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Simple Summary: Mesenchymal stem cells (MSCs), which are found in connective tissues, can be
used to treat spinal cord injury (SCI) in dogs. These stem cells have the ability to repair damaged
tissues and can be transplanted into the injured area. While this is considered a promising treatment,
the transplanted cells often do not survive in the injured spinal cord. In this study, we found that heat
shock treatment, i.e., exposure to high temperatures, increased the efficacy of MSC treatment for SCI.

Abstract: Transplantation of mesenchymal stem cells (MSCs) is a promising treatment for spinal cord
injury (SCI). However, many transplanted cells die within a few days, eventually limiting the efficacy
of cellular therapy. To overcome this problem, we focused on the potential of heat shock (HS) proteins
in facilitating recovery from cell damage and protecting against cytotoxicity. PCR results showed that
the expression of neurotrophic factor, anti-inflammatory, stemness, and homing genes increased in
HS-treated MSCs. We investigated whether HS-treated MSCs could promote recovery of hindlimb
function in an acute canine SCI model. We compared the effects of intravenous transplantation with
(i) lactated Ringer’s solution as a control, (ii) green fluorescent protein-expressing MSCs (MSCs-GFP),
and (iii) GFP-expressing and HS-treated MSCs (MSCs-GFP-HS). Spinal cords were harvested at four
weeks and used for Western blot and histopathological analyses. The MSCs-GFP-HS group showed
significant improvements in hindlimb function from weeks 3 and 4 compared with the other groups.
This group also showed higher expression of neural markers, fewer intervening fibrotic changes,
and pronounced myelination. These results suggest that induction of an HS response in MSCs
could promote neural sparing. In conclusion, transplantation of HS-treated MSCs could improve
neuroprotection and neuroregeneration in acute SCI.
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1. Introduction

Traumatic spinal cord injury (SCI), such as contusion and compression, disrupts neural circuits,
resulting in sensory and motor problems [1,2]. Following SCI, regeneration of the central nervous
system is hampered by various factors such as tissue damage, disruption of the axon, and inhibitory
molecules [3,4]. Interestingly, preserved tissue in injured areas has been suggested to contribute to
the repair of damaged neural circuits [2]. This spontaneous recovery is limited, however, because
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only a small number of host neurons remain in the injured spinal cord [5,6]. From this viewpoint,
transplantation of exogenous neurons to injured areas of the spinal cord would be an ideal approach
for treating SCI.

As a treatment for SCI, stem cell transplantation is considered a promising method [7]. Previous
studies have shown that transplantation of mesenchymal stem cells (MSCs) after SCI can induce neural
differentiation and improve functional recovery [8]. However, many transplanted cells die within the
first few days because of the hostile environment, which reduces the effectiveness of cell therapy [9–11].
There is an urgent need to develop methods to overcome this problem.

Heat shock response (HSR) is a homeostatic reaction that acts on many stress factors. Activation
of HSR induces the expression of heat shock proteins (HSP), which facilitate recovery from cell
damage [12–14]. Several studies have shown that HSR and HSP expression is debilitated in neurons
of the central nervous system [15,16]. Decreasing the HSR in differentiated neural cells contributes
to vulnerability to the pathological environment caused by stress [17]. Furthermore, heat shock (HS)
treatment confers protection against cytotoxicity when differentiated cells are stressed or challenged [18].
Therefore, HS treatment is a promising approach to improve the viability of transplanted cells.

In this study, we hypothesized that HS-treated MSCs improve cell survival, neuroregeneration,
and neurological function in an acute canine SCI model. In addition, we used intravenous (IV)
administration methods in a non-invasive way to evaluate the migration degree and efficacy of MSCs.
The findings of this study might aid in the development of an effective treatment approach for SCI.

2. Materials and Methods

2.1. Animal Selection

The experiment was conducted in 12 healthy 1- to 2-year-old male beagles, with an average weight
of 10.63 ± 0.88 kg. All dogs had clinically good health and were neurologically normal. Dogs were
assigned to one of three groups (four dogs per treatment): (i) control, IV administration of 20 mL
lactated Ringer’s solution only; (ii) MSCs-GFP, IV administration of 1 × 107 MSCs expressing green
fluorescent protein (GFP); and (iii) MSC-GFP-HS, IV administration of 1 × 107 HS-treated MSCs
expressing GFP. During the experiment, all dogs were cared for in accordance with the Animal
Care and Use Guidelines (The Institute of Laboratory Animal Resources, Seoul National University,
Korea). The study was approved by the Animal Care and Use Committee of Seoul National University
(SNU-190401-7, SNU-181214-3).

