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Metal-iodosylarene complexes have been recently viewed as a second oxidant alongside
of the well-known high-valent metal-oxo species. Extensive efforts have been exerted
to unveil the structure-function relationship of various metal-iodosylarene complexes.
In the present manuscript, density functional theoretical calculations were employed
to investigate such relationship of a specific manganese-iodosylbenzene complex
[MnIII(TBDAP)(PhIO)(OH)]2+ (1). Our results fit the experimental observations and revealed
new mechanistic findings. 1 acts as a stepwise 1e+1e oxidant in sulfoxidation reactions.
Surprisingly, C-H bond activation of 9,10-dihydroanthracene (DHA) by 1 proceeds via a
novel ionic hydride transfer/proton transfer (HT/PT) mechanism. As a comparison to 1,
the electrophilicity of an iodosylbenzene monomer PhIO was investigated. PhIO performs
concerted 2e-oxidations both in sulfoxidation and C-H activation. Hydroxylation of DHA
by PhIO was found to proceed via a novel ionic and concerted proton-transfer/hydroxyl-
rebound mechanism involving 2e-oxidation to form a transient carbonium species.

Keywords: manganese(III)–iodosylarene, sulfoxidation, C-H bond activation, mechanism, DFT

INTRODUCTION

Iodosylarenes have been frequently employed as terminal oxidants in the synthesis of metal-oxo
species, as well as in the catalytic oxidation of organic substrates including C–H hydroxylation
and O-atom transfer to substrates (Zhdankin and Stang, 2002, 2008; Yoshimura and Zhdankin,
2016). Generally, the insoluble iodosylarenes bind to an heme or non-hememetal core and produce
the metal-iodosylarene complexes (Scheme 1A) (Macikenas et al., 2000). Such metal-iodosylarene
intermediates are unstable and ready to cleave into high-valent metal-oxo species and iodoarenes.
The nascent high-valent metal-oxo species are believed to be the sole oxidants in the various
oxygenation reactions (Groves et al., 1979; Groves and Nemo, 1983). Extensive experimental
observations support this one-oxidant mechanism, which becomes a widely accepted mechanism
in oxygenation chemistry (Shaik et al., 2005). However, in the 1990s, Valentine and co-workers
found that epoxidation of olefin was significantly enhanced when redox-innocent metals were
added in the oxidation system involving idosylbenzene (Nam and Valentine, 1990; Yang et al.,
1990). This experimental result drops the one-oxidant mechanism into doubt. In 2000, Collman,
Brauman and co-workers reported the oxidation rate ratios for each pair of substrates varied
when different iodosylarenes were employed as terminal oxidants (Collman et al., 2000). In 2002,
Nam and co-workers suggested that the ratio of stereoisomers in olefin epoxidation reactions
catalyzed by porphyrin iron complex depended on the terminal oxidant or counterions, and
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Sun et al. Researches on Mn(III)-Iodosylarene’s Oxidation Mechanism

SCHEME 1 | The controversy of (A) one-oxidant mechanism and (B) multiple-oxidant mechanism.

proposed the multiple-oxidant mechanism (Scheme 1B) (Nam
et al., 2002). In this mechanism, both metal-iodosylarene adducts
and high-valent metal-oxo complexes are potential oxidants to
oxidize the substrates to the products. Nam and co-workers
have presented various spectroscopic (UV-Vis, Raman, etc.) and
enantioselectivity evidences to support this mechanism (Hong
et al., 2014; Wang et al., 2015).

Many evidences supporting the multiple-oxidant mechanism
also come from other famous groups. Hill et al. reported
iodosylbenzene adducts of a manganese porphyrin complex
trans-[MnIV(por)(OI(OAc)Ph)2] as a precursor to active high-
valent manganese–oxo species (Smegal and Hill, 1983). Fujii and
his workers crystalized another Mn(IV)-iodosylarene complex
trans-[MnIV(salen)(MesIO)2Cl]+ (Wang et al., 2012), and
clarified that the reactivity and selectivity of iodosylarene
adducts depended on steric and electronic properties of
substituents on iodine(III) of the coordinated iodosylarenes
(Wang et al., 2013). The spectroscopic evidence for a manganese
iodosylarene porphyrin adduct [Mn(TDCPP)(ArIO)]+ was
also reported by Lei (Guo et al., 2012). Meanwhile, other
metal-iodosylarene complexes with different metals have been
crystalized, such as the iron complex [FeIII(tpena)(OIPh)]+

by Mckenzie (Lennartson and Mckenzie, 2012), the rhodium
complex [RhIIICp∗(ppy)(sPhIO)]+ by Templeton (Turlington
et al., 2014), and the cobalt complex [CoIITptBu(sPhIO)]+ by
Anderson (Hill et al., 2018). In addition to normal transition-
metal complex, the lanthanide complexes, the Ce-iodosylbenzene
one [CeIV(LOEt)2(OI(Cl)Ph)2] and the Ce-iodylbenzene one

[CeIV(LOEt)2(OI(O)ClPh)2] were reported by Leung et al. (Au-
Yeung et al., 2016).

