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Abstract

Purpose

The phosphodiesterase inhibitor sildenafil is a promising treatment for neurodegenerative

disease, but it can cause oxidative stress in photoreceptors ex vivo and degrade visual per-

formance in humans. Here, we test the hypotheses that in wildtype mice sildenafil causes i)

wide-spread photoreceptor oxidative stress in vivo that is linked with ii) impaired vision.

Methods

In dark or light-adapted C57BL/6 mice ± sildenafil treatment, the presence of oxidative

stress was evaluated in retina laminae in vivo by QUEnch-assiSTed (QUEST) magnetic res-

onance imaging, in the subretinal space in vivo by QUEST optical coherence tomography,

and in freshly excised retina by a dichlorofluorescein assay. Visual performance indices

were also evaluated by QUEST optokinetic tracking.

Results

In light-adapted mice, 1 hr post-sildenafil administration, oxidative stress was most evident

in the superior peripheral outer retina on both in vivo and ex vivo examinations; little evi-

dence was noted for central retina oxidative stress in vivo and ex vivo. In dark-adapted mice

1 hr after sildenafil, no evidence for outer retina oxidative stress was found in vivo. Evidence

for sildenafil-induced central retina rod cGMP accumulation was suggested as a panretinally

thinner, dark-like subretinal space thickness in light-adapted mice at 1 hr but not 5 hr post-

sildenafil. Cone-based visual performance was impaired by 5 hr post-sildenafil and not cor-

rected with anti-oxidants; vision was normal at 1 hr and 24 hr post-sildenafil.
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Conclusions

The sildenafil-induced spatiotemporal pattern of oxidative stress in photoreceptors domi-

nated by rods was unrelated to impairment of cone-based visual performance in wildtype

mice.

Introduction

Sildenafil, an inhibitor of phosphodiesterase type 5 (PDE 5, the enzyme responsible for cGMP

hydrolysis), is useful for the treatment of erectile dysfunction and pulmonary arterial hyper-

tension, and has been suggested as a potential therapeutic in neurodegenerative diseases

including age-related macular degeneration and Alzheimer’s disease [1–4]. However, benefits

from sildenafil therapy may be limited by its visual side effects that can range from mild to

severe. For example, sildenafil can temporarily affect visual performance (although more per-

sistent responses have been reported), and most electrophysiology studies in healthy retina

have demonstrated a short-term negative impact [3, 5–10]. Of greater concern, sildenafil usage

has been linked to idiopathic serous macular detachment [11]. In addition, sildenafil may

increase the risk of neurodegeneration in, for example, the 1 in 50 people who are potential

carriers of sight-threatening genetic defects underlying retinitis pigmentosa [12, 13]. Thus, a

better understanding of the consequences of sildenafil on the visual system is needed to miti-

gate its side effects.

The above side effects in retina are commonly thought to arise from inhibition of PDE 5

located in cells of the inner retina and in the retinal pigment epithelium, as well as from inhibi-

tion of PDE 6 found in photoreceptors [14, 15]. One hypothesized consequence of such inhibi-

tion is a greater-than-normal cGMP content causing cyclic nucleotide-gated channels to

remain open even in the light, resulting in widespread oxidative stress via increased intracellu-

lar calcium levels and ion pumping [16–19]. In photoreceptor cells ex vivo, phosphodiesterase

inhibition causes excessive production of free radicals (i.e., oxidative stress), but it is unclear if

this happens in vivo [17, 18]. Photoreceptor oxidative stress per se can impair visual perfor-

mance by an unclear mechanism that may include acidification of the subretinal space [20–

27].

In this study, we tested if sildenafil evokes panretinal oxidative stress in healthy retina in
vivo and whether an induced oxidative stress is linked with impaired visual performance. Oxi-

dative stress is non-invasively evaluated in retinal laminae using QUEnch-assiSTed (QUEST)

magnetic resonance imaging (MRI), in subretinal space using QUEST optical coherence

tomography (OCT), and in cone-based vision with QUEST optokinetic tracking (OKT) [20,

24, 28, 29]. QUEST MRI accurately evaluates panretinal, layer-specific, paramagnetic free radi-

cal-generated contrast as a decrease in 1/T1 with anti-oxidants [29, 30]. QUEST MRI oxidative

stress measurements have been validated in animal models against several ex vivo assays [29].

In addition, we have shown positive QUEST MRI controls for localized oxidative stress only in

certain parts of the retina, including treatment with either sodium iodate or diltiazem, or

mutant mice with cre-dependent retinal pigment epithelium (RPE)-specific MnSOD knockout

mice or PDE6b damage (rd10 mice) [20, 28, 31–33]. QUEST OCT tests whether anti-oxidants

increase the light-adapted external limiting membrane to retinal pigment epithelium

(ELM-RPE) thickness in central retina which is suppressed by oxidative stress, perhaps via

induced acidosis [24–27]. The in vivo results were compared to conventional dichlorofluores-

cein (DCF) fluorescent maps of steady-state levels of reactive oxygen species in freshly excised

retina [34]. Finally, QUEST OKT was used as a validated test of whether oxidative stress
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impaired cone-based visual performance [20]. Control mice were evaluated in groups given

either sildenafil + saline, or sildenafil + an anti-oxidant drug combination that reduces exces-

sive production of reactive oxygen species [i.e., methylene blue (MB) and α-lipoic acid (ALA)].