2.2. Isolation and Culture of MSCs

In other dogs that are not assigned to this experimental group, gluteal fat tissue was aseptically
sampled under general anesthesia. The anesthesia of the dog was carried out as follows: cefazolin
sodium (40 mg/kg IV, Cefazoline; Chong Kun Dang Pharm), tramadol (4 mg/kg IV, Toranzin; Samsung
Pharm. Ind. Co., Seoul, Korea), acepromazine (10 µg/kg IV, Sedaject; Samu Median Co., Seoul,
Korea), and alfaxalone (2 mg/kg IV; Alfaxan; Jurox). Anesthesia was maintained with 2% isoflurane
(Ifran; Hana Pharm. Co., Seoul, Korea). Electrocardiography, rectal temperature, pulse oximetry,
and respiratory gas analysis were measured using the monitoring system (Datex-Ohmeda S/5; GE
Healthcare, Little Chalfont, UK). The collected fat tissues were cleaned with phosphate-buffered
saline (PBS) and homogenized. Next, the samples were digested using collagenase type-1 (1 mg/mL;
Sigma-Aldrich, St. Louis, MO, USA) for 2 h in a shaking incubator. The digested fatty tissue was
centrifuged at 220× g for 5 min after being filtered through a 100 mm pore nylon mesh. After removing
the supernatant, the stromal vascular fraction (SVF) was carefully separated. The SVF was resuspended
and cultured in a 150 mm culture dish with low-glucose Dulbecco’s modified Eagle’s medium (DMEM;
GenDEPOT, Grand Island, NY, USA), 10% fetal bovine serum (FBS; Gibco BRL, Grand Island, NY, USA),
and 1% penicillin and streptomycin (PS) at 37 ◦C with 20% O2 and 5% humidified CO2. Twenty-four
hours later, cell debris and unattached cells were washed with PBS. The medium was changed every
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48 h until the cells reached 80–90% confluence. In this experiment, the third passage of cells was
used as an allograft. These cells had previously been identified as having multilineage differentiation
capabilities [19,20].

2.3. Green Fluorescent Protein (GFP) Labeling of the MSCs

To track stem cells, MSCs were transfected with GFP-coded lentivirus vectors. We used the
Dharmacon Trans-Lentivirus packaging system to make transgenic viruses (GE Healthcare, Lafayette,
CO, USA). Briefly, HEK293T cells (Invitrogen, Carlsbad, CA, USA) were cultured in a 100 mm culture
dish in high-glucose medium (DMEM) containing 10% FBS and 1% PS. When the cells reached 90%
confluence, pCDH-EF1-MCS-pA-PGK-copGFP-T2A-Puro vector (System Biosciences, Mountain View,
CA, USA) was mixed with lentiviral packaging mix (Fisher Scientific Cat#14-432-23) encoding the viral
proteins Gag-Pol, Rev, and VSV-G, and was transfected into cells for lentivirus production. After the
cells were incubated for 48 h with 20% O2 and 5% CO2 at 37 ◦C, GFP-expressing virus particles were
collected from the culture media. The first passage MSCs were transduced with lentiviruses at MOI
100, when they reached 50–60% confluence. After the MSCs reached 90% confluence, the selection
process was carried out using puromycin (3 µg/mL; Gibco-BRL). Finally, we obtained MSCs expressing
GFP. The cells were cultured to passage three, which were then used in the experiments.

2.4. Heat Shock Treatment

For heat shock treatment, third passage MSCs expressing GFP were cultured with 20% O2 and
5% CO2 at 37 ◦C. Once the cells reached 90% confluence, they were moved to a 43 ◦C incubator and
incubated for 1 h. After 1 h, the cells were moved back to the 37 ◦C incubator and underwent a 3 h
recovery process [21].

2.5. Real-Time Quantitative PCR (RT-qPCR)

mRNA was isolated from MSCs-GFP and MSCs-GFP-HS using QIAzole (Qiagen, Hilden, Germany)
solution according to the manufacturer’s protocol. RNA purity and concentration were determined
using Gen 5.2 reader type, Epoch (BioTek, Winooski, Vermont, VT, USA). cDNA was synthesized using
the Prime Script II First-Strand cDNA Synthesis Kit (TaKaRa, Otsu, Japan). RT-qPCR was performed
using the ABI StepOnePlus Real-Time PCR system (Applied Biosystems, Foster City, CA, USA) by
mixing SYBR Premix Ex Taq (TaKaRa) and the specified primers (Table 1). The mRNA expression was
normalized with GAPDH and quantification for comparison of gene expression was performed using
the 2−∆∆CT method [22].

Table 1. Primers sequence used for real-time quantitative PCR.