Recently, Cho and his co-workers crystallized the first X-ray
crystal structure of a mononuclear manganese-iodosylarene
complex, [MnIII(TBDAP)(OIPh)(OH)]2+ (1, TBDAP = N,
N-ditert-butyl-2,11-diaza-[3.3](2,6)-pyridinophane), which
is capable of conducting various oxidation reactions, such
as C–H bond activation, sulfoxidation, and epoxidation
(Jeong et al., 2018). In these reactions, 1 exhibits similar
and even higher electrophilic oxidation power comparing to
highly reactive manganese(IV)-oxo complexes. A consecutive
Mn(III)(OIPh)(OH)/Mn(IV)(OH)2 conducting mechanism
(Jeong et al., 2018) was proposed for the hydrogen abstraction
reactions and a direct oxygen atom transfer mechanism (DOT)
(Li et al., 2007; Shaik et al., 2010) was postulated for the
sulfoxidation and epoxidation reactions. However, no further
theoretical study is performed to support such mechanism.
Herein, we presented the first theoretical investigation to the
structure-reaction relationship of 1 shown in oxidative C-H
bond activation and sulfoxidation. Our results demonstrate that
such Mn(III)-OIPh complex 1 prefers to be stepwise 1e+1e oxidant
in sulfoxidations, oxygen transfer occurs via the electron transfer
followed by oxygen transfer (ETOT) mechanism proposed by
Watanabe and Baciocchi (Goto et al., 1999; Baciocchi et al.,
2003), not the DOT mechanism. Surprisingly, in the C-H bond
activation mediated by 1, a new ionic hydride transfer/proton
transfer (HT/PT) mechanism is preferred (Li et al., 2016; Geng
et al., 2017, 2019; Schwarz et al., 2017).
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THEORETICAL METHODS

Coordinates of [MnIII(TBDAP)(OIPh)(OH)]2+ was obtained
from the Cambridge Crystallographic Data Center with
deposition number CCDC-1868139. Thioanisole and 9,10-
Dihydroanthracene (DHA) were employed as the substrates in
the mechanistic study of sulfoxidation and C–H bond activation,
respectively. Density functional theory (DFT) calculations were
carried out using the Gaussian 16 suite of quantum chemical
programs (Frisch et al., 2016). The spin-unrestricted functional
B3LYP-D3(BJ) (Becke, 1992a,b, 1993) with the addition of
Grimme’s D3 dispersion and Becke–Johnson damping (Grimme
et al., 2010, 2011) was used. Such functional has been extensively
verified to be accurate and efficient in many transition metal-
containing reaction systems (Yang et al., 2016, 2019). Two mixed
basis sets were carried out: (1) geometry optimizations and
frequency calculations were performed with a set of basis set of
Lanl2dz for Mn, Lanl2dzdp for I, 6-31G∗ for S, 6-31G∗∗ for the
first coordinating moieties PhIO(I is excluded)/OH and 6-31G
for the rest atoms. This basis set is denoted as B1 for simplicity.
The benchmark on the other DFT functionals was added into the
Supporting Materials. The validity of the functional B3LYP was
evaluated by comparison with calculations that employed four
other functionals: PBE0 (Adamo and Barone, 1999), B3PW91
(Kaupp et al., 2002), M06 (Zhao and Truhlar, 2008), and BP86
(Perdew, 1986), which are widely used in transition metal model
systems. The hybrid DFT functionals (PBE0, B3PW91, M06)
show consistent results with B3LYP (Supplementary Table S3).
(2) Single point energy (SPE) calculations were done with the
basis set of Lanl2tz for Mn, Lanl2dzdp (Hay and Wadt, 1985;
Isaia et al., 2009; Jaccob et al., 2011) for I and 6-311+G∗∗ for the
rest atoms. Basis sets lanl2dzdp and lanl2tz were obtained from
the Basis Set Exchange library (Feller, 1996; Schuchardt et al.,
2007). All geometries were optimized without any symmetry
constraints. Solvent effects (acetonitrile, ε = 35.688) were
included in all calculations using the conductor-like polarizable
continuum model (CPCM) (Barone and Cossi, 1998; Cossi
et al., 2003) as implemented in Gaussian 16. An experimental
temperature of 293.15K was adopted in the Gibbs free energy
calculations. Transition states were ascertained by vibrational
frequency analysis to possess a mode along the reaction
coordinate with a sole imaginary frequency. The energy values
in the text were calculated at the SPE/B2//B1+ZPE(B1) level.
Energy values at other computing levels are presented in the
Supporting Materials.