MB is an alternate electron transporter that effectively suppresses generation of superoxide

from a variety of sources; ALA is a potent free radical neutralizer; both are FDA approved and

are useful for QUEST MRI, OCT, and OKT studies [20, 24, 29, 35, 36].

Materials and methods

All mice were treated in accordance with the National Institutes of Health Guide for the Care

and Use of Laboratory Animals, the Association for Research in Vision and Ophthalmology

Statement for the Use of Animals in Ophthalmic and Vision Research, and with specific autho-

rization by the Wayne State University Division of Laboratory Animal Resources (DLAR)

Institutional Animal and Care Use Committee (IACUC), and by National Eye Institute Ani-

mal Care and Use Committee. 2 mo male C57BL/6J mice (Jackson Laboratories, ME) were

housed and maintained in full dark conditions or 12 hr:12 hr light-dark cycle laboratory light-

ing. Mice were humanely euthanized by an overdose of urethane followed by a cervical disloca-

tion, as detailed in our IACUC-approved protocol. Data were collected from the left eye except

for the OKT examination which used both eye’s.

QUEST MRI

QUEST MRI was performed as previously described [20, 28, 29, 32, 33]. Mice were maintained

in darkness for at least 16 hrs before all MRI studies. High-resolution MRI data were acquired

on a 7T system (Bruker ClinScan, Billerica, MA) using a receive-only surface coil (1.0 cm

diameter) centered on the left eye. One group of mice were kept in the dark (“dark”) through-

out the preparation and MRI examination. For the light study, another group of mice (“light”)

were exposed to room light (~ 300 lx) for 15 mins to 5 hours. In all groups, immediately before

the MRI experiment, animals were anesthetized with urethane (36% solution intraperitoneally;

0.083 mL / 20 g animal weight, prepared fresh daily; Sigma–Aldrich, St. Louis, MO, USA) and

treated topically with 1% atropine to ensure dilation of the iris during light exposure followed

by 3.5% lidocaine gel to reduce eye motion. MRI data were acquired using several single spin-

echo sequences (time to echo 13 ms, 7 × 7 mm2, matrix size 160 × 320, slice thickness 600 μm).

Images were acquired at different repetition times (TR) in the following order (number per

time between repetitions in parentheses): TR 0.15 seconds (6), 3.50 seconds (1), 1.00 seconds

(2), 1.90 seconds (1), 0.35 seconds (4), 2.70 seconds (1), 0.25 seconds (5), and 0.50 seconds (3).

To compensate for reduced signal–noise ratios at shorter TRs, progressively more images were

collected as the TR decreased. The present resolution in the central retina is sufficient for

extracting meaningful layer-specific anatomical and functional data, as previously discussed

[37].

T1 data sets were collected from different groups of mice given an intraperitoneal injection

of 29 mg/kg sildenafil, a dose that produces a transient impairment in retinal electrophysiology

[12]. This dose is expected to produce a plasma level of sildenafil that is less than 2x that

reported in humans [9]. In all cases, sildenafil was administered 45 min– 1 hr 15 min (i.e., ~1

hr) before QUEST MRI examination.

All mice were treated 24 hrs prior to study with 1 mg/kg MB (i.p., dissolved in saline) and

then treated the next day with 29 mg/kg sildenafil *1 h before the MRI examination. 50 mg/

kg ALA (i.p., dissolved in saline and pH adjusted to *7.4) was given 15–20 minutes post-sil-

denafil injection. Control mice were also given sildenafil as above but administered two saline
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injections rather than MB and ALA. The MB and ALA combination has been confirmed to

suppress the excessive production of free radicals in several studies [20, 28, 32, 33].

MRI data analysis

As previously described, for QUEST data, each T1 data set of 23 images was first processed by

registering (rigid body; STACKREG plugin, ImageJ, Rasband, W.S., ImageJ, U. S. National

Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997–2016) and

then averaging images with the same TRs in order to generate a stack of 8 images [20, 28, 32,

33]. These averaged images were then registered (rigid body) across TRs. QUEST data were

corrected for imperfect slice profile bias in the estimate of T1, as previously described (Chapter

18 in [38]). Briefly, by normalizing to the shorter TR, some of the bias can be reduced, giving a

more precise estimate for T1. To achieve this normalization, we first apply a 3x3 Gaussian

smoothing (performed three times) on only the TR 150 ms image to minimize noise and

emphasize signal. The smoothed TR 150 ms image was then divided into the rest of the images

in that T1 data set. Previously, we reported that this procedure helps to minimize day-to-day

variation in the 1/T1 profile previously noted and obviated the need for a “vanilla control”

group used previously for correcting for day-to-day variations [39, 40]. 1/T1 maps were calcu-

lated using the 7 normalized images via fitting to a three-parameter T1 equation (y = a + b�

(exp(-c�TR)), where a, b, and c are fitted parameters) on a pixel-by-pixel basis using R (v.2.9.0,

R Development Core Team [2009]). R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0) scripts devel-

oped in-house, and the minpack.lm package (v.1.1.1, Timur V. Elzhov and Katharine M. Mul-

len minpack.lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm

found in MINPACK. R package version 1.1–1).

