized the supervised machine learning algorithms to classify myoelectrical
features of the stroke patients and the healthy adult group.

The rest of this study was organized into five sections. Section 2 described the
experimental protocol and the methodology of the signal processing, statistical, and the
machine learning analysis. The results are demonstrated in Section 3, followed by the
discussion. Finally, the conclusions were narrated in Section 5.

2. Materials and Methods
2.1. EMG-Based Disease Prediction System

An EMG-based neuromuscular health monitoring system was proposed to predict
muscular diseases for the rehabilitation management of post-stroke patients. As demon-
strated in Figure 1, this system consisted of wireless EMG sensors, the data transfer
interface, the networking gateway, cloud storage and processing, and the physiological
analytics service. The sensors generated electromyogram data as health level 7 (HL7 V2)
messages, produced according to the protocol of the standards of HL7 International, to
the Elasticsearch database (DB) through the Wi-Fi or LTE network [45]. Elasticsearch
performs data indexing and stores the data in a No-SQL database. The feature extraction,
feature selection, and machine learning algorithms were implemented in the Apache Spark
platform for real-time processing. Wearable devices generate a vast amount of data and
can be characterized in terms of 3Vs (volume, variety, and velocity) for big data [16]. These
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data need to be processed using big-data-based processing for real-time healthcare services.
We utilized the Apache Hadoop platform for the online processing of wearable big health
data [46]. Relevant muscular features, such as spectral power measures, were extracted
using feature extraction algorithms. In the next step, feature selection found out the key fea-
tures of diseases and reduced the computational time by eliminating unnecessary features
for training the machine learning models. The selected neuromuscular features were fed
to the ML model for training classification models. The medical knowledgebase showed
the related muscular disorders or gait complications as assistance for rehabilitation and
post-stroke treatment. All processed data could be visualized in dedicated monitors for
patients, service providers, and assigned medical doctors.
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Figure 1. Overview of the EMG-based disease prediction system. The EMG data acquisition system consisted of a
wearable EMG sensor. This system feeds the EMG data to a cloud server using Wi-Fi or LTE networks. In the cloud server,
Elasticsearch indexes the data and acts as the No-SQL database. Spark performs feature extraction, feature selection, and
machine-learning-based prediction and provides a query service for front-end service applications. This ambulatory system
was developed to identify the changes in myoelectric features due to ischemic stroke or other disabilities and generate
health advice to assist patients and hospitals.

2.2. Study Protocol

This study was conducted according to a protocol approved by the Institutional Re-
view Board of Korea Research Institute of Standards and Science, Daejeon, South Korea.
Before the start of the experiment, the experimental scenario was explained to the partic-
ipants. EMG electrodes were attached to the participants, connected to a wireless EMG
device. At first, the participants were instructed to sit on a sofa for three minutes, followed
by line-following walking. The subjects were instructed to walk along a designated line
of a rectangular path inside the experiment hall. There was no definite walking duration,
but subjects were allowed to finish the path of around 200 m walking in a natural way. As
shown in Figure 2b, the study consisted of walking activities. EMG data were continuously
recorded throughout the entire experiment. The temperature of the experiment room was
kept at 24 ◦C and the relative humidity was maintained at 40%.
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2.3. Demographics of Participants

Forty-eight stroke patients and seventy-five healthy adults were recruited for this
study. The target group consisted of 48 stroke patients (mean age: 72.2 ± 5.6 years,
62% male). The control group comprised 75 healthy adults (mean age 77 years, 31% male).
Both stroke and control groups were selected within the same age group range to decrease
age-linked gait pattern variation. The participants comprised patients referred to the Stroke
Rehabilitation Center, Chungnam National University Hospital, Daejeon, South Korea.
Prior ischemic stroke occurrence of the patients was confirmed through MRI scans or CT
(clinically). The control group comprised healthy adults without any history of ischemic or
hemorrhagic stroke or known underlying gait disorders.

