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Quantitative measuring the population-level diversity-scaling of human 

microbiomes is different from conventional approach to traditional individual-

level diversity analysis, and it is of obvious significance. For example, it is well 

known that individuals are of significant heterogeneity with their microbiome 

diversities, and the population-level analysis can effectively capture such kind 

of individual differences. Here we reanalyze a dozen datasets of 2,115 human 

breast milk microbiome (BMM) samples with diversity-area relationship (DAR) 

to tackle the previous questions. Our focus on BMM is aimed to offer insights 

for supplementing the gut microbiome research from nutritional perspective. 

DAR is an extension to classic species-area relationship, which was discovered 

in the 19th century and established as one of a handful fundamental laws in 

community ecology. Our DAR modeling revealed the following numbers, all 

approximately: (i) The population-level potential diversity of BMM is 1,108 in 

terms of species richness (number of total species), and 67 in terms of typical 

species. (ii) On average, an individual carry 17% of population-level diversity in 

terms of species richness, and 61% in terms of typical species. (iii) The similarity 

(overlap) between individuals according to pair-wise diversity overlap (PDO) 

should be approximately 76% in terms of total species, and 92% in terms of 

typical species, which symbolizes the inter-individual heterogeneity. (iv) The 

average individual (alpha-) diversity of BMM is approximately 188 (total-species) 

and 37 (typical-species). (v) To deal with the potential difference among 12 

BMM datasets, we conducted DAR modeling separately for each dataset, and 

then performed permutation tests for DAR parameters. It was found that the 

DAR scaling parameter that measures inter-individual heterogeneity in diversity 

is invariant (constant), but the population potential diversity is different among 

30% of the pair-wise comparison between 12 BMM datasets. These results 

offer comprehensive biodiversity analyses of the BMM from host individual, 

inter-individual, and population level perspectives.

TYPE Original Research
PUBLISHED 26 September 2022
DOI 10.3389/fmicb.2022.940412

OPEN ACCESS

EDITED BY

Smith Etareri Evivie,  
University of Benin,  
Nigeria

REVIEWED BY

God'Spower Bello-Onaghise,  
University of Benin,  
Nigeria
Bailiang Li,  
Northeast Agricultural University,  
China

*CORRESPONDENCE

Wendy Li  
wendylii@outlook.com  
Ping Ning  
nping11@163.com  
Kun-Wen Zheng  
cchhww0629@sina.com

†These authors have contributed equally to 
this work

SPECIALTY SECTION

This article was submitted to  
Food Microbiology,  
a section of the journal  
Frontiers in Microbiology

RECEIVED 10 May 2022
ACCEPTED 18 July 2022
PUBLISHED 26 September 2022

CITATION

Chen HJ, Yi B, Qiao YT, Peng KB, Zhang JM, 
Li JS, Zheng KW, Ning P and Li WD (2022) 
Diversity-scaling analysis of human breast 
milk microbiomes from population 
perspective.
Front. Microbiol. 13:940412.
doi: 10.3389/fmicb.2022.940412

COPYRIGHT

© 2022 Chen, Yi, Qiao, Peng, Zhang, Li, 
Zheng, Ning and Li. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in 
other forums is permitted, provided the 
original author(s) and the copyright 
owner(s) are credited and that the original 
publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.940412&domain=pdf&date_stamp=2022-09-26
https://www.frontiersin.org/articles/10.3389/fmicb.2022.940412/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.940412/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.940412/full
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.940412
mailto:wendylii@outlook.com
mailto:nping11@163.com
mailto:cchhww0629@sina.com
https://doi.org/10.3389/fmicb.2022.940412
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Chen et al. 10.3389/fmicb.2022.940412

Frontiers in Microbiology 02 frontiersin.org

KEYWORDS

human breast milk microbiome (BMM), diversity-area relationship (DAR), diversity 
heterogeneity, population potential diversity, ratio of individual-to-population 
accrual diversity (RIP)

Introduction

Human breast milk contains various components, including 
nutrients and immunologic active substances, that play a critical 
role in infant growth and development (Hampel et al., 2018; Wei 
et al., 2019; Moubareck, 2021). Breastfeeding could reduce the risk 
of intestinal and respiratory infections, and may protect infants 
from diseases such as diarrhea, inflammatory bowel disease, 
diabetes, otitis media and obesity (Bode, 2012; Buchanan et al., 
2012; Christian et al., 2015; Lodge et al., 2016; Garcia-Larsen et al., 
2018; Westerfield et al., 2018; Davisse-Paturet et al., 2019).