In each mouse, whole retinal thicknesses (μm) were objectively determined using the “half-

height method” wherein a border is determined via a computer algorithm based on the cross-

ing point at the midpoint between the local minimum and maximum, as detailed elsewhere

[41, 42]. The distance between two neighboring crossing-points thus represents an objectively

defined retinal thickness. 1/T1 profiles in each mouse were then normalized with 0% depth at

the presumptive vitreoretinal border and 100% depth at the presumptive retina-choroid bor-

der. The present resolution is sufficient for extracting meaningful layer-specific anatomical

and functional data, as previously discussed [43, 44].

We compared superior and inferior profiles separately from ± 400 to 1000 μm (central ret-

ina) and ± 1000 to 2000 μm (peripheral retina) from the optic nerve head (ONH) generated

for each animal group (Fig 1). Excessive and asynchronous production of paramagnetic free

radicals in retinal laminae is measured based on a reduction in 1/T1 with MB and ALA (i.e., a

positive QUEST MRI response) [29]. However, an increase in 1/T1 in response to MB or ALA

has no theoretical or biophysical basis linking it with oxidative stress. Thus, only significant

decreases in 1/T1 following anti-oxidants are indicated on the graphs.

DCF map ex vivo of steady-state levels of reactive oxygen species

The net result of production of reactive oxygen species (i.e., free radicals and H2O2) minus

their elimination by endogenous antioxidants was mapped for each retina using a standard

and well validated DCF assay [34, 45]. The interaction of the non-fluorescent probe 2’,7’-

dichlorodihydrofluorescein (DCFH(2)) produces a fluorescent signal from its oxidation prod-

uct, 2’,7’-dichlorofluorescein (DCF), that represents steady state levels of total reactive oxygen

species [46]. DCF measurements were performed in subgroups of mice maintained in dark-

ness for at least 16 hrs before euthanasia. The following day, light adaptation began for all mice
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at the same time; each mouse experienced between 30 min and 3 hour of room light. 1 hr

before enucleation, mice (n = 3 / group) were given 29 mg/kg sildenafil or equal volume saline;

dark-adapted mice were not examined since neither QUEST MRI nor QUEST OCT studies

suggested oxidative stress in that group.

In all cases, eyes were enucleated and embedded in optimal cutting temperature compound

and fresh frozen using liquid nitrogen vapor. DCF staining was conducted as previously

reported [47]. Twelve microns sections were cut in vertical (inferior-superior) orientation, and

while still frozen, sections were fixed in ice cold acetone at -80˚C. Slides were then warmed to

room temperature for at least 20 minutes. Section were washed in PBS 3 times in 5 minutes.

Slides were transferred in humidified chamber, and sections were submerged in 10 μM DCF

(D6883, Sigma-Aldrich Corp., St Louis, MO), and incubated at 37˚C for 1 hour. Sections were

then washed in PBS 3 times in 5 minutes, and one time in distilled water, cover-slipped using

ProLong Gold anti-fade reagent with the nuclear stain 40,6-diamidino-2-phenylindole (DAPI,

P36935; Invitrogen, Carlsbad, CA, USA), and images taken by fluorescence microscopy (Key-

ence BZ-800 Series; Itasca, IL, USA) immediately after putting on the cover slip.

QUEST optical coherence tomography (QUEST OCT)

Five groups were studied using QUEST OCT as previously described [24]. 1.) Light-adapted

control mice: Age-matched C57BL/6 mice dark-adapted overnight and room light-adapted

(~300 lx) for 5 hrs the following day, no injections beyond anesthesia. 2.) Dark-adapted con-

trol mice: Age-matched C57BL/6 mice dark-adapted overnight and studied in the dark the fol-

lowing day, no injections beyond anesthesia. For the remaining three groups, MB or saline are

administered ~24 hr before the study and ALA or saline given 15–20 minutes after the sildena-

fil. 3.) For this group, Sildenafil is administered after 4 hr of room Light and studied 1 hr later

in the Light (SLL, Fig 2A). 4.) For this group, Sildenafil is given in the Dark, then Light-adapted

and studied 5 hr later (SDL, Fig 2B). 5.) For this group, Sildenafil is given in the Dark and stud-

ied 1 hr later in the Dark (SDD, Fig 2C).

Fig 1. Comparison of MRI and OCT regions-of-interest (ROI’s). Four non-overlapping retinal regions were

evaluated from MRI data A): ± 400–1000 μm and ± 1000–2000 μm from the optic nerve head for their transretinal 1/

T1 profiles (shown in Figs 3 and 6). Two regions in central retina were studied from OCT data B): ± 350–630 μm from

the optic nerve head to determine outer nuclear layer (ONL) thickness, and the external limiting membrane–retinal

pigment epithelium (ELM-RPE) thickness.

https://doi.org/10.1371/journal.pone.0245161.g001
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In all groups, OCT (Envisu R2200 VHR SDOIS) was used to measure retinal layer spacing

in vivo. Mice were anesthetized with urethane (36% solution intraperitoneally; 0.083 ml/20 g

animal weight, prepared fresh weekly; Sigma-Aldrich, St. Louis, MO). 1% atropine sulfate was

used to dilate the iris, and Systane Ultra was used to lubricate the eyes. Vertical B scan OCT

was used in two ways. The first use is to identify retinal layers that contribute to the superior-

inferior MRI profile data since aligning the vitreous-retina (0% depth) and retina-choroid

(100% depth) borders of OCT and MRI images reasonably matches structure with function

[25]. Second, separate groups of mice were studied in which the optic nerve is positioned to

interrogate i) central, superior, and inferior retina (± 350–630 μm, Fig 1), ii) inferior retina

(350–1191 μm), and iii) superior retina (350–1191 μm) [48]. The ELM-RPE and ONL thick-

nesses were measured using in-house developed R scripts that objectively identify layer bound-

aries after searching the space provided by a hand-drawn estimate (“seed boundaries”).