RESULT AND DISCUSSION

Conversion of the
Manganese(III)–Iodosylarene Complex 1 to
the High-Valent Manganese(V)-oxo
Complex 2
First, the conversion from 1 to high-valent metal-oxo species 2
in the absence of substrates was investigated (Figure 1). For 1,
the ground state is a high-spin quintet states (S = 2), the exited

triplet/singlet spin states lie at 19.7/46.9 kcal/mol higher. Various
SCF and free energies of the reactant on singlet state (S = 0) was
found to have high energy throughout the reaction, Thus, the
singlet state pathway was ruled out. For the ground state 51, the
average distance of Mn-N is 2.202 Å, the distance of Mn-OIPh is
1.904 Å, the I-O distance is 1.938 Å, and the length of twisted T-
shape halogen bond I-OH is 2.689 Å, which is consistent with
Cho’s experiment (Jeong et al., 2018). For the transition states
3,5TS12, the energies is degenerate. 5TS12 lies 20.0 kcal mol−1

higher than 51, and 3TS12 only lies 0.4 kcal mol−1 above 5TS12.
For the low-lying 5TS12, the calculated Mn-O distance is 1.746
Å, the I-O one is 2.207 Å, and the I-OH one is 4.592 Å (For
51, the length is 2.689 Å), indicating that the halogen bond
between I and OH for 51 is broken on the transition state and
thus raises the activation energy (Liu et al., 2016). The formed
high-valent Mn(V)-oxo complex on the triplet ground state
32′ lies 16.7 kcal mol−1 higher than the quintet manages(III)-
iodosylarene complex 51. For 32′, the Mn–O distance is 2.642
Å, indicating that I-O bond is still not completely broken and
has a strong interaction. Such high-valentMO–iodine interaction
was also found in the conversion of the iron(III)-PhIO complex
Fe(III)(O)(tpena)-OIPh to the high-valent iron-oxo species
Fe(V)(O)(tpena) (Lennartson and Mckenzie, 2012). To obtain
a non-PhI-interacting Mn(V)(O)(TBDAP) complex 2 from 2′,
an additional energy of 6.4 kcal mol is required (Figure 1). In
short, conversion of the quintet complex (TBDAP)Mn(III)-OIPh
to the high-valent speciesMn(V)(O)(TBDAP) is a process of two-
state reactivity (TSR) (Shaik et al., 1998, 2002; Ogliaro et al.,
2000). The halogen bond between the iodine atom and the OH
ligand is broken during the conversion, making such conversion
kinetically and thermodynamically unfeasible.

Sulfoxidation of Thioanisole by 1 via the
Direct Oxygen-Atom Transfer (DOT)
Mechanism
Next, we investigated the structure-reactivity relationship of 1.
For sulfoxidation reaction of thioanisole by 1, the oxidation via
the DOTmechanismwas firstly calculated. As shown in Figure 2,
for the reactant complex (RC), the ground state is a high-spin
quintet states (S = 2), as the elongation of I-O bond, spin
reversion occurs and the reaction path switches from the quintet
to the triplet spin state (S= 1) on the transition state. The formed
product complex is on the quintet ground state. This reaction is
a TSR process (Shaik et al., 1998, 2002; Ogliaro et al., 2000). For
5RC, the average distance of Mn-N is 2.172 Å, the length of Mn-
OIPh is 1.951 Å, and the I-O one is 1.922 Å. For the transition
states 3,5TSDOT, 5TSDOT lies 53.6 kcal mol−1 above by 5RC and
3TSDOT lies 26.8 kcal mol−1. The activation energy barrier of the
DOT process is very high. For the low-lying 3TSDOT, the Mn-O
distance is 2.164 Å, the S-O one is 2.071 Å, the O-I one is 2.014 Å,
and the length of between I and OH is 2.760 Å, which means I-O
bond and halogen bond I-OH cannot completely broken and has
a strong interaction. The elongation of the two bonds needs such
high activation energy barrier (26.8 kcal/mol), indicating that it
is very difficult to oxide the thioanisole by the DOT mechanism
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FIGURE 1 | Energy profiles (in kcal mol−1 ) for the conversion of manganese(III)–iodosylbenzene 1 to oxo-manganese(V) 2. Energies were calculated at the
UB3LYP-D3(BJ)/B2//B1+ZPE/B1 level in solvent. The geometric information of the transition state 5TS12 is presented. Hydrogen atoms are omitted for clarity.
Lengths are in Å units, angles are in degree units, and the imaginary frequency is in cm−1 unit.