2.4. Data Acquisition

In this study, the EMG was acquired utilizing a Myoresearch DTS System (Noraxon
Inc., Scottsdale, AZ, USA) and using a Noraxon MR3 Myomuscle software program. The
surface EMG was recorded by applying disposable, wet-gel, self-adhesive Ag/AgCl snap
dual electrodes to the left and right sides of the participants’ leg muscles connected to a
wireless DTS EMG sensor with DTS EMG Pinch Lead wires (Common Mode Rejection
Ratio > 100 dB, Gain: 500). The signals were transmitted to a 16-bit analog to digital (A/D)
converter receiver (Noraxon DTS receiver) and saved to a computer at a sampling rate of
1500 Hz using MR3 software (Version 3.10.16, Noraxon USA Inc., Scottsdale, AZ, USA).
Electromyography data were bandpass-Butterworth-filtered (high pass of 15 Hz and low
pass of 450 Hz). A low-alcohol swab was used to clean the participants’ skin to reduce the
impedance. As shown in Figure 2a, we only recorded EMG data taken on the two lower
limb muscle positions: the bicep femoris muscle and the lateral gastrocnemius muscles of
both left and right legs. Participants were recommended not to consume any drink such
as coffee or alcohol and no physical exercise before the tests. During the collection of the
EMG data, patients were instructed to walk in a normal manner. The raw four-channel
EMG signals are displayed in Figure 2b. In addition, single-channel ECG was recorded for
filtering the ECG artifact from the EMG signal. An experimental scenario of the EMG data
acquisition is displayed in Figure 2c.

2.5. Pre-Processing

All recorded signals were manually inspected for artifacts, such as physiological sig-
nals, low-frequency motion artifacts, power line noises, or ADC clipping. The EMG signal
was cleaned out of the 60 Hz AC noise of the local grid. The artifacts of electrocardiography
(ECG) signals were filtered out of the EMG signal [47]. We used FastICA algorithms for
denoising the EMG signal [48]. ICA utilizes ECG recordings to isolate EMG waveform from
the cardiac artifacts. Low-frequency motion artifact noise was caused by movements of the
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wires attached to the EMG sensors and by the movement of the sensor relative to the skin.
A signal-to-noise ratio (SNR) was estimated for each signal by taking the power ratio of
the EMG signal and the second undisturbed measurement that was recorded immediately
following the contraction [49,50]. If contamination was noticeable in the recorded signal or
the SNR was below 18 dB, the signal was removed from the dataset [50].

2.6. Feature Extraction

The EMG frequency and power analysis extracted myoelectrical measures result-
ing from the power spectrum of an EMG signal. EMG waves were analyzed using the
Welch periodogram estimation method, averaging time-divided portions of the signal
and decreasing noise influence, and creating a 2D diagram displaying the power of a
certain frequency component of a signal [51]. In this study, the fast Fourier-transform
(FFT) method was applied to artifact-free EMG signals to determine the power spectral
density (PSD) of the frequency components in the EMG signal. EMG signals were divided
into fixed-width time epochs of 15 s each. Mean power, total power, median frequency,
mean frequency, peak frequency of myoelectric waveform are considered as the standard
measures for myoelectrical studies to find relationships between the disease-impaired and
healthy muscular activity [52].

Median power frequency (MDF), measured in Hz, is the frequency where 50% of the
entire power inside the epoch is reached. Mean power frequency (MNF), expressed in
Hz, is the frequency where the average power inside the epoch is reached. Peak power
frequency (PKF), measured in Hz, is the frequency where the peak power occurs within the
epoch. Mean power (MNP), measured in V2/Hz, is the average power within the epoch.
Total power (TP), expressed in V2/Hz, is the sum of the power at all spectral frequencies in
the epoch. Mean power frequency and median power frequency were calculated according
to Equations (1) and (2).∫ MDF

0
P(f)df =

∫ ∞

MDF
P(f)df = 0.5

∫ ∞

0
P(f)df (1)

MNF =

∫ ∞
0 fP(f)df∫ ∞
0 P(f)df

(2)

where P is the power of EMG power spectrum, and f is the EMG frequency.