QUEST optokinetic tracking (QUEST OKT)

As previously described, QUEST OKT was performed in separate experiments [20]. Four

groups of mice were studied (only data collected before 12 pm are reported herein): 1.) Control

group: Age-matched C57BL/6 mice, dark-adapted overnight and light-adapted for 5 hrs the

following day, no injections beyond anesthesia. 2.) SLL group ± MB / ALA. 3.) SDL

group ± MB / ALA. 4.) To see if visual performance recovers to baseline, we also examined a

SLL 24 hr recovery group ± MB / ALA: In this group, light-adapted mice were given 29 mg/kg

of sildenafil followed by 1 mg/kg MB or equal volume saline an hour later. Mice were dark-

adapted overnight then given 50 mg/kg ALA or equal volume saline, brought into the light for

5 hours and studied by OKT.

For all groups, two cone-based visual performance metrics were evaluated in awake and

freely moving mice using optokinetic tracking: spatial frequency thresholds (SFTs, “acuity”, in

cycles/degree [c/d]) and contrast sensitivity (CS, measured near the peak of the nominal curve

[0.06 cycles/degree [49]], inverse Michelson contrast [unitless]) (OptoMotry, CerebralMecha-

nics Inc, Alberta, Canada). In brief, a vertical sine wave grating is projected as a virtual cylinder

in 3-dimensional coordinate space on computer monitors arranged in a quadrangle around a

Fig 2. Timing diagrams for the three groups studied by OCT. A) Sildenafil is administered after 4 hr of room Light and

studied 1 hr later in the Light (SLL). B) Sildenafil is given in the Dark then Light-adapted and studied 5 hr later (SDL). C)

Sildenafil is given in the Dark and maintained as Dark-adapted during OCT examination (SDD). MB, methelyene blue;

ALA; α-lipoic acid. Control groups were given saline.

https://doi.org/10.1371/journal.pone.0245161.g002
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testing arena. Unrestrained mice (as described above) are placed on an elevated platform at the

center of the arena. An experimenter observed a video image of the platform from above to

view the animal and follow the position of its head with the aid of a computer mouse and a

crosshair continually placed on the mouse head as it moves. The X–Y positional coordinates of

the crosshair are centered on the hub of the virtual cylinder, enabling its wall to be maintained

at a constant “distance” from the animal’s eyes, and thereby fixing the spatial frequency of the

stimulus at the animal’s viewing position. When the cylinder was rotated in the clockwise or

counter-clockwise direction and the animal followed with head and neck movements that

tracked the rotation, it was judged whether the animal’s visual system could distinguish the

grating. Clockwise and counterclockwise tracking provide a measure of left and right eye SFT

and CS [50]. After being in the light for 5 hrs, each set of SFT and peak of CS measurements

per mouse can reliably be obtained in 30 minutes. Rod-based visual performance indices eval-

uated with OKT have limited dynamic range and were not considered to be useful for testing

for impairment by oxidative stress [51].

Statistical analysis

Data are presented as mean ± 95% confidence interval, and a significance level of 0.05 was

used for all analyses. All outcomes (1/T1, OCT layer thickness, and OKT) had repeated mea-

sures for each mouse. As such, we used mixed models to analyze all outcomes using the Ken-

ward-Roger method for calculating degrees of freedom in Proc Mixed and Proc Glimmix of

SAS 9.4 (SAS software, Cary, NC, USA). For the MRI profile data (1/T1) and OCT layer

thickness, we used cubic splines to model and compare mouse-specific profiles between

groups. We used the same modeling strategy for both 1/T1 and OCT layer thickness. The

number of “windows” (i.e., “knots”) with a relationship between outcome (1/T1, ELM-RPE

thickness, or ONL thickness) and location (depth for MRI, distance from ONH for OCT

layer thickness) was initially evaluated separately for each group for any given analysis, and

the Akaike and Schwarz Bayesian information criteria (AIC and BIC) were used to identify

the model with the fewest knots needed to model all groups. These initial models included

full fixed effects (described separately for 1/T1 and OCT thickness below) and included a ran-

dom intercept for each mouse nested within the appropriate treatment group. Additional

random coefficients for side (indicator variable for superior side), region (indicator of 1000–

2000 μm region), and location-specific coefficients (cubic spline coefficients) were evaluated

using AIC and BIC. These models with the selected number of knots and random effects

were then used to test for the fixed effects for each model, and non-significant interactions

were removed to obtain the final model. The final model was then used to estimate mean pro-

files for all experimental conditions, and location-specific mean differences based on appro-

priate contrasts.