Target Gene (bp)
(Accession Number)

Primer Sequence (5′-3′)

Forward (Tm) Reverse (Tm)

GAPDH (105) (XM_025471882.2) CATTGCCCTCAATGACCACT (58.16) TCCTTGGAGGCCATGTAGAC (58.80)
OCT-4 (144) (XM_025418033.2) AGCAGAAGAGGATCACCCTA (57.14) GCCGCAGCTTACACATATTC (57.33)
SOX-2 (152) (XM_025451585.2) AACCCCAAGATGCACAACTC (58.38) CGGGGCCGGTATTTATAATC (55.84)
HSP-70 (125) (XM_025418242.2) ACATCAGCCAGAACAAGCGA (59.96) GAAGTCGATGCCCTCGAACA (60.11)
HSP-27 (199) (XM_025425872.2) TAACTGGCAAGCACGAAGAG (58.20) TCGAAGGTGACGGGAATAGT (58.16)
HO-1 (220) (XM_025461329.2) CCAGTGCCACGAAGTTCAA (58.30) TCTTGTGCTCTGCTGCCAAC (61.17)
IL-10 (120) (XM_025429742.2) CCACGACCCAGACATCAAGAA (60.00) TCCACCGCCTTGCTCTTATTC (60.41)
BDNF (244) (XM_025459817.2) GCTGGCGGTTCATAAGGATA (57.46) GTTTCCCTTCTGGTCATGGA (57.12)

CXCR-4 (127) (XM_025430622.2) GAGCGGTTACCATGGAAGAG (58.06) CGGTTGAAGTGAGCATTTTCC (58.07)
CCL7 (138) (XM_025466418.2) CTCCGAACTGTGCCCTTCAG (60.67) CCTGCGCCTCTCACATCT (59.10)

2.6. Spinal Cord Injury Induction

The previously described balloon compression method was used to induce experimental SCI [23].
The anesthesia was carried out in the same way as mentioned above and hemilaminectomy was
performed at the fourth lumbar segment (L4). Through fluoroscopic guidance, an 8 Fr silicone Foley
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catheter (Yushin, South Korea) was inserted through a hole in L4 and placed at the cranial margin
of the first lumbar segment (L1). The balloon was inflated by inserting 50 µL/kg of contrast agent
(Omnipaque, Amersham Health, Carrington Hill, Ireland) by diluting it with normal saline (1:1) (Video
S1). The Foley catheter was fixed using the Chinese finger trap suture, and six hours after recovering
from the anesthesia, it was carefully removed. To relieve pain after surgery, tramadol (4 mg/kg IV,
Toranzin; Samsung Pharm. Ind. Co., Seoul, Korea) and local anesthesia with lidocaine (2 mg/kg) and
bupivacaine (2 mg/kg) mixture (1:1) were carried out. In a dog that felt discomfort when it woke up
after surgery, medetomidine (2 µg/kg IV, Domitor; Zoetis, Korea) was given to the dog additionally.
The dogs showed complete paraplegia and had no sensory or motor reflexes. For postoperative care,
cefadroxil (22 mg/kg PO twice daily; Ilyang pharm., Korea) was administered for three days and
tramadol (4 mg/kg PO 3 times a day, Tridol Cap.; Yuhan, Korea) for seven days. To prevent the pressure
sore from sitting in the same position for a long time, we applied soft padded bandage to dogs and
monitored them in an intensive care unit. Water intake, feed intake, body temperature, pulse rate,
and respiration rate were carefully managed every day. Furthermore, manual bladder pressure was
applied for urination at least three times a day.

2.7. Intravenous Administration of MSCs

After removal of the catheter, injection of lactated Ringer’s solution, MSCs-GFP, or MSCs-GFP-HS
was performed. In the control group, 20 mL of lactated Ringer’s solution was injected intravenously
for three consecutive days. In the case of the MSCs-GFP, and MSCs-GFP-HS groups, the third passage
cells were harvested at 90% confluence. When the cells reached 90% confluence, washed them twice
with PBS and incubated with 0.05% trypsin-EDTA (Sigma-Aldrich, St. Louis, MO, USA) for 15 min at
37 ◦C and 5% CO2. Then, the cells were centrifuged at 220× g for 5 min and pelleted. The cell pellet
mixed with 1 mL lactated Ringer’s solution and used a Countess FL Automated Cell Counter (Thermo
Fisher Scientific, Pittsburg, PA, USA) after staining with Trypan blue to measure the number of cells.
Approximately 1 × 107 MSCs-GFP and 1 × 107 MSCs-GFP-HS, respectively, were diluted with 20 mL
of lactated Ringer’s solution and administered intravenously for three consecutive days. The dogs
were carefully observed for four weeks after the injections.