With the development of non-culture techniques, abundant 
and diverse microorganisms have been found in breast milk that 
was previously thought to be sterile (Hunt et al., 2011; Fitzstevens 
et al., 2017; Pannaraj et al., 2017; Moossavi et al., 2019). More than 
820 species of human breast milk have been identified, most of 
which belong to Proteobacteria and Firmicutes, dominated by 
Streptococcus and Staphylococcus (Fitzstevens et al., 2017; Moossavi 
et al., 2019). Microbiome in mother’s breast milk can be transmitted 
vertically to the intestinal tract of infants and serve as an 
inoculation, thus influencing the development of immune and 
metabolic system of infant (Jost et al., 2014; Pannaraj et al., 2017; 
Kapourchali and Cresci, 2020; Lyons et al., 2020; Stinson et al., 
2021). For example, carbohydrate, amino acid and nitrogen 
metabolism, as well as cobalamin synthesis, were significantly 
increased in stool microbiome samples from breastfed infants 
compared to formula-fed infants (Gueimonde et al., 2007; Zivkovic 
et al., 2010; Asnicar et al., 2017). In addition, some studies have 
suggested that the structure of microbiome in the breast 
environment may be associated with the risk of breast cancer and 
mastitis (Urbaniak et al., 2016; Tzeng et al., 2021). Urbaniak et al. 
(2016) found a different bacterial profile between normal adjacent 
tissues of women with breast cancer and tissues of healthy controls, 
but a similar microbial profile between normal adjacent and tumor 
tissues. The relative abundance of Enterobacteriaceae, 
Staphylococcus epidermidis and Bacillus were higher in tumor 
tissue of patients with breast cancer. More recently, Fu et al. (2022) 
demonstrated the presence of bacteria in breast cancer tumor 
tissue that facilitate tumor cell metastasis and colonization through 
specific signaling pathways. Other studies have found that the 
diversity of microbiome in the milk of patients with mastitis was 
lower than that of healthy people, and Corynebacterium, 
Staphylococcus epidermidis and Staphylococcus aureus were the 
main pathogens of mastitis (Angelopoulou et al., 2018).

Diversity is one of the most important ecological indicators in 
the study of human microbiome, and it is no exception for breast 
milk microbiome (BMM). However, most studies on BMM 

diversity have focused on the individual level, ignoring the diversity 
scaling across individuals at the cohort or population level. 
Diversity scaling at the cohort or population level investigates 
changes in or differences in inter-individual BMM diversity, which 
is equivalent to diversity heterogeneity. The heterogeneity of 
microbiome diversity can reveal the characteristics of the human 
microbiome at the population level, which may be related to the 
etiology and epidemiology of human microbiome related diseases. 
In order to effectively assess and interpret the diversity 
heterogeneity of microbial community, Ma (2018a,b,2019) 
proposed the diversity-area relationship (DAR) model, which is an 
extension of the classical species-area relationship (SAR) model by 
replacing species richness with diversity measures in Hill numbers. 
The DAR model can not only estimate diversity heterogeneity, but 
also obtain other derivative parameters of diversity, including pair-
wise diversity overlap (PDO), maximal accrual diversity (MAD) 
and ratio of individual-level to population-level diversity (RIP). 
These parameters describe the diversity scaling at population-level 
from different perspectives, thus providing a useful tool for 
mapping biogeography. DAR model has been used to sketch out 
the biogeography maps of microbiomes in major human habitats 
(Ma, 2018a,b), as well as some specific microbial communities, 
including semen microbiome of men with infertility (Ma and Li, 
2018), vaginal microbiome of postpartum women in rural Malawi 
(Li and Ma, 2019), Chinese gut microbiome across different ethnic 
groups and regions (Xiao et al., 2021), and human virome (Xiao 
and Ma, 2021). Recently, Li and Ma (2021) also used DAR to 
explore the influences of 23 common human microbiome-
associated diseases on the microbiome diversity scaling. In the 
present study, we reanalyzed the dataset composed of 2,115 healthy 
BMM samples using the DAR model to explore the spatial scale of 
species diversity of healthy BMM at the cohort (population) level, 
which may provide a more comprehensive understanding of the 
human breast milk microbiome.