For 1/T1, each mouse was measured at 26 depths on two sides in two regions, resulting in

104 observations per mouse. We used Proc Mixed to fit the model for 1/T1, which included

seven knots and the fixed effects for anti-oxidant (saline vs MB/ALA), side (inferior vs supe-

rior), condition (dark vs light), region (400–1000 μm vs 1000–2000 μm), as well as all interac-

tions among these fixed effects and the locations. The final model included the random

coefficients for side; region; linear relationship with depth; the fourth knot coefficient; all two-

way interactions among side, region, and the fourth knot coefficient; and the interaction

between region and the linear relationship with depth. The parameter estimates for the model

are shown in S1 and S2 Tables in S5 File. The analysis of 1/T1 focused on identifying the

depths at which an MB/ALA effect was statistically significant using pointwise hypothesis test-

ing only when interactions were significant.
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For the OCT data, each mouse was measured at 720 distances from the ONH on both sides

of the ONH. We used Proc Glimmix to fit four models to the OCT data, a separate model for

each outcome (changes in ELM-RPE or ONL) and for inferior and superior sides. All models

included fixed effects for group (light-adapted control, CL; dark-adapted control, CD; SLL;

SLL+MB/ALA; SDL; SDL+MB/ALA; SDD, SDD+MB/ALA), values for the spline coefficients

for the distance from the ONH and the interaction between distance from the ONH and

group. The number of knots and random coefficients used for the final models are shown in

Table 1. The parameter estimates for these models are shown in S3–S10 Tables in S5 File. Con-

trasts were used with each final model to calculate a mean integrated across the entire layer.

These contrasts were also used to compare the integrated means among the groups. We com-

pared each group to the both controls and MB/ALA was compared only within a group (e.g.,

SLL vs SLL+MB/ALA). We used the Holm procedure to adjust for multiple comparisons for

each focal group (SLL, SDL, and SDD).

OKT was measured once per side, resulting in only two observations per mouse. As such,

we used generalized linear mixed models (Proc Glimmix) to analyze both OKT measurements.

For both acuity and contrast sensitivity, we included the fixed effect of group (saline, SLL, SLL

+MB/ALA, SDL, SDL+MB/ALA, 24hr, 24hr+MB/ALA. Only a random intercept for mouse

nested within group was included for these models. We used a normal distribution with the

identity link for acuity and a gamma distribution with the log link for contrast sensitivity.

The parameter estimates for the fit models are shown in S13–S16 Tables in S5 File. As with

OCT distances, we compared each experimental group to saline, and compared the MB/

ALA treatment within a focal group. We used the Holm procedure to adjust for multiple

comparisons.

Results

Testing light-adapted mouse rods for oxidative stress 1 hr post-sildenafil

(SLL)

QUEST MRI. As shown in Fig 3 (see S1 Fig in S5 File for raw data), significant (p< 0.05)

evidence for oxidative stress was found to be limited to the peripheral (i.e., 1000–2000 μm

from the ONH) retina on the superior side (i.e., Fig 3B). Central (± 400–1000 μm) retina and

peripheral inferior outer retina did not show evidence for oxidative stress (p> 0.05, Fig 3).

DCF. A representative data set showing steady state levels of reactive oxygen species eval-

uated by DCF staining in freshly isolated retinal sections is shown in Fig 4. In saline treated

mice, little DCF fluorescence was noted (“saline” row, Fig 4). In sildenafil treated mice, DCF

signal was seen prominently in the superior peripheral outer retina (top row, Fig 4) with less

signal observed in the inferior retina.

QUEST OCT. In untreated control mice, superior and inferior central ELM-RPE was sig-

nificantly (p< 0.05) ~5 μm thinner in the dark than after 5 hr of light-adaptation (Fig 5, and

S3 Fig in S5 File for raw data), a similar effect size as previously reported using a higher spatial

resolution OCT [52]. Light-dark data collected before 12:30 pm are reported herein. In the

Table 1. Model details for OCT layer thickness analysis.

Outcome Position relative to ONH Number of Knots Random Coefficients

ELM-RPE thickness Inferior 9 Intercept, Knot 7

Superior 10 Intercept, Knot 7, Knot 8

ONL thickness Inferior 7 Intercept, Knot 5

Superior 9 Intercept, Knot 7

https://doi.org/10.1371/journal.pone.0245161.t001
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central retina (± 350–630 μm from the ONH), sildenafil reduced (p< 0.05) the ELM-RPE

thickness from light- to dark-adapted levels in control mice (Fig 5); anti-oxidants did not

(p> 0.05) restore ELM-RPE thickness to light-like values as would be expected if oxidative

stress were present [24]. Similar results are found with a field-of-view ± 350–1191 μm from the

optic nerve head (S4 Fig in S5 File).

In contrast to the ELM-RPE region, ONL was, as expected, invariant in dark and light-

adapted control mice, and following administration of sildenafil (Fig 5 for ± 350–630 μm from

the optic nerve head; ± 350–1191 μm from the optic nerve head data are shown in S4 Fig in S5

File) [44, 54].

Testing light-adapted mouse for outer retina oxidative stress 5 hr post-

sildenafil (SDL)

QUEST OCT. 5 hr after sildenafil administration, the ELM-RPE thickness in the central

retina (± 350–630 μm from the optic nerve head) was not different (p> 0.05) from light-

adapted levels of control mice and thicker than dark-adapted levels (Fig 6 and S5 Fig in S5 File

for raw data); again, anti-oxidants had no effect (p> 0.05) in the sildenafil-treated mice (Fig 6

and S5 Fig in S5 File for the raw data) [24]. Results with a field-of-view ± 350–1191 μm from

the optic nerve head (S6 Fig in S5 File) are consistent with the central retina findings.