2.8. Sample Preparation

After four weeks of experimentation, all dogs were euthanized. The anesthesia for euthanasia
proceeded as follows: tramadol (4 mg/kg IV, Toranzin; Samsung Pharm. Ind. Co., Seoul, Korea),
acepromazine (10 µg/kg IV, Sedaject; Samu Median Co., Seoul, Korea), and alfaxalone (2 mg/kg IV;
Alfaxan; Jurox). Anesthesia was maintained with 2% isoflurane (Ifran; Hana Pharm. Co., Seoul,
Korea). The dogs were euthanized by alfaxalone (2 mg/kg IV; Alfaxan; Jurox) and bolus injection of
10 mL KCl solution (1 M) into the cephalic vein. The injured spinal cord was collected and fixed in
10% sucrose for 12 h at 4 ◦C and moved to 20% sucrose at 4 ◦C for approximately 24 h. The dura
mater was removed from the spinal cord and embedded in an optimal cutting temperature compound
(Rica Biosystems, Richmond, VA, USA) and frozen using liquid nitrogen. Embedded spinal cords were
cut longitudinally to form two parts: one was used for western blot analysis and the other was used
for immunofluorescent staining and histopathological assessment.

2.9. Western Blot Analysis

Only the injured spinal cord was collected, frozen with liquid nitrogen, and smashed into small
pieces with a hammer. After 30 min of incubation with RIPA lysis buffer (Gen Depot, Grand Island,
NY, USA) and proteinase inhibitor solution (Gen Depot), centrifugation was performed for 15 min at
12,000× g at 4 ◦C and the upper layer was separated. The Bradford assay was used to determine the
protein concentration in the supernatant. A protein of 20 µg was separated with 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a polyvinylidene difluoride
(PVDF) membrane. The membrane was blocked for 1 h with 5% skim milk and incubated overnight
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with primary antibodies. The following primary antibodies were used: nestin (neural progenitor stem
cells, sc-23927), glial fibrillary acidic protein (GFAP, astrocytes, sc-33673), and β-III-tubulin (immature
neurons, sc-80005). Afterwards, the membrane was incubated with anti-mouse secondary antibody
(sc-516102) for 1 h, and the protein band was visualized using enhanced chemiluminescent substrates
(ECL) (Bio-Rad, Hercules, CA, USA) and quantified using an LAS 4000 mini system (GE Healthcare,
Lafayette, CO, USA).

2.10. Immunofluorescence Assessment

With a thickness of 10 µm, the spinal cord was cut longitudinally using a cryotome, mounted on
silane-coated slides, fixed for 10 min with 4% paraformaldehyde, and permeabilized with 0.1% v/v
Triton X-100 for 3 min. The slides were blocked with 10% FBS for 1 h and then incubated overnight with
primary antibodies for nestin (sc-20978), GFAP (sc-65343), and β-III-tubulin (sc-69966) at 4 ◦C. The slides
were then incubated for 2 h with fluorescein iso-thio-cyanate conjugated anti-mouse (Alexa flour,
ab-150111) and anti-rabbit (Flamma 648) secondary antibodies. DAPI (4,6-diamidino-2-phenylindole)
staining was conducted to stain the nuclei, which were observed using a microscope (EVOS FL Imaging
System, Stanwood, WA, USA). Cells that were positive for specific markers were randomly counted in
five injured areas, and the value was expressed as a percentage of 1000 cells.

2.11. Histopathological Assessment

Hematoxylin and eosin (H&E; Thermo Fisher Scientific, Waltham, MA, USA) and Luxol fast
blue (LFB; American MasterTech, Lodi, CA, USA) staining were carried out in accordance with the
manufacturer’s instructions to identify demyelination, fibrosis, vacuole formation, and hemorrhage.
We performed histomorphometric analyses using a computer-associated image analysis system (Image-J
version 1.52a; National Institute of Health, Bethesda, MD, USA). To quantify the staining regions,
the ratio of the staining area to be evaluated was presented as an average and statistically compared.

2.12. Behavioral Assessment

Behavioral assessments were conducted for four weeks after surgery for hindlimb motor function
assessment. During the observation, dogs were allowed to move freely for five minutes in a confined
area and hindlimb coordination, weight-bearing ability, and locomotion were recorded. One of the
dogs that could not be weighed alone was supported by the experimenter by holding the lower part
of the tail. Neurological function was objectively evaluated using the 19-point scoring system for
canines of Basso, Beattie, and Bresnahan (cBBB) (Table 2) [24] and revised and modified Tarlov scales
(Table 3) [25]. Three experimenters conducted evaluations of the dogs’ gait with blinded experimental
conditions, and the score was expressed as an average for each group.

Table 2. Canines of Basso, Beattie, and Bresnahan score.

Score Description

0 No observable hind limb (HL) movement
1 Slight movement of one or two joints

2 Extensive movement of one joint, or extensive movement of one joint and slight
movement of one other joint

3 Extensive movement of two joints
4 Slight movement of all three joints of the HL
5 Slight movement of two joints and extensive movement of the third
6 Extensive movement of two joints and slight movement of the third
7 Extensive movement of all three joints in the HL
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Table 2. Cont.