2.7. Feature Selection

Feature selection plays a vital role in high-dimensional biomedical data analysis.
Classification performance largely depends on the relevance of features, and irrelevant or
redundant data affect the computational power and time. Feature selection algorithms
perform screening, ranking, and selection processes to find the most important features
for a study. Screening removes feature variables, which do not provide useful information
for prediction. Feature selection ranks the features based on the prediction accuracy of the
individual variable. The Pearson chi-squared test measures the importance value of the
predictor [53]. We evaluated the feature importance as (1 − p), where p is the chi-squared
test outcome. We selected EMG features with a feature importance greater than 0.95 for
training the machine learning algorithm.

2.8. Machine Learning Algorithms

Supervised machine learning techniques are an efficient tool for classification and
discovering patterns in a dataset. In previous studies, machine learning has successfully
been utilized. Machine learning and deep learning techniques are also utilized to classify
multimodal physiological signals. Logistic regression, support vector machine (SVM),
decision-tree-based machine learning algorithms, such as CART, C5.0, and biologically
inspired neural network algorithms have been implemented to categorize myoelectrical
features. We partitioned the EMG dataset into training and testing data. The training
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dataset comprised seventy percent of all feature data, and the test dataset comprised
thirty percent of the entire feature dataset. We validated the trained models using k-fold
cross-validation (k = 10).

2.8.1. The Neural Network Model

Neural networks are data mining algorithms that make predictions based on growing
multi-layered complex patterns [54]. We used the multilayer perceptron (MLP) neural
network in this study. This model can estimate a wide range of analytical models with
marginal demands on model structure and assumption. This model contains multiple
input nodes, a neural network with hidden layers, and an output layer.

2.8.2. C5.0 Model

The C5.0 model is a supervised data mining algorithms used to build decision trees
or rule sets from data [55]. This model splits the data based on the field that provides the
highest gain ratio. The model builds a decision tree, followed by a pruning procedure to
minimize the tree’s estimation error rate. This model does not require a long training time
for prediction and is robust to missing data and many input fields.

2.8.3. Classification and Regression Tree Model

The Classification and Regression (C&R Tree or CART) Tree model is a classification
and prediction method which splits the training data into a decision tree [56]. This method
first grows the tree and then prunes it, based on a cost complexity algorithm. This model is
stable in complications such as missing data and large numbers of input fields.

2.8.4. Support Vector Machine Model

Support vector machine (SVM) is a widely used classification model that maps the
data by forming a higher dimensional hyperplane so that features can be classified by
creating a margin line using a popular kernel method, Gaussian Kernel or Radial Basis
Function (RBF). We trained the SVM model and performed k-fold cross-validation (k = 10).
SVM is most appropriate for use with wide-ranging datasets with lots of input fields [57].
The Gaussian Kernel function is defined in Equation (3).

Gaussian Kernel, K (X1 − X2) = exponent(−γ ‖ X1 − X2 ‖) (3)

where ||X1 − X2 || is the Euclidean distance between two points, X1 and X2, and γ

(gamma) is the inverse of the standard deviation of the RBF kernel (Gaussian function).

2.8.5. Discriminant Analysis Model

The discriminant analysis model forms a predictive model for group relationships.
The model comprises a discriminant function based on linear combinations of the predictor
features that provide the best classification between the target groups.

2.8.6. Logistic Regression Model

The logistic regression model is a statistical technique for classifying records based on
values of input fields. This model works by forming equations that relate input variables
to the probabilities associated with output classes. Once the model is trained, it can predict
the classes of new data.

2.9. Statistical and Machine Learning Analysis

We analyzed and explored the myoelectrical data of the participants using descriptive
statistics. The mean value with the error range of each feature was measured and presented
in a bar chart. Data in the bar chart represent the mean value of each data point with a
corresponding 95% confidence interval (CI). The independent-samples t-test was used as
a comparative measure of the average of EMG features between the post-stroke patients
and the healthy adults. A p-value of less than 0.05 was marked a statistically significant.
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Statistical analyses were performed using SPSS 26 software (IBM, Armonk, New York,
NY, USA). We utilized machine learning algorithms to classify the post-stroke group and
the control group. We partitioned the selected EMG feature datasets into two categories:
the training dataset and the testing dataset. The training dataset was utilized in the
machine learning algorithms to build the classification models, which were later utilized
for prediction using the EMG testing datasets. We used IBM SPSS Modeler 18 software
(IBM, Armonk, New York, NY, USA) for machine learning analyses.