ONL thickness was invariant (p> 0.05) to sildenafil or anti-oxidants (Fig 6 for ± 350–

630 μm from the optic nerve head; ± 350–1191 μm from the optic nerve head data are shown

in S6 Fig in S5 File), supporting a specific sildenafil response by the ELM-RPE region.

Fig 3. QUEST MRI showing oxidative stress localized to peripheral superior retina. Modeled 1/T1 profiles

approximately 1 hour post-sildenafil IP in light-adapted mice given either saline (n = 4 mice, black line) or anti-

oxidants (AO, n = 5 mice, red line) in these four retinal regions: A) 1000 to 2000 inferior, B) 1000 to 2000 superior, C)

400–1000 inferior, and D) 400–1000 superior; representative OCT images (bottom of each graph) provide spatial

orientation. Only significant (horizontal black bar) AO reductions in 1/T1 indicative of oxidative stress are shown.

Each profile has a solid line indicating the mean and a shaded region indicating 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0245161.g003
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Testing dark-adapted mouse for outer retina oxidative stress 1 hr post-

sildenafil (SDD)

QUEST MRI. No evidence (p> 0.05) for oxidative stress was found in superior or infe-

rior dark-adapted retina in any layers (Fig 7 and S7 Fig in S5 File for raw data). For complete-

ness, we note that the inferior inner retina (0–24% depth) did show evidence (p< 0.05) for

oxidative stress (i.e., Fig 7C).

QUEST OCT. In the dark, the ELM-RPE thickness in the central retina (± 350–630 μm

from the optic nerve head) was not different (p> 0.05) from dark-adapted levels of control

mice and was thinner, as expected, than light-adapted levels independent of administration of

anti-oxidants (Fig 8 and S8 Fig in S5 File for raw data) [24]. Comparable outcomes were

observed with a field-of-view ± 350–1191 μm from the optic nerve head (S9 Fig in S5 File).

In addition, the ONL thickness was constant regardless of treatment with sildenafil or anti-

oxidants (Fig 8 for ± 350–630 μm from the optic nerve head; ± 350–1191 μm from the optic

nerve head shown in S9 Fig in S5 File).

Testing visual performance 1, 5, and 24 hr post-sildenafil

QUEST OKT. At 5 hr post-sildenafil treatment, CS was lower-than-normal (p< 0.05)

and not corrected by anti-oxidants (Fig 9). No change (p> 0.05) in CS from control values

was noted at 1 hr or 24 post-sildenafil. SFT was unaffected by both sildenafil ± anti-oxidants in

all groups (Fig 9).

Fig 4. The effect of sildenafil on generation of oxidative stress in a representative ex vivo data set of unfixed cryosections stained with DCF.

DCF staining for reactive oxygen species is shown in green; nuclei staining (DAPI) is shown in blue. The same intensity scaling is used in all

images; scale bars are 100 μm.

https://doi.org/10.1371/journal.pone.0245161.g004
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Discussion

In this study, we find evidence for a spatially limited oxidative stress response to sildenafil, and

that sildenafil-impaired vision cannot be rescued by AO. Therefore, it is likely that sildenafil-

Fig 5. 1 hr post-sildenafil after 4 hr of light-adaption mice (SLL, Fig 2) shows thinner, dark-like ELM-RPE.

Modeled A) ONL inferior retina, B) ONL superior retina, C) ELM-RPE thickness inferior retina, and D) ELM-RPE

thickness superior retina in uninjected control dark (CD, n = 11 mice, grey bar), control light (CL, n = 5 mice, white

bar), SLL+saline (SLL, n = 5 mice, green bar), and SLL+AO (n = 5 mice, red bar) in the two different retinal regions.

ONL is invariant to condition. ELM-RPE is significantly (horizontal black bar) thinner in the dark than in the light

(CD vs. CL) as expected [44, 53, 54]. In SLL+saline and SLL+AO groups ELM-RPE thickness is not different from CD

(and was thinner than CL); no evidence for oxidative stress was found. The points in each plot represent the estimated

mean for each mouse based on the model. Error bars indicate 95% confidence intervals. Note the same control data

sets are presented in each graph to facilitate comparisons.

https://doi.org/10.1371/journal.pone.0245161.g005

Fig 6. 5 hr post-sildenafil in light-adaption mice (SDL, Fig 2) shows light-like ELM-RPE. Modeled A) ONL inferior

retina, B) ONL superior retina, C) ELM-RPE thickness inferior retina, and D) ELM-RPE thickness superior retina in

uninjected control dark (CD, n = 11 mice, grey bar), control light (CL, n = 5 mice, white bar), SDL+saline (SDL, n = 6

mice, green bar), and SDL+AO (n = 6 mice, red bar) in the two different retinal regions. ONL is unresponsive to

condition. In SDL+saline and SDL+AO groups ELM-RPE thickness is not different from CL (and was thicker than

CD); no evidence for oxidative stress was found. The points in each plot represent the estimated mean for each mouse

based on the model. Error bars indicate 95% confidence intervals. Note the same control bars are presented in each

graph to facilitate comparisons.

https://doi.org/10.1371/journal.pone.0245161.g006
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Fig 7. QUEST MRI in dark-adapted mice do not show outer oxidative stress. Modelled 1/T1 profiles approximately