Score Description

8 Plantar placement of the paw with no weight support

9 Plantar placement of the paw with weight support only when stationary, or occasional,
frequent or consistent weight-supported dorsal stepping and no plantar stepping

10 Occasional weight-supported plantar steps; no FL–HL coordination
11 Frequent to consistent weight-supported plantar steps and no FL–HL coordination

12 Frequent to consistent weight-supported plantar steps and occasional
FL–HL coordination

13 Frequent to consistent weight-supported plantar steps and frequent
FL–HL coordination

14

Consistent weight-supported plantar steps, consistent FL–HL coordination, and
predominant paw position is externally rotated when it makes initial contact as well as
just before it is lifted off; or frequent plantar stepping, consistent FL–HL coordination,

and occasional dorsal stepping

15
Consistent plantar stepping and consistent FL–HL coordination and no toe clearance or
occasional toe clearance; predominant paw position is parallel to the body or internally

rotated at initial contact

16
Consistent plantar stepping and consistent FL–HL coordination and toe clearance

occurs frequently; predominant paw position is parallel or internally rotated at initial
contact and externally rotated at liftoff

17
Consistent plantar stepping and consistent FL–HL coordination and toe clearance

occurs frequently; predominant paw position is parallel or internal at initial contact
and at liftoff

18
Consistent plantar stepping and consistent FL–HL coordination and toe clearance

occurs consistently; predominant paw position is parallel or internal at initial contact
and at liftoff. Trunk instability is present

19
Consistent plantar stepping and consistent FL–HL coordination and toe clearance

occurs consistently during forward limb advancement; predominant paw position is
parallel or internal at initial contact and at liftoff. Trunk instability is not observed

FL = forelimb; HL = hindlimb.

Table 3. Revised and modified Tarlov scales.

Item Revised Scale Modified Tarlov

Flaccid hind limbs 1 1
Tone in hind limbs 2

Purposeful hind limb motion 3 2
Stands with assistance 4

Stands unassisted 5 3
Limited ambulation 6

Full ambulation 7 4
Climbs a 20◦ incline ramp halfway 8

Climbs 20◦ incline ramp 9 5

2.13. Statistical Analysis

Data were analyzed using SPSS software (version 23 IBM, Chicago, IL, USA), and all data are
expressed as mean ± standard deviation. A non-parametric Kruskal–Wallis test, was performed with
Mann–Whitney U post-hoc test. A p value of 0.05 or less was considered to be statistically significant.

3. Results

3.1. GFP Expression and Heat Shock Treatment Characteristics of MSCs

When observed through a fluorescence microscope, the MSCs-GFP and MSCs-GFP-HS expressed
green fluorescence and all cells showed similar morphology to fibroblasts (Figure 1A). Heat shock
treatment was identified by the genes related to heat shock response. Heat shock protein 27 (HSP-27)
and heat shock protein 70 (HSP-70) were highly upregulated in the MSCs-GFP-HS group (Figure 1a,b,
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p < 0.05). The expression of neurotropic factors, such as glial cell-derived neurotrophic factor
(GDNF) and brain-derived neurotrophic factor (BDNF), was upregulated in the MSCs-GFP-HS group
(Figure 1c,d, p < 0.05). Regarding the expression of anti-inflammatory gene markers, interleukin 10
(IL-10) and heme oxygenase 1 (HO-1) were significantly upregulated in the MSCs-GFP-HS group
compared with that in the MSCs-GFP group (Figure 1e,f, p < 0.05). Comparing the expression levels
of stemness-related genes, octamer-binding transcription factor 4 (OCT-4) and SRY-box transcription
factor 2 (SOX2) were upregulated in the MSCs-GFP-HS group (Figure 1g,h, p < 0.05). The homing
factors C-X-C chemokine receptor type 4 (CXCR-4) and C-C motif chemokine ligand 7 (CCL7) were
significantly upregulated in the MSCs-GFP-HS group (Figure 1i,j, p < 0.05).
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Figure 1. GFP labeling and heat shock-treated mesenchymal stem cells (MSCs). (A) Expression of GFP
was identified in the MSCs-GFP and MSCs-GFP-heat shock (HS) groups using a fluorescence microscope.
All cells showed fibroblast-like morphology. (B) mRNA expression of (a) HSP-27, (b) HSP-70, (c) glial
cell-derived neurotrophic factor (GDNF), (d) brain-derived neurotrophic factor (BDNF), (e) IL-10,
(f) HO-1, (g) OCT-4, (h) SOX-2, (i) CXCR-4, and (j) CCL7. The scale bar indicates 400 µm. The data
were obtained by experiments repeated three times; each bar represents average of the gene expression
calculated with the formula 2−∆∆CT and was normalized to the MSCs-GFP group. Error bars represent
standard deviation. * denotes significance at p ≤ 0.05.
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3.2. Histopathological Assessment