with the way of two-electron transfer for complex 1. In previous
work, Oae and his coworkers suggested ETOT mechanism for
the sulfoxidation of a series of aromatic sulfides promoted by
an iron (III) porphyrin (Oae et al., 1982). Lanzalunga also
illustrate the aryl diphenylmethyl sulfides promoted by the non-
heme iron(IV)-oxo complex occurs by electron transfer followed
by oxygen transfer (ETOT) mechanism (Barbieri et al., 2016).
Whether the sulfoxidation of thioanisole mediated by Mn(III)-
iodosylarene complex was in the ETOT way?

Sulfoxidation of Thioanisole by 1 via the
Electron Transfer/Oxygen Transfer (ETOT)
Mechanism
The calculated energy profiles for sulfoxidation via the ETOT
mechanism have been presented in Figure 3. The activation
barrier of the rate-limiting step of I-O bond cleavage is 21.4
kcal mol−1, which is 5.4 kcal mol−1 lower than the barrier of
sulfoxidation in the DOT mechanism (Figure 2). For 5TS1, the
I-O distance is 2.390 Å, the Mn-O distance is 1.749 Å, the S-O
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FIGURE 2 | Energy profiles (in kcal mol−1 ) for thioanisole sulfoxidation via the direct oxygen-atom transfer mechanism. Energies were calculated at the
UB3LYP-D3(BJ)/B2//B1+ZPE/B1 level in solvent. Key geometric information on transition states is presented. Hydrogen atoms are omitted for clarity. Energies are in
kcal mol−1 units, lengths are in Å units, angles are in degree units, and imaginary frequencies are in cm−1 units.

one was kept at 4.384 Å. The angle of Mn-O-I is 135.5◦. Both
the activation energy and the geometries of transitions states
have introduced into the reaction system (comparing to Figure 1
for the case of absence of substrates). As the I-O bond further
elongation, spin reversion occurs and the reaction path switches

from the quintet state to the triplet one (S = 1) on the transition
state 2. Thus, this is an another two-state reactivity (TSR)
process (Shaik et al., 1998, 2002; Ogliaro et al., 2000). During
the substrate thioanisole approaching, an intermolecular electron
transfer occurs from thioanisole to the manganese-oxo moiety
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FIGURE 3 | Energy profiles (in kcal mol−1 ) for the thioanisole sulfoxidation via the ETOT mechanism. Energies were calculated at the
UB3LYP-D3(BJ)/B2//B1+ZPE/B1 level in solvent. The key geometric data of the transition states are presented. Hydrogen atoms are omitted for clarity. Lengths are in
Å units, angles are in degree units, and imaginary frequencies are in cm−1 unit.

to form an Mn(IV)–oxo species with an one-electron oxidized
thioanisole cation radical. For the low-lying 3TSET, as depicted
in Figure 3, the I-O distance is 2.853 Å, the Mn-O one is 1.679 Å,
and the I-OH one is 3.460 Å, the angle of Mn-O-I is 121.5◦. The
spin of thioanisole is ca. 1.3. This conversion has a tiny barrier of
0.9 kcal mol−1. The following oxygen transfer step is a two-state
reactivity process, with degenerate quintet and triplet transition
states 3,5TSOT (5TSOT is 0.8 kcal mol−1 lower than 3TSOT). The
ground state of product complex is the quintet state and the
products are the quintet MnIII (TBDAP)(OH)− complex and
sulfoxide. This step is an exothermic process with large heat (42.7
kcal mol−1). In short, the reaction proceeds in a stepwise way;
first involving a substrate-induced O-I bond small but obvious
change when the substrate thioanisole is cleavage, following by
an intermolecular electron transfer from the substrate to the
Mn(V)–oxo core, and ended by an oxygen rebound step to
form the sulfoxide product. In such way, the ETOT pathway
has lower activation energy and becomes dominant over the
DOT pathway.