1 hour post-sildenafil IP in dark-adapted mice given either saline (n = 6 mice, black line) or anti-oxidants (AO, n = 3

mice, red line) in these four retinal regions: A) 1000 to 2000 inferior, B) 1000 to 2000 superior, C) 400–1000 inferior,

and D) 400–1000 superior; representative OCT images (bottom of each graph) provide spatial orientation. Only

significant (horizontal black bar) AO reduction in 1/T1 indicative of oxidative stress are shown. Each profile has a solid

line indicating the mean and a shaded region indicating 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0245161.g007

Fig 8. 1 hr post-sildenafil in dark-adapted mice (SDD, Fig 2) shows thinner ELM-RPE. Modeled A) ONL inferior

retina, B) ONL superior retina, C) ELM-RPE thickness inferior retina, and D) ELM-RPE thickness superior retina in

uninjected control dark (CD, n = 11 mice, grey bar), control light (CL, n = 5 mice, white bar), SDD+saline (SDD, n = 3

mice, green bar), and SDD+AO (n = 3 mice, red bar) in the two different retinal regions. ONL is constant regardless of

condition. In SDD+saline and SDD+AO groups, ELM-RPE thickness is not different from CD (and was thinner than

CL); no evidence for oxidative stress was found. The points in each plot represent the estimated mean for each mouse

based on the model. Error bars indicate 95% confidence intervals. Note the same control bars are presented in each

graph to facilitate comparisons.

https://doi.org/10.1371/journal.pone.0245161.g008
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induced vision impairment is caused by mechanisms other than oxidative stress, a topic for

future study.

Sildenafil and retina oxidative stress

In this study, we found no evidence to support the first part of our hypothesis that systemic sil-

denafil can cause widespread outer retinal oxidative stress in light-adapted mice (Figs 3 and 4).

Unexpectedly, the oxidative stress (as measured by QUEST MRI in vivo and DCF ex vivo) at 1

hr post-treatment was found most prominently in superior peripheral outer retina (Figs 3 and

4). Intriguingly, we note that other retinal regions (e.g., superior central outer retina) show dif-

ferent oxidative stress results by QUEST MRI and DCF. These different spatial outcomes do

not appear to be due to different detection sensitivities because, for example, a third method,

QUEST OCT, did not show evidence for oxidative stress in inferior or superior central retina

(Fig 5). Alternatively, we note that QUEST MRI detects paramagnetic free radicals and is

unable to detect non-paramagnetic species like H2O2. However, DCF detects both free radicals

and H2O2 [45]. We also note that QUEST OCT detects high levels of superoxide but its sensi-

tivity to other reactive oxygen species is unknown [20, 24, 44]. More work is needed to unravel

which reactive oxygen species contribute to the positive QUEST MRI, DCF, and QUEST OCT

results.

Regionally specific oxidative stress has been reported in PDE 6 mutant rd10 mice and in

other models [31, 33, 55–57]. We note that non-invasive measures of oxidative stress measured

by QUEST MRI, QUEST OCT, and QUEST OKT are only revealed with AO injection, and the

use of saline controls is thus better than un-injected controls. The present results are consistent

with the notion that seemingly homogeneous population of neurons (in this case rod

Fig 9. Contrast sensitivity is transiently reduced at 5 hr post-sildenafil. Compared to uninjected 5 hr light adapted mice (white bar), sildenafil

+ saline (green bars) A) decreased contrast sensitivity only under SDL conditions but B) did not change spatial frequency threshold (SFT). AO (red

bars) did not correct this reduced contrast sensitivity. Black horizontal bars indicate significant differences (P< 0.05). The points in each plot

represent the estimated mean for each mouse based on the model. Error bars are 95% confidence intervals. Number of mice used per group:

uninjected, n = 6 mice; SLL+saline, n = 5 mice; SLL+AO, n = 6 mice; SDL+saline, n = 5 mice; SDL+AO, n = 5 mice; 24 hour+saline, n = 6 mice; 24

hour+AO, n = 6 mice.

https://doi.org/10.1371/journal.pone.0245161.g009
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photoreceptors) can have substantial within-class heterogeneity [55]. Limitations of the pres-

ent study include not considering sex and age, two important biological variables; more work

is now needed in female and older mice.

As noted above, QUEST OCT found no evidence for oxidative stress in the ELM-PRE

region of the central retina [24, 29, 33]. QUEST OCT relies on the fact that oxidative stress

causes a thinner, dark-like ELM-RPE thickness even in the light, perhaps due to induced aci-

dosis [58–60]. This phenotype comes about because the ELM-RPE thickness is modulated by a

signaling pathway in which rod photoreceptor cells consume more energy in the dark than in

the light [26, 27, 32, 44, 61, 62]. As a result, there is a greater production of waste-water and

CO2 that acidifies the subretinal space [26, 27, 32, 44, 61, 62]. In turn, this causes an upregula-

tion of pH-sensitive water-removal co-transporters on the apical portion of the RPE (Fig 10)

[26, 27, 32, 44, 61, 62]. Thus, oxidative stress is indicated if in light-adapted mice, anti-oxidants

convert a dark-like thin subretinal space into a thicker light-like level (Fig 10), an outcome not

found in this study (Figs 5, 6, 8) [24].