Histopathological analysis of H&E staining revealed pathological variation in the spinal cord
parenchyma. Fibrotic changes, atrophic changes, vacuolar formation, and hemorrhages in the
injured spinal cord were identified in all samples. At low magnification of the spinal cord lesions,
the MSCs-GFP-HS group showed a well-organized parenchymal matrix, but the other groups showed
a more distorted parenchymal matrix (Figure 2A). Fibroblast-like cell proliferation, hemorrhage,
and vacuolar formation of the injured area at high magnification were also observed to be reduced
in the MSCs-GFP-HS group. Fibrotic areas were less intervened in the MSCs-GFP-HS group and the
MSCs-GFP group than in the control group (Figure 2A, arrow). Quantification of fibrotic changes with
H&E staining showed there were significant differences between the control group and MSCs-GFP
group (Figure 2C, p < 0.05) and between the control group and MSCs-GFP-HS group (Figure 2C, p < 0.05).
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Figure 2. Histopathological analysis of the stained injured spinal cords. (A,B) Images of the injured
spinal cord sections of the control, MSCs-GFP, and MSCs-GFP-HS groups. The sections were stained
with hematoxylin and eosin (H&E) and Luxol fast blue (LFB) to identify fibrotic changes, hemorrhages,
vacuolar formation, parenchymal change, and degree of myelination. Scale bar represents 200 µm for
all images. In the LFB staining image, the lined box is the magnified image of the grey matter and the
dotted box is the magnified image of the white matter. (C) Quantitative comparison of the fibrotic
changes is shown as red and pink (arrow) in the H&E staining. (D,E) Quantitative comparison of the
grey and white matter myelin level, which is depicted by the intensity of the blue color. (C–E) Each
bar indicates the average of four samples per group and was normalized to the control group. Error
bars represent standard deviation. * denotes significance compared with the control group at p ≤ 0.05.
ˆ denotes significance compared with the MSCs-GFP group at p ≤ 0.05.
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LFB staining was used to identify myelination of the injured spinal cord. Injured lesions
contained vacuoles, which exhibited loss of neurons, oligodendrocytes, astrocytes, and myelination.
Compared with the MSCs-GFP group and the MSCs-GFP-HS group, the control group displayed severe
demyelination. In contrast, the MSCs-GFP-HS group exhibited significantly improved demyelination
(Figure 2B). Based on the quantification of myelinated area, the MSCs-GFP-HS group showed
pronounced myelination of gray matter and white matter by enhanced LFB staining (Figure 2D,E,
p < 0.05).

3.3. Immunohistochemical Assessments and Western Blot Analysis

Immunohistochemistry was performed to identify whether cells transplanted into injured spinal
cord regions had migrated and to evaluate the expression of neural markers. The presence of GFP
expression in the injured spinal cord region confirmed the successful migration of stem cells to the
injured spinal cord after IV injection (Figure 3A). The percentage of GFP positive cells was significantly
higher in the MSCs-GFP-HS group than in the control (Figure 3B, p < 0.05) and MSCs-GFP groups
(Figure 3B, p < 0.05). Most of the cells expressing GFP were distributed around the lesion of the SCI,
especially in the cranial and caudal margins. The percentage of nestin-expressing cells was significantly
higher in the MSCs-GFP-HS group than in the control group (Figure 3C, p < 0.05) and MSCs-GFP
group (Figure 3C, p < 0.05). The percentage of β-III-tubulin positive cells was also significantly higher
in the MSCs-GFP-HS group than in the control group (Figure 3E, p < 0.05) and the MSCs-GFP group
(Figure 3E, p < 0.05). However, the percentage of GFAP positive cells in the MSCs-GFP group was
higher than that in the control group (Figure 3D, p < 0.05) and MSCs-GFP-HS group. Compared to the
MSCs-GFP group, the percentage of GFAP positive cells in the MSCs-GFP-HS group was higher.

A similar pattern of marker expression in the IHC results was identified in the western blot results
(Figure 3F). The expression of nestin and β-III-tubulin was highest in the MSCs-GFP-HS group. Nestin
(Figure 3G, p < 0.05) and β-III-tubulin (Figure 3I, p < 0.05) expression were significantly higher in the
MSCs-GFP-HS group than in the other groups. As shown by immunohistochemistry, the expression of
GFAP was significantly higher in the MSCs-GFP group (Figure 3H, p < 0.05). The expression of GFAP
in the MSCs-GFP-HS group was lower than that in the MSCs-GFP group and higher than that in the
control group.