C-H Bond Activation of 9,
10-Dihydroanthracene by 1
The C–H bond activation of hydrocarbons by metal-oxo
active oxygen species is one of the most important subjects
in bioinorganic and oxidation chemistry (Solomon et al.,
2000; Nam, 2007; Shaik et al., 2007; Van Eldik, 2007; Gunay
and Theopold, 2010; Mayer, 2010; Cho et al., 2012). The
reactivity of 1 in the C–H activation reaction was investigated
as well. Energy profiles for the C-H bond activation of 9,
10-dihydroanthracene (DHA) have been present in Figure 4.
Surprisingly, the manganese-iodosylarene complex 1 exhibits
robust oxidative ability toward DHA. The rate-limiting step
of the first C-H abstraction step holds a barrier of 14.9 kcal
mol−1, which is much lower than the barriers in sulfoxidation
of thioanisole. The result is also in agreement with the rank
of second-order rate constant (Jeong et al., 2018). For 5TS1H,
the Mn-O distance is 1.938 Å, the I-O one is 2.303 Å, the
Mn-O-I angle is 105.2◦. For the reaction coordinates, the C-
H distance is 1.281 Å, the O-H distance is 1.307 Å and
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FIGURE 4 | Energy profiles (in kcal mol−1 ) for the C-H bond activation of 9,10-dihydroanthracene. Energies were calculated at the UB3LYP-D3(BJ)/B2//B1+ZPE/B1
level in solvent. The key geometric information on the transition state TS1 and TS2 is presented. Unimportant hydrogen atoms are omitted for clarity. Lengths are in Å
units, angles are in degree units, and imaginary frequencies are in cm−1 unit.

the C-H-O angle is 158.0◦. The lengths of the O-H moiety
and the C-H one are consistent with normal C-H abstraction
protocol, while the C-H-O angle is too bent (normally the angle
is nearly 180◦ for C-H abstraction by high-valent metal-oxo
species). Investigation of 5TS1H’s geometry, we can see there is
a strong stacking interaction between the phenyl ring of PhI
and the ring of DHA. Such a reaction is beneficial to lower the
activation energy. After the transition state, the H-abstracted
DHA moiety (DHA-H) automatically rotates and directs the
second C-H moiety of the methylene moiety (-CH2-) to the
nascent Mn(III)-(OH)2 complex (IMH). Surprisingly, There is
no spin for H and the DHA-H moiety at the intermediate state
IMH (Supplementary Table S10), the Mulliken charge of DHA-
H changes from a negative value (ca. −0.16) in the reagent
complex to a positive one (ca. 0.95) in the IMH. Thus, the
DHA-H becomes a carbonium species, which could well explain

the rotation of DHA as the repulsive effect between cationic
carbonium and H parts. Thus, the first C-H bond activation step
is a novel hydride transfer (HT) process. Subsequently, a second
C-H abstraction of the methylene group by the Mn(III)-(OH)2
complex occurs. The barrier of the second hydrogen abstraction
is only 3.3 kcal mol−1, it’s an easy process to occur. For the low-
lying 5TS2H, there is no spin populated in the DHA-H moiety
yet, and the Mulliken charge of DHA-H is decreased (ca. 0.38),
demonstrating that the second step is a proton transfer (PT)
process. We also calculated the possible oxygen rebound step
and found that the energy of the transition state for the rebound
step is 3.0 kcal mol−1 higher than the energy of the second H-
abstraction step. The exothermicity of the rebound step is also
14.8 kcal mol−1 less than that of the second hydrogen abstraction
step. Thus, C-H activation of DHA by 1 proceeds via a novel
ionic hydride transfer/proton transfer (HT/PT) mechanism, not
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FIGURE 5 | Energy profiles (in kcal mol−1 ) for (A) thioanisole sulfoxidation and (B) C-H bond activation of 9,10-dihydroanthracene by the PhIO monomer. (C) An ionic
proton-transfer/hydroxyl-rebound mechanism was proposed for C-H activation by PhIO. Energies were calculated at the UB3LYP-D3(BJ)/B2//B1+ZPE/B1 level in
solvent. Geometric data of transition states are presented. Lengths are in Å units, angles are in degree units, and imaginary frequencies are in cm−1 unit.
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the H-abstraction/O-rebound mechanism, or the dual hydrogen
abstraction mechanism in P450 chemistry. Interestingly, for the
transition state of the second hydrogen abstraction, the reaction
coordinate C-H-O is nearly colinear (the C-H-O angle is 171◦).
This is for the sake that in 5TS2H, there is no stacking interaction.
At the product complex state, a H2O and the manganese(III)
catalyst are formed for the second catalytic cycle. In short,
our calculations support the mechanistic proposed by the Cho’s
experiment that 1 is a good electrophilic agent in oxidative C-H
bond activation (Jeong et al., 2018).