3. Results
3.1. Statistical Investigation

We investigated the myoelectric features of the ischemic stroke group and control
group using descriptive statistics to explore the changes in the electrical activity of the
muscle. We also conducted the hypothesis test, such as the independent-samples t-test, to
evaluate the statistical significance of variation of EMG features for two groups. This test
performed a Levene’s test to measure the equality of variances and a t-test for the equality
of means. The statistical significance was characterized as a p-value of less than 0.05.

Stroke-Impaired Myoelectric Biomarker

EMG power spectra of the stroke and healthy control groups were evaluated during
walking. Those myoelectric activities varied based on neuromuscular changes due to stroke.
Figure 3a shows the mean and error bars with 95% confidence intervals of EMG frequency
and power features of bicep femoris and lateral gastrocnemius muscles for left and right legs
during the walking task. Table 1 presents the results of the statistical analysis of the EMG
frequency and power features for the control group and the stroke group for gait tasks.
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Hz 

BICEP FEM. LT (BFLT) 20.69 61.06 18.20 22.98 0.59 
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Figure 3. Bar charts with error bars of (a) median power frequency (MDF), (b) mean power frequency (MNF), and (c) peak
power frequency (PKF) for the stroke group and the control group during the gait task. The bar charts represent the mean
values, and the error bars show 95% confidence intervals (±95% C.I.) * (p < 0.05) indicates a significant difference (t-test).
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Table 1. Results of the statistical analysis of the EMG features of the control and the stroke group. * Indicates p < 0.05.

EMG
Features Muscle

Control Stroke t-Test

Mean Standard
Dev. Mean Standard

Dev. p-Value

Median Power
Frequency
(MDF), Hz

BICEP FEM. LT (BFLT) 39.87 63.75 32.90 29.36 0.17

BICEP FEM. RT (BFRT) 39.67 61.43 29.83 26.78 0.04 *

LAT. GASTRO. LT
(LGLT) 53.94 63.66 47.03 37.78 0.19

LAT. GASTRO. RT
(LGRT) 53.12 64.01 38.76 34.50 0.01 *

Mean Power
Frequency
(MNF), Hz

BICEP FEM. LT (BFLT) 175.93 65.45 160.00 64.21 0.02 *

BICEP FEM. RT (BFRT) 166.21 59.40 149.00 63.33 0.01 *

LAT. GASTRO. LT
(LGLT) 166.87 57.92 162.29 68.03 0.48

LAT. GASTRO. RT
(LGRT) 157.27 60.174 152.51 40.29 0.36

Peak Power Frequency
(PKF), Hz

BICEP FEM. LT (BFLT) 20.69 61.06 18.20 22.98 0.59

BICEP FEM. RT (BFRT) 21.80 58.40 12.94 14.92 0.04 *

LAT. GASTRO. LT (LGLT) 23.57 60.89 22.09 27.29 0.76

LAT. GASTRO. RT (LGRT) 29.86 63.38 20.25 29.44 0.06

Mean Power
(MNP), V2/Hz

BICEP FEM. LT (BFLT) 0.0045 0.0040 0.0273 0.1178 0.01 *

BICEP FEM. RT (BFRT) 0.0072 0.0116 0.0470 0.1921 0.01 *

LAT. GASTRO. LT (LGLT) 0.0073 0.0197 0.0250 0.0794 0.01 *

LAT. GASTRO. RT (LGRT) 0.0127 0.0237 0.0142 0.0696 0.78

Total Power
(TP), V2/Hz

BICEP FEM. LT (BFLT) 4.66 4.15 27.96 120.72 0.01 *

BICEP FEM. RT (BFRT) 7.35 11.94 48.13 196.93 0.01 *

LAT. GASTRO. LT (LGLT) 7.48 20.21 25.67 81.46 0.01 *

LAT. GASTRO. RT (LGRT) 12.98 24.32 14.52 71.36 0.78

As shown in Figure 3a, EMG median power frequency was dominant in the control
group. MDF of the stroke group was lower than the control group for BFLT, BFRT, LGLT
and LGRT muscles. The MDF was 39.67 Hz for the control group and 29.83 Hz for the
stroke group in BFRT muscle. The MDF was 53.12 Hz for the control group and 38.76 Hz for
the stroke group in LGRT muscle. MDF of both right leg muscles (BFRT and LGRT) showed
statistically significant differences between the stroke patients and the healthy adults.