3.4. Behavioral Observations

The cBBB score of the experimental dogs was 19 before the SCI and decreased to zero after SCI.
The dogs’ hind limbs showed complete paralysis, with no pain. Scores were measured weekly for up
to four weeks after transplantation. All groups showed progressive motor function recovery after cell
transplantation, especially in the MSCs-GFP-HS group. From the third week onwards, the cBBB scores
showed significant differences between groups, with the fourth week being the most obvious. In the
third and fourth weeks, the cBBB score was significantly higher in the MSCs-GFP-HS group than in
the control group (Figure 4A, p < 0.05). Compared with the MSCs-GFP group, the MSCs-GFP-HS
group achieved the highest score in week 4 (Figure 4A, p < 0.05). In the MSCs-GFP-HS group, all dogs
were able to stand; three dogs showed full ambulation and one dog showed limited ambulation. Even
though coordination of the legs was poor, the dogs could support their own weight. In the MSCs-GFP
group, only one dog was able to stand with assistance and three dogs had a limited ability to stand,
but they showed purposeful hindlimb motion. In the control group, only one dog showed purposeful
hindlimb motion, and three dogs showed flaccid tone in the hindlimbs. To qualitatively evaluate these
behaviors, neurological recovery was evaluated using the revised and modified Tarlov scales four
weeks after transplantation (Figure 4B, C, p < 0.05).
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Figure 3. Immunohistochemical assessments and Western blot analysis at four weeks after
transplantation. (A) Injured spinal cord lesions were stained with nestin, GFAP, and β-III-tubulin as red;
transplanted cells (green fluorescent protein (GFP]); the nucleus was stained with DAPI as blue. Scale
bar represents 400 µm for all images. (B) Percentage of GFP positive cells. (C–E) Percentage of neural
marker positive cells. (F) Representative densities of neural markers. (G–I) Quantitative analysis of
densities obtained for nestin, GFAP, and β-III-tubulin normalized to the control. Each bar indicates the
average of four samples per group. Error bars represent standard deviation. * denotes significance
compared to the control group at p ≤ 0.05. ˆ denotes significance compared to the MSCs-GFP group at
p ≤ 0.05.
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Figure 4. Behavioral analysis using canine Basso, Beattie, and Bresnahan (cBBB) scores and Tarlov
scales until four weeks. (A) Improvements in cBBB scores before and during the four weeks following
transplantation. Hindlimb locomotion at four weeks after transplantation were measured by two
grading systems: (B) revised Tarlov scales and (C) modified Tarlov scales. Error bars represent standard
deviation. * denotes significance compared with the control group at p ≤ 0.05. ˆ denotes significance
compared with the MSCs-GFP group at p ≤ 0.05.

4. Discussion

Many strategies have been used to treat SCI. One strategy is stem cell transplantation into the
injured spinal cord. Stem cell transplantation has the ability to repair damaged neuronal tissues and
provide therapeutic agents. Among stem cells, adipose-derived mesenchymal stem cells (Ad-MSCs)
can be easily acquired, rapidly expanded, and induce neuronal differentiation and neuroregeneration.
IV-delivered Ad-MSCs have been reported to promote functional recovery of acute SCI in dogs [26].
However, transplanted cells lack viability because damaged spinal cords do not provide an ideal
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environment. Even under optimal microenvironmental conditions, only approximately 10% of stem
cells survive in the injured central nervous system [27–29], and very few cells differentiate into mature
neuronal phenotypes [30–32]. There are reports of ways to improve the treatment efficiency of stem
cell therapy by manipulating the genes of stem cells. However, gene editing has the potential risk of
causing genetic mutations [33,34]. In contrast, the HSR is not genetically modified but is evolutionarily
preserved and maintains homeostasis under various stresses [35].

HSPs are protective proteins against various stresses [35]. Heat shock transcription factors (HSFs)
are activated in response to various stresses, inducing transcription of HSPs [36]. The upregulation of
HSP expression through HS treatment has been shown to have a cytoprotective effect that resists stresses
such as oxidative stress and hypoxia, inhibits apoptotic pathways, and inhibits proinflammatory
cytokines [35,37,38]. In the present study, we used a 43 ◦C incubation period to produce HSP-expressing
MSCs that resist various external stresses. HS-treated MSCs were successfully produced, as evidenced
by the increased expression of genes related to the HSR. In addition, growth factors, antioxidants,
and stemness factors increased. These results indicate that HS-treated MSCs possibly resisted the
hostile microenvironment in injured spinal cords and induced neuroregeneration.

In this study, we injected stem cells during the acute phase of SCI. After SCI, the blood-spinal
cord barrier is destroyed, resulting in cell infiltration, inflammatory reactions, and pathological
changes in lesions. This change activates astrocytes to create a glial scar, creating an environment
that interferes with neural regeneration [8,39,40]. Hence, it is crucial to control inflammation and
the microenvironment by administering stem cells early in SCI for neuronal protection. Previous
reports showed that MSCs intravenously injected into an acute SCI canine model had antioxidant
and anti-inflammatory effects [26]. Our results showed that expression of the anti-inflammatory and
antioxidation-related genes was higher in the HS-treated MSCs group than in the MSCs-GFP group.
We found that the HS-treated group had the lowest fibrosis of the lesion and more neuronal sparing.
Considering the cytoprotective, anti-inflammatory, and antioxidant effects of HS-treated MSCs, these
results were likely because of proper control of the inflammatory response that occurs in the early
stages of SCI.

