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Human microbiome signatures of differential colorectal cancer

drug metabolism

Leah Guthrie!, Sanchit Gupta?, Johanna Daily? and Libusha Kelly'?

It is well appreciated that microbial metabolism of drugs can influence treatment efficacy. Microbial B-glucuronidases in the gut can
reactivate the excreted, inactive metabolite of irinotecan, a first-line chemotherapeutic for metastatic colorectal cancer. Reactivation
causes adverse drug responses, including severe diarrhea. However, a direct connection between irinotecan metabolism and the
composition of an individual’s gut microbiota has not previously been made. Here, we report quantitative evidence of inter-
individual variability in microbiome metabolism of the inactive metabolite of irinotecan to its active form. We identify a high
turnover microbiota metabotype with potentially elevated risk for irinotecan-dependent adverse drug responses. We link the high
turnover metabotype to unreported microbial 3-glucuronidases; inhibiting these enzymes may decrease irinotecan-dependent
adverse drug responses in targeted subsets of patients. In total, this study reveals metagenomic mining of the microbiome,
combined with metabolomics, as a non-invasive approach to develop biomarkers for colorectal cancer treatment outcomes.
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INTRODUCTION

The microbiome shapes the metabolic' and immunological®
landscape of individuals in health and disease. Its plasticity can
be leveraged for therapeutic interventions® and to improve
therapeutic outcomes.*> Recent studies have implicated gut
microbiome metabolism at