Materials and methods

Datasets of human breast milk 
microbiome

The BMM datasets used in this study consisted of 2,115 
samples from 12 breast-milk studies. The raw sequencing data 
were download from NCBI’s SRA database. Kraken2 (Version-
2.1.2) and Bracken (version-2.6) were used to classify the 
sequences according to the reference sequence database 16S_
Greengenes_k2db (downloaded March 25, 2020). The brief 
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information of datasets is listed in Supplementary Table S3. Since 
the purpose of this study was to explore the microbiome diversity 
scaling of healthy breast milk, only healthy samples from each set 
of data were selected for subsequent analysis.

DAR analysis

We used Hill number (Hill, 1973; Chao et al., 2012, 2014) to 
measure the diversity of BMM. The Hill numbers (qD) is a series 
of diversity measures obtained by controlling the sensitivity to the 
relative abundance of species in the calculation by the diversity 
order q:
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where, pi  is the relative abundance of the species i , and S is 
the number of species. When q = 0, 0D is equal to species richness 
(S) or the number of species. When q = 1, 1D is equal to the 
exponential of Shannon entropy, which represents the number of 
common species in the microbiome. When q = 2, 2D is the 
reciprocal of Simpson index, which is more sensitive to the 
species with high abundance.

In this study, two DAR models were fitted to the BMM 
datasets. The first model is the power law dar (PL-DAR) model, 
which is defined as:

 
q = zD cA

 (2)

where qD is the alpha diversity measured in Hill numbers, A 
is the area, and c and z are the parameters of PL-DAR. The second 
DAR model is the power law with exponential cut-off (PLEC-
DAR), which is defined as:

 ( )q exp= zD cA dA
 

(3)

where exp(dA) is the exponential decay term, and d is the 
parameter with taper-off effect, which is usually negative. To 
facilitate the estimation of parameters, equations (2) and (3) can 
be transformed into the following linear form:

 ln( ) ln( ) ln( )D c z A= +  
(4)

 ln( ) ln( ) zln(A) d(A)D c= + +  
(5)

where parameter (z) is the slope of PL-DAR or PLEC-DAR 
models after logarithmic transformation, also known as diversity 
scaling. The parameter c corresponds to the diversity of the first 
unit area (sample) to be accumulated in the model fitting process, 
so the accumulation order of area units (samples) may affect the 
size of parameter c. To address this problem, we performed 100 
DAR model fits of the BMM datasets and randomly permutated 
the samples before each fit.

DAR-based profiles

DAR profile
The DAR profile is a series of scaling parameter (z) of the 

PL-DAR or PLEC-DAR model corresponding to different 
diversity order (q).

PDO profile
The pair-wise diversity overlap (PDO) characterizes the 

similarity between two area units (samples), which is defined as:

  g z= ( ) = −2 2 2D D DA 2A A− /  
(6)

where z is the scaling parameter of PL-DAR. The parameter 
g usually ranges from 0 to 1. When g = 0, there is no overlap 
between the two areas, and when g = 1, there is complete 
overlap between the two areas. The PDO profile can be defined 
as a series of g-values corresponding to different diversity 
orders (q).

MAD profile
According to the parameters c, z and d of PLEC-DAR, we can 

further obtain the maximal accrual diversity (MAD or Dmax), 
which is calculated by the following equation:

( ) ( ) ( )
zzc exp z c exp z

d
 = = − − = −  

q z
max maxMax D D A

 
(7)

where A z / dmax = −  means the number of area units 
(samples) needed to reach the Dmax. Dmax measures the diversity of 
all possible species in the microbiomes of a population or cohort, 
and can be viewed as the potential diversity. The MAD profile can 
be defined as a series of Dmax-values corresponding to different 
diversity orders (q).

RIP profile
The ratio of individual-level to population-level diversity 

(RIP) is defined as:

 RIP c Dmax= /   (8)

RIP measures the extent of an individual’s microbial 
diversity represents the whole population since the individual 
species appears in the population. The RIP profile can be defined 
as a series of RIP-values corresponding to different diversity 
orders (q).

Design for DAR analysis for BMM datasets

First, DAR model fitting was performed for each 
BMM dataset, and 24 DAR models (12 PL-DAR models and 
12 PLEC-DAR models) were obtained. Then, 2,115 samples 
from 12 datasets were combined, and PL-DAR and 
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PLEC-DAR models were fitted to the combined BMM dataset. 
In addition, we used randomization test based on 1,000 times 
re-sampling to test whether there is significant difference 
between the  parameters of each pair of 12 PL-DAR or 
PLEC-DAR models.