As displayed in Figure 3b, a higher EMG mean power frequency was observed in the
control group. MNF of the stroke group was lower than the control group for BFLT, BFRT,
LGLT, and LGRT muscles. The MNF was 175.93 Hz for the control group and 160 Hz for the
stroke group in BFLT muscle. The MNF was 166.21 Hz for the control group and 149 Hz for
the stroke group in BFRT muscle. MNF of both bicep femoris muscles (BFLT, BFRT) showed
statistically significant differences between the stroke patients and the healthy adults.

As shown in Figure 3c, EMG peak power frequency was also dominant in the control
group. PKF of the stroke group was lower than the control group for BFLT, BFRT, LGLT,
and LGRT muscles. The PKF was 21.80 Hz for the control group and 12.94 Hz for the
stroke group in BFRT muscle. MNF of the right bicep femoris muscles (BFRT) showed a
statistically significant difference between the stroke patients and the healthy adults.
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Higher EMG mean power was seen in the stroke group. MNP of the stroke group
was higher than the control group for BFLT, BFRT, LGLT and LGRT muscles (Table 1). The
MNP was 0.0045 V2/Hz for the control group and 0.0273 V2/Hz for the stroke group in
BFLT muscle. The MNP was 0.0072 V2/Hz for the control group and 0.0470 V2/Hz for
the stroke group in BFRT muscle. The MNP was 0.0073 V2/Hz for the control group and
0.0250 V2/Hz for the stroke group in LGLT muscle. MNP of BFLT, BFRT and LGLT showed
statistically significant differences between the stroke patients and the healthy adults.

EMG total power was also dominant in the stroke group. TP of the stroke group was
higher than the control group for BFLT, BFRT, LGLT and LGRT muscles (Table 1). The
TP was 4.66 V2/Hz for the control group and 27.96 V2/Hz for the stroke group in BFLT
muscle. The TP was 7.35 V2/Hz for the control group and 48.13 V2/Hz for the stroke
group in BFRT muscle. The TP was 7.48 V2/Hz for the control group and 25.67 V2/Hz
for the stroke group in LGRT muscle. The total power of BFLT, BFRT and LGLT showed
statistically significant differences between the stroke patients and the healthy adults.

3.2. Machine-Learning-Based Post-Stroke Gait Prediction

Receiver operating characteristic (ROC) analysis offers the most comprehensive de-
scription of predictions widely used in biomedical studies [58]. It shows all of the combina-
tions of sensitivity and specificity that a machine-learning model can deliver. Area under
the curve (AUC) is a performance indicator of the predictive model and defines the area
under the ROC curve. The perfect score of the AUC is 1.0. A classification model with an
AUC of less than 0.5 is not treated as an effective classifier. Another alternative measure of
AUC is the Gini coefficient, ranging between zero and one, defined as two times AUC-1.
The confusion matrix, or error matrix, delivers a complete representation of the predictions
of true and false. We evaluated the standard classifier performance measures, including
accuracy (ACC), sensitivity (true positive rate), specificity (true negative rate), precision
(positive predictive rate), and negative predictive value from the confusion matrix. Ac-
curacy was considered the most intuitive measure of performance to find the best model
calculated as a percentage of the correct predictions across observations. Sensitivity is the
true positive rate, defined as the correct positive predictive ratio of all actual observations.
Specificity shows the true negative rate, characterized as the fraction of correct negative
predictions to all actual observations. Model prediction outcomes can be presented using
the following standard equations:

Sensitivity = (True Postive)/(True Postive + False Negative) (4)

Specificity = (True Negative)/(True Negatve + False Positive) (5)

Precision = (True Positive)/(True Positive + False Positive) (6)