The Electrophilicity of the Iodosylbenzene
Monomer PhIO in Thioanisole
Sulfoxidation and in C-H Bond Activation
As a comparison to the electrophilicity of metal-iodosybenzene
adduct 1, we investigated the electrophilicity of an
iodosylbenzene monomer PhIO in thioanisole sulfoxidation and
in C-H bond activation of DHA. As shown in Figure 5, PhIO acts
as a robust electrophilic agent in these two oxidations (Barbieri
et al., 2016). In the activation energy is only 11.1 kcal mol−1

in thioanisole sulfoxidation (Figure 5A) and is only 12.4 kcal
mol−1 in hydroxylation of DHA (Figure 5B), which is consistent
with the calculated results of hydroxylation of ethylbenzene by
PhIO (Kim et al., 2009; Kumar et al., 2009; Kang et al., 2017). In
sulfoxidation, the mechanism is a direct oxygen transfer (DOT)
mechanism. For the transition state TS0, the I-O distance is
2.228 Å, the S-O one is 2.104 Å and the angle of I-O-S is 165.7◦.
Mulliken spin of the relaying oxygen is zero. In hydroxylation
of DHA, the reaction mechanism is not the stepwise radical-
involving hydrogen-abstraction/oxygen-rebound mechanism
shown in alkane hydroxylation by high-valent metal-oxo
reaction intermediates. The reaction is concerted and for the sole
transition state TS

′

0 (Figure 5B), the O-H distance is 1.140 Å, the
C-H one is 1.403 Å and the C-H-O angle is 167.0◦, which is not as
colinear as the one in alkane hydroxylation by high-valent metal-
oxo. Such non-colinear hydrogen abstraction is also reported by
de Visser and Nam (Kim et al., 2009). We can find that there
is no spin in any moieties at the transition state TS

′

0. Mulliken
charge of H-abstracted DHA (DHA-H) changes from a negative
value (ca. −0.3) in the reagent complex and the transition state
to a positive one (ca. 0.3) after the transition state alongside
the intrinsic reaction coordinate (Supplementary Figures S12,
S13). Thus, hydroxylation by PhIO is an ionic and concerted
proton-transfer/hydroxyl rebound process (Figure 5C).

CONCLUSIONS

In the present manuscript, the structure-function relationship
of a metal-iodosylarene adduct [MnIII(TBDAP)(OIPh)(OH)]2+

1 in sulfoxidation and oxidative C-H bond activation were

investigated by means of density functional theoretical
calculation. The calculated results are consistent with the
experimental results and the conclusion by Cho et al. that
the metal-iodosylarene adduct 1 is a good electrophilic agent.
The theoretical study also revealed some new interesting
mechanistic insights into the electrophilicity of 1. 1 behaves
as a stepwise 1e+1e oxidant in sulfoxidations, oxygen transfer
occurs via the electron transfer followed by oxygen transfer
(ETOT). While In oxidation of DHA, a novel and ionic hydride
transfer/proton transfer (HT/PT) mechanism, not the normal
hydrogen-abstraction/oxygen rebound mechanism or the dual
hydrogen abstraction mechanism in P450 chemistry, was found
to mediate the reaction. Such new mechanistic properties are
caused by the halogen bond between phenyl ring of PhIO and
the ligated hydroxyl group, and also by the stacking interaction
between the phenyl ring of PhIO and substrates. As a comparison
to the electrophilicity of the metal-iodosylarene adduct 1, the
structure-function relationship of an iodosylbenzene monomer
PhIO is also presented. The calculated results demonstrated
that electrophilicity of PhIO is even more robust than that of
1. PhIO behaves as a 2e-oxidant in both thioanisole oxidation
and hydroxylation of DHA. A new ionic and concerted proton
transfer/hydroxyl rebound mechanism involving 2e-oxidation
to form a transient carbonium species was proposed for the
hydroxylation of DHA by PhIO.
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