Results and discussion

Fitting results of DAR models

In this study, we fitted the PL-DAR model and the PLEC-DAR 
model to the 12 BMM datasets and a dataset with all BMM 
samples combined. Supplementary Table S1 lists the fitting results 
of 12 BMM datasets. Table 1 shows the results of the both DAR 
models fitted to the combined dataset of 2,115 samples. The 
results listed in Table  1; Supplementary Table S1 include the 
diversity order of Hill numbers (q), DAR parameters [z, ln(c), d, 
g, Amax, Dmax and RIP], measures of goodness-of-fitting (R and p), 
and the number of successes in 100 model fittings based on 
resampling data (N).

When q = 0, all PL-DAR models fitted successfully in all 100 
times of re-sampling (i.e., the success rates were 100%), and the 
average R of the PL-DAR was 0.971. Compared with the PL-DAR 
model, the PLEC-DAR model had a relatively lower R-value 
(mean = 0.667), but its average success rate was 91%. When 
q = 1–3, the average success rate of the PL-DAR model was 90% 
(the average R = 0.984) and that of the PLEC-DAR model was 
85% (the average R = 0.779). These results suggest that both 
PL-DAR and PLEC-DAR models have a good fit for healthy 
human BMM.

Randomization test for the BMM datasets

The randomization test was utilized to test whether there were 
significant differences between each pair of PL-DAR or 
PLEC-DAR models. Table 2 is a summary of the difference test 
results, the details of which are shown in Supplementary Table S2. 
The PL-DAR model has two parameters, z and ln(c). 8.3% (22) of 
the 264 pairwise comparisons had differences in ln(c). All pairwise 
comparisons showed no significant difference in parameter z  
(Figure 1). The PLEC-DAR model has three parameters, i.e., z, 
ln(c) and d. There was no significant difference in z and d between 
each pair of PLEC-DAR models. 3.7% (10) of the 264 pairwise 
comparisons had differences in ln(c) of PLEC-DAR model 
(Figure 2). In addition, we also tested whether there are differences 
between Dmax and RIP parameters between each pair-wise 
datasets. We found that 30% (79/264) of the comparisons were 
significant differences in Dmax, and all the comparisons were not 
significantly different for RIP (Figure 2).

The difference test results showed that the DAR models for the 
12 BMM datasets were very similar, with no significant difference 
in diversity scaling parameter (z) and less than 10% difference in T
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other parameters [ln(c) & d]. It further suggested that the DAR 
scaling parameter that measures inter-individual heterogeneity in 
BMM diversity may be  a constant. Combined dataset was 

therefore chosen to sketch out the biogeography of breast milk 
microbiome of healthy women.

Biogeography map of human BMM 
sketched out by four profiles

(i) DAR profile: DAR profile, the scaling parameter (z) at 
different diversity (q), is z(q) = [0.242(0), 0.078(1), 0.042(2), 
0.035(3)]. The scaling parameter z monotonically decreases 
with the diversity order (Figure 3). Diversity scaling parameter 
(z) characterizes the changes of BMM diversity among 
individuals, and is one of the most important parameters of 
DAR models. The higher the z value is, the faster the diversity 
of the microbiome changes among individuals in the population 
(or cohort). The scaling or change in BMM species richness (i.e., 
Hill number at q = 0) is the fastest, followed by the diversity of 
typical species and the diversity of high-abundance species (i.e., 
Hill numbers at q = 1–3). This suggests that although the 
number of BMM species is highly heterogeneous among 
individuals, the diversity of its common or core species is 
relatively stable.

(ii) Pair-wise diversity overlap (PDO) profile: The overlap 
parameter g can be utilized to measure the similarity between each 

TABLE 2 Summary of pairwise difference test results of 12 PL-DAR or PLEC-DAR models.

Treatment Diversity 
order

PL PLEC

z ln(c) z d ln(c) Dmax RIP

Percentage (%) 

with Significant 

Difference

q = 0 0 22.7%(15/66) 0 0 13.6%(9/66) 13.6%(9/66) 0

q = 1 0 4.5%(3/66) 0 0 1.5%(1/66) 19.7%(13/66) 0

q = 2 0 3.0%(2/66) 0 0 0 40.9%(27/66) 0

q = 3 0 3.0%(2/66) 0 0 0 45.5%(30/66) 0

FIGURE 1

Results of randomization test: The percentage of pairwise 
comparisons with significant difference in the PL-DAR model 
parameters.

FIGURE 2

Results of randomization test: The percentage of pairwise 
comparisons with significant difference in the PLEC-DAR model 
parameters.