Negative predictive value (NPV) = (True Negative)/(True Negative + False Negative) (7)

Accuracy(ACC) =
(True Positive + True Negative)

(True Positive + False Positive + True Negative + False Negative)
(8)

Gini Coefficient = ∑m
i=1p(i)(1− p(i)) (9)

3.2.1. Feature Selection Results

The importance of electromyogram features resulting from the feature selection
method are demonstrated in Figure 4. EMG fiducial features ranked higher than the
feature importance of 0.95 chosen to train the ML models. EMG features were reduced to
eleven features out of a total of twenty features for minimizing computational cost and
improving the classification performance. Electromyogram power features were observed
as dominant in feature importance.
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3.2.2. Classification Performance

The EMG feature data were partitioned into training and testing datasets. Training
data belonged to 70% of the entire dataset, and testing data belonged to 30% of the
entire dataset. Tables 2 and 3 display all of the classifiers’ performance measurements
for the training and test datasets. The neural network model showed the best accuracy
in classification performance. The neural network model classified the training dataset
with an AUC of 85%, accuracy (ACC) of 80%, and Gini-coefficient of 0.70. This model
categorized the testing datasets with an AUC of 69%, accuracy (ACC) of 65%, and Gini-
coefficient of 0.38. The neural network model showed the highest specificity (89%) and
precision (88%) in the classification task using the training dataset. The C5.0 model showed
the highest sensitivity (training: 78% and testing: 69%) and a negative predictive value
(training: 76% and testing: 63%) in classification performance. This decision tree model
classified the training dataset with an AUC of 79% and accuracy (ACC) of 78%. This model
categorized the testing datasets with an AUC of 65% and accuracy (ACC) of 66%. The C&R
tree model showed the highest specificity (79%) and precision (74%) in the classification
task using the testing dataset. This decision tree model classified the training dataset
with an AUC of 77% and accuracy (ACC) of 76%. This model categorized the testing
datasets with an AUC of 66% and accuracy (ACC) of 64%. The logistic regression model
classified the training dataset with an AUC of 75% and accuracy (ACC) of 71%. This model
categorized the testing datasets with an AUC of 66% and accuracy (ACC) of 61%. The
SVM model classified the training dataset with an AUC of 72% and accuracy (ACC) of 68%.
This model categorized the testing datasets with an AUC of 64% and accuracy (ACC0 62%.
The discriminant analysis model classified the training dataset with an AUC of 75% and
accuracy (ACC) of 68%. This model categorized the testing datasets with an AUC 65% and
accuracy (ACC) 59%. In Figure 5a,b, ROC curves demonstrate the classification models’
performance curves using the training and the test datasets.

Table 2. Results of the classification performance of different models using the training EMG dataset.

Model Accuracy (ACC) Sensitivity Specificity Precision Negative Predictive Value AUC Gini

Neural Network 0.80 0.71 0.89 0.88 0.74 0.85 0.70

C5.0 0.78 0.78 0.78 0.79 0.76 0.79 0.57

C&R Tree 0.76 0.67 0.86 0.84 0.70 0.77 0.54

Logistic Regression 0.71 0.74 0.67 0.71 0.70 0.75 0.51

SVM 0.68 0.64 0.73 0.72 0.65 0.72 0.45

Discriminant Analysis 0.68 0.67 0.69 0.71 0.66 0.75 0.51
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Table 3. Results of the classification performance of different models using the testing EMG dataset.

Model Accuracy (ACC) Sensitivity Specificity Precision Negative Predictive Value AUC Gini

Neural Network 0.65 0.57 0.74 0.72 0.60 0.69 0.38

C5.0 0.66 0.69 0.62 0.68 0.63 0.65 0.30

C&R Tree 0.64 0.51 0.79 0.74 0.58 0.66 0.32

Logistic Regression 0.61 0.63 0.59 0.64 0.58 0.66 0.32

SVM 0.62 0.60 0.64 0.66 0.58 0.64 0.27

Discriminant Analysis 0.59 0.60 0.59 0.63 0.56 0.65 0.31
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4. Discussion

In our study, we aimed to characterize the electromyogram activity differences ob-
served in post-stroke patients. The extent of muscular change due to stroke depends on the
severity of the stroke and its consequent effect on neuromuscular activity. We have eval-
uated the myoelectrical features sensitive to post-stroke impairment during ambulation.
The elderly adult volunteers possessed no history of physical muscular trauma or gait im-
pairment; therefore, a healthy adult gait was characterized as the control condition. On the
other hand, the post-stroke patients had experienced neuromuscular or gait abnormality to
some extent, and post-stroke gait was explored to evaluate electromyogram biomarkers
observed in the stroke group.