Previous studies indicated that stem cells migrate to the lesion of the spinal cord following IV
administration [26,41]. In this study, the results also showed that the IV-administrated stem cells were
distributed around the injured spinal cord, most of which were in the cranial and caudal margins.
The distribution of migrated stem cells did not differ between the MSCs-GFP and MSCs-GFP-HS
groups. In studies using mouse and rat models, IV-transplanted cells were not detected in the injured
lesion six weeks later [42], and cells transplanted into the subarachnoid space were not observed
four weeks later [43]. Therefore, a large number of cells were thought to be needed for IV; hence, the
injections were administered for three consecutive days in this study. This repeated administration
of stem cells appears to have caused many cells to migrate to the injured spinal cord, which were
marginally distributed four weeks later, and improved neuronal sparing in the lesion. In addition,
given that there were more cells expressing GFP in the HS-treated MSCs group compared with the
other groups, many transplanted cells appear to have migrated to the site of the injury, possibly due to
the high expression of homing-related genes (CXCR-4, CCL7) in HS-treated MSCs.

Reactive astrocytes protect the lesion in SCI and contribute to healing of the surrounding area,
which has two contrasting aspects because it prevents nerve regeneration of the lesion [44]. Therefore,
it is important that the reactive astrocytes remain at appropriate levels for protection and regeneration.
In a prior study, the transplantation of MSCs to the central nervous system showed activation of
astrocytes [45]. In accordance with this result, GFAP expression in the MSCs-GFP group was higher than
that of the control group and the MSCs-GFP-HS group, but myelination in the MSCs-GFP group was
relatively lower than that in the MSCs-GFP-HS group. It appears that transplanted MSCs-GFP enhanced
the inhibitory properties of reactive astrocytes. On the other hand, the MSCs-GFP-HS group showed
lower GFAP expression than the MSCs-GFP group but higher than that of the control group and had the
highest myelin formation. In a previous study, it was reported that the favorable environment for nerve
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regeneration was due to neural protective factors secreted from transplanted cells [46]. Given the high
expression of genes related to cytoprotection (HSP-27, HSP-70) and anti-inflammation (IL-10, HO-1) in
HS-treated MSCs, these neural protective factors in transplanted stem cells were considered to have
changed the detrimental properties of reactive astrocytes, maximizing the growth-promoting properties.

Demyelination is a pathological process that occurs after SCI, and gray matter is lost faster than
white matter [47]. Our data also revealed more loss of gray matter than white matter in all groups.
However, compared with the other groups, the extent of myelin formation was high in both white and
gray matter in HS-treated MSCs. Given that HSP-27 and HSP-70 are distinctly expressed in multiple
sclerosis myelin, it has been confirmed that they play a role in protecting and repairing myelin [48].
Therefore, these results may indicate the protective and reparative effects of HSP on myelination.
It should also be noted that the expression of beneficial genes increased in the HS-treated MSCs
group, reducing the inhibitory capacity of reactive astrocytes and creating a permissive environment,
which is in line with prior research [49]. The beneficial gene expression of HS-treated MSCs was
demonstrated in the current study, where the expression of BDNF was high in HS-treated MSCs. There
are reports that the expression of beneficial molecules such as BDNF creates a permissive environment
for promotion of axonal regrowth [50,51]. As mentioned in a previous study [49], this permissive
environment was considered to have highly expressed immature neuronal markers (β-III-tubulin) and
neural stem/progenitor cell markers (nestin) in HS-treated MSC groups.

The HS-treated MSCs appear to have kept the reactive astrocytes at an appropriate level in the
lesion, maximizing the effects of nerve protection and regeneration. This result was also corroborated
by the degree of post-operative hindlimb recovery. The HS-treated MSC group showed faster and
more improved functional recovery. Although we did not conduct an assessment of the neural
circuits, they are thought to have promoted functional recovery by the surviving host neurons and
transplanted cells, forming new synaptic connections in an indirect manner [2]. As previously
reported [52,53], our results show that GFP-positive cells and β-III-tubulin positive cells remained in
the area surrounding the injured spinal cord region. These results suggest that neural regeneration
takes place in the periphery, rather than in the lesion core.

5. Conclusions

To improve the efficacy of stem cell treatment for SCI, stem cells must endure in a hostile
environment of lesions. In this respect, HS-treated MSCs not only have cytoprotective effects in
SCI environments but also transform the surrounding environment into one favorable for nerve
regeneration. Therefore, the application of HS-treated MSCs to acute SCI in dogs could have beneficial
effects such as neural protection and neuroregeneration in the hostile environment of acute SCI.
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