FIGURE 3

The DAR profile (z-q) and PDO profile (g-q) of the human breast 
milk microbiome in healthy women.
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FIGURE 4

The MAD profile (Dmax-q) of the human breast milk microbiome 
in healthy women.

pair of microbiomes. Parameter g and z can be viewed as two sides 
of the same coin, with the former estimating the similarity of 
microbiomes between individuals of the population (or cohort) 
and the latter estimating their heterogeneity. Therefore, the trend 
of PDO profile, which is g(q) = [0.817(0), 0.944(1), 0.970(2), 
0.974(3)], was opposite to that of DAR, that is, it showed a 
monotonically increasing trend (Figure 3).

(iii) Maximal accrual diversity (MAD) profile: MAD or Dmax 
is another important derivative parameter of the DAR model, 
which estimates the diversity of potential species in microbiomes 
of a population (or cohort). For example, Dmax  at q = 0 represents 
the number of all species that present in species pool of healthy 
human BMMs, and Dmax at q = 1 represents the maximum number 
of typical (or common) species within the BMMs of a population. 
As shown in Figure 4; Table 1, MAD profile or Dmax of different 

diversity q is Dmax(q) = [1,109(0), 67 (1), 24(2), 16(3)], which is 
also monotonically decreasing. It suggests that the maximum 
number of possible species (potential species) in the breast milk 
microbiome of healthy women is as high as 1,109, but there were 
only 67 typical (or common) species and 24 high abundance  
species.

(iv) Ratio of individual-diversity to population-diversity 
(RIP) profile: The derived parameter RIP measures the 
percentage of the microbiome diversity of a population that can 
be represented by the diversity of individual microbiome. As 
shown in equation (8) in the section of Methods, RIP is actually 
equal to the ratio of the average individual microbiome diversity 
(c) to the maximum accrual diversity (MAD or Dmax). RIP 
profile, that is, the RIP-value across diversity order q, is 
RIP(q) = [17%(0), 60.8%(1), 79.5%(2), 82.4%(3)]. MAD profile 
and RIP profile show opposite trends: the former decreases with 
the increase of q, while the latter increases with the increase of 
q (as shown in Figure  5). Individual microbiome can only 
represent 17% of the number of species in a population or 
cohort, but can represent 60% of the diversity of typical species 
and about 80% of the diversity of high-abundance species. It 
indicated that species with higher abundance are more 
important for maintaining the stability of BMM and more 
conserved. Similar to the results of PDO profile and DAR 
profile, RIP profile also reflects a high overlap or similarity 
among healthy women in the diversity of high-abundance 
species in BMM.

Conclusion

Human breast milk not only contains nutrients essential for 
infant growth and development, such as human breast milk 
oligosaccharides (HMOS), but also has a microbiome composed of 
bacteria, fungi, archaea and viruses (Stinson et al., 2021). Breast 
milk microbiome is related to the formation and development of 
infant digestive system microbiome, which plays an important role 
in digestive metabolism, immune defense, and nervous system 
development of infant (Jost et  al., 2014; Pannaraj et  al., 2017; 
Hampel et al., 2018; Kapourchali and Cresci, 2020; Lyons et al., 
2020; Stinson et al., 2021). Moreover, existing studies have found 
that breast milk microbiome is also associated with host health 
(Urbaniak et al., 2016; Li and Ma, 2021; Tzeng et al., 2021). Existing 
researches on breast milk mainly focuses on the composition of 
microbiome, the diversity of HMOS and the dynamic of 
microbiome. However, the diversity changes (scaling) of human 
breast milk microbiome across individuals in a population or cohort 
has not been explored. To fill this gap, the present study reanalyzed 
datasets on 2,115 breast milk microbiome collected from healthy 
women by using the PL-DAR and PLEC-DAR models proposed by 
Ma (2018a,b). Using these two DAR models, we not only estimated 
diversity heterogeneity of healthy breast milk microbiome, but also 
explored other population-level diversity attributes, including pair-
wise diversity overlap (PDO), maximal accrual diversity (MAD or 

FIGURE 5

The RIP profile (RIP-q) of the human breast milk microbiome in 
healthy women.
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potential diversity), and the ratio of individual to population 
diversity (RIP). Based on these attributes, we have for the first time 
sketched out a biogeographic map of the breast milk microbiota of 
healthy women. These metrices may provide ecological theoretical 
support and tools for exploring the relationship between stability of 
breast milk microbiome and host health.
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