This variety in the activity of lower limb muscles during walking makes identification
of the impairments of stroke challenging. Moreover, dissimilarities exist naturally between
the left and right leg muscles. It is difficult to find a homogenous patient group in terms
of stroke severity and period of the stroke, location of the brain lesion area, the process
and period of post-stroke treatment, etc. Accurate lower limb muscle selection is essential
for identifying stroke-impaired gait impairment. In this study, the bicep femoris and the
lateral gastrocnemius muscles were investigated to understand the myoelectrical activities
of lower limb movements between stroke and control groups. Although few studies have
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reported stiffness of the medial gastrocnemius in stroke patients, a controversial result
was observed in another study [19]. MNF is usually higher than MDF for both post-stroke
groups and healthy control groups for lower limbs [59]. This indicates that the power
spectrum of the EMG signal was not extensively altered after a stroke. During the tests,
participants were permitted to have adequate rest between experiments to reduce the effect
of fatigue in the recording.

Significant changes in gait parameters were reported for the post-stroke patients.
Researchers used statistical methods and machine learning approaches to evaluate the
variations in gait and classify the gait features of post-stroke patients and healthy adults.
C. Cui et al. demonstrated multi-modal physiological features (EMG, motion, and ground
reaction force) and machine learning algorithms to discriminate between post-stroke and
healthy gait [32,60]. Park et al. demonstrated the prediction of stroke-impaired gait using
the ground reaction force and acceleration data through a machine learning approach [5,15].
J.C. Castiblanco et al. investigated the upper limb EMG measures of hand-impaired stroke
patients, hand-non-impaired stroke patients, and healthy controls to classify myoelectric
patterns using machine learning algorithms [61].

It has been identified in previous studies that a higher frequency of the power spec-
trum is an indicator of a superior muscle force [52,62]. It is observed that MNF was higher
for the healthy adult group compared with the stroke group. Similar patterns were wit-
nessed in the cases of MDF and PKF. Reduced MDF and PKF were observed for the stroke
group compared with the healthy adult group. This finding is supported by the study of
Angelova et al., who reported EMG power spectral statistical measures to understand the
changes of myoelectric parameters due to stroke [62]. The mean power frequency (MNF),
median power frequency (MDF), peak power frequency (PKF), and mean power (MNP)
of the stroke group differed significantly from those of the healthy control group in our
study. This outcome is in accordance with the study of Rasool et al., who investigated the
spatial muscle activation patterns and reported a significant change in muscle architecture
and morphology in stroke patients compared with healthy persons [63]. For the declin-
ing EMG activity patterns after stroke, the major contributors may include alterations in
the overall morphology, micro-architecture, and functionality of skeletal muscles [64–66].
These changes can affect muscle functionality, inter-muscular synchronization, and overall
motor functions. Although all stroke patients were taking extensive post-stroke rehabilita-
tion treatment and no visible gait abnormalities were observed, a lack of neuromuscular
coordination still existed due to stroke incidents.

This study utilized logistic regression, discriminant analysis, SVM, neural network,
C5.0, and C&R trees to classify the electromyogram patterns between stroke patients and
healthy control volunteers. Machine learning and deep learning algorithms were utilized
for early prognostics of diseases and classifications of patients with physiological disorders.
Overall, the neural network model showed the highest accuracy, the highest AUC, and
the highest Gini coefficient. As summarized in Table 4, other studies reflected that EMG
power spectrum features effectively classified myoelectrical patterns between the stroke
group and the healthy control group using statistical methods, machine learning, and
deep-learning approaches. This finding is in accordance with the study by Cui et al. [32],
who implemented machine learning techniques to assess post-stroke hemiparetic gait
using multi-modal data including EMG. Researchers explored statistical and machine
learning techniques for the accurate prediction of myoelectrical measures in post-stroke
patients. Gaussian Naive Bayes classifier (GNB) and SVM were utilized for the classifi-
cation of six hand motion patterns for controlling a robotic hand [18]. Moreover, linear
discriminant analysis (LDA) was implemented for the classification of task-specific hand
movements [67]. In another study, k-nearest neighbors (KNN), SVM, and LDA were used
to identify the finger and hand motions for robotics-based rehabilitation [61]. Although
prediction performances of few machine-learning models were not so impressive due to
undergoing rehabilitation programs, most machine-learning models still predicted the
stroke patients and healthy adults accurately.
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Table 4. Comparative study of methodologies and results between proposed study and previous studies.

Study Study Sample EMG Features Findings Application

Lu et al. [18] Eight post-stroke
subjects

Root mean square (RMS),
4th order auto

regressive (AR) Coefficients,
and waveform length (WL)

Mean classification accuracy,
GNB): 84.8%;
SVM: 83.3%;

paired t-Test, p: 0.125

Classification of six hand
motion patterns for controlling

a robotic hand

Lee et al. [67] Twenty stroke patients

Mean absolute value (MAV),
the number of zero crossing
(ZC), the slope sign change

(SSC), and WL

Mean classification accuracy,
LDA: = 71.3% for

moderately
impaired subjects.

Classification of task-specific
hand movements

Castiblanco et al. [61]

Eighteen stroke
patients and
twenty-eight

healthy control

MAV, RMS, SSC, MNF, mean
power (MNP), MDF, and
spectral moments (SM)

Accuracy classification
of stroke and control group,

KNN: 0.87;
SVM: 0.82, and LDA: 0.74.

Identification of the fingers
and hand motions for robotics-

based rehabilitation.

Angelova et al. [62]
Ten stroke patients

and fifteen
healthy adults

Power spectrum features:
MNF, MDF, Maximal power

MNF and MDF are lower for
stroke patients compared

with healthy control group.

Identification of changes in
features during elbow flexion.

Proposed study

Forty-eight stroke
patients and
seventy-five

healthy adults

MNF, MDF, PKF, TP, MP

Classification performance,
neural network model:

precision: 88%,
specificity: 89%,
accuracy: 80%.

Prediction of stroke-impaired
myoelectrical changes through
statistics and machine learning

for understanding
post-stroke impairment.

In this study, we analyzed EMG measures based on only two muscular positions
of lower limbs for understanding changes in EMG due to stroke impairment. The lo-
cation of paretic muscle may vary among stroke patients; therefore, high-density EMG
measurements may improve the prediction accuracy of paretic muscles for better stroke
rehabilitation [68]. For this reason, this study generalizes to only the bicep femoris and
the lateral gastrocnemius muscles with the current parameterization. Participants were
instructed to walk steadily along a track. Several stroke symptoms started to be recovered
due to the post-stroke treatment of patients during this experiment, which had an adverse
influence on the classification accuracy of EMG features between the stroke group and the
control group. Any kind of attempt of gait acceleration in walking may vary myoelectrical
measures. In this study, we only explored the power spectrum features of EMG. In the
future, we will investigate EMG-derived gait parameters, such as step length, stride length,
and joint angles of lower limbs to evaluate the extended features to classify stroke groups
and control groups.

5. Conclusions

An EMG-based neuromuscular disease prediction system, proposed here to predict
stroke, can be used for the decision-making of post-stroke rehabilitation at home and the
clinical environment. We explored the myoelectrical activity of stroke patients and healthy
adults through EMG during motor tasks. The spectral power features were revealed as
discriminative factors, classifying stroke patients and healthy adults in terms of the motor
states of lower limbs. MDF and MNF were biomarkers for the stroke and the healthy
control group during the motor tasks. The machine learning algorithms were also utilized
to classify stroke patients and healthy adults using electromyogram features. This study
will be helpful in the management of post-stroke treatment.
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