Mechanistically, the evoked oxidative stress at 1 hr post-treatment (at the presumptive peak

of plasma sildenafil and associated cGMP content) is hypothesized to occur via focal inhibition

of photoreceptor PDE 6 activity [12]. In this scenario (summarized in Fig 10), elevating cGMP

levels in light-adapted mice causes sustained opening of rod photoreceptor outer segment

cyclic nucleotide-gated channels, an energy-intensive event [64]. As a result of this increase in

mitochondrial respiration, the subretinal space fills with acidified waste-water [14, 17–19, 24,

28, 65]. The lowering of the subretinal space pH upregulates water removal co-transporters in

RPE with the end result of dehydrating / thinning of the ELM-RPE space (Fig 10) [14, 17–19,

24, 28, 65]. Evidence for subretinal space thinning following sildenafil is shown in Fig 3 [14,

17–19, 24, 28, 65]. The associated increase in mitochondrial activity can cause production of

free radicals in excess of anti-oxidant defenses [16]. The above may also provide a possible

explanation for the oxidative stress measured in the inferior inner central retina (a PDE 5-rich

region) of dark-adapted mice (Figs 4 and 6) [7, 12, 66]. While sustained cGMP content can

cause photoreceptor cell death, the induced focal oxidative stress in this study (Fig 3) appears

to be non-toxic since visual performance was normal 24 hours after the sildenafil treatment

[16–19, 31, 65, 67]. Since the outer retina is avascular, the focal oxidative stress in posterior ret-

ina is unrelated to a sildenafil effect on endothelial cells [68]. There are reports, however, in

non-retinal disease models that chronic treatment with sildenafil shows anti-oxidant effects

[69, 70]. More work is needed to understand the events leading to the localized oxidative stress

in vivo measured in the present investigation.

Sildenafil and visual performance

We further found novel evidence that sildenafil can temporarily impair contrast sensitivity but

not spatial frequency thresholds (i.e., acuity) in healthy C57BL/6 mice (Fig 9). This visual per-

formance decline in response to sildenafil was not corrected with anti-oxidants, suggesting a

non-oxidative stress etiology. The transient nature of the response (Fig 9) may help understand

why sildenafil’s effect on retinal electrophysiologic indices from experimental models has been

contradictory [6–9, 12, 13].

Intriguingly, the induced visual performance declines also did not seem linked with higher

rod cGMP levels. In particular, sildenafil’s plasma concentration peaks at about 1 hr post-

injection followed by clearance with a half-life of ~4 hr; effects on retinal electrophysiology are

reported to be gone by 24 hr post-injection [6, 12, 66, 71]. Sildenafil’s content in the retina is

~2-fold higher than in the plasma and so the resulting higher retinal cGMP levels are expected

to follow a similar time course as sildenafil in the plasma [9]. Indeed, in this study, a smaller

PLOS ONE Sildenafil and vision

PLOS ONE | https://doi.org/10.1371/journal.pone.0245161 March 4, 2021 14 / 21

https://doi.org/10.1371/journal.pone.0245161


rod ELM-RPE thickness was evident at 1 hr post-sildenafil with recovery to thicker light-like

levels by 5 hr (Fig 5) in-line with the expected changes in cGMP levels (Fig 10) [6, 9, 12, 66,

71]. However, contrast sensitivity was normal at 1 hr post-sildenafil (i.e., at the presumptive

maximum plasma and retinal levels of sildenafil and cGMP, respectively) (Fig 9) [12]. On the

other hand, visual performance was lowest at 5 hr post-treatment (i.e., when levels are roughly

at half-maximum) (Fig 9) [12]. The present data are insufficient to explain the temporal mis-

match between lower contrast sensitivity and rod cGMP levels, especially since cones are more

sensitive to sildenafil inhibition than rods [12]. Additional studies are needed to investigate

whether, for example, this mismatch has contributions from retinal sildenafil P450 metabolism

or from PDE inhibition in other parts of the brain [10, 72–74].

Summary

Sildenafil induced spatially localized photoreceptor oxidative stress based on i) the QUEST

MRI and DCF data showing prominent signal from superior peripheral outer retina domi-

nated by rods in the light demonstrating oxidative stress [75], ii) the lack of evidence for oxida-

tive stress in central outer retina as measured by QUEST OCT, and iii) lack of anti-oxidant

response on OKT cone-based visual performance testing. Thus, we find no evidence for silden-

afil-induced oxidative stress in rods panretinally nor was oxidative stress related to sildenafil-

induced impairment of visual performance in wildtype mice. In addition, the present findings

do not support a role for loss-of-function in PDE 6 per se as causative for oxidative stress in

dark-reared rd10 mice stress [31]. A novel observation from this study is that ELM-RPE thick-

ness appears to be an indicator of cGMP level changes at least following sildenafil administra-

tion; conventional cGMP assays reflect whole retina levels rather than that in the ELM-RPE

[76]. This observation might thus address the need for novel cGMP imaging biomarkers in,

for example, hereditary photoreceptor degeneration disease, age-related macular degeneration,

and neurodegenerative diseases, such as Alzheimer’s disease [2, 4, 77].

Fig 10. Working model of factors that regulate the ELM-RPE thickness. Oxidative stress is hypothesized to induce

an acidosis (dotted red line) that would be expected to convert a thicker “light” ELM-RPE phenotype into a thinner

“dark-like” phenotype (see text for details); this expectation is supported experimentally [24, 44, 63].

https://doi.org/10.1371/journal.pone.0245161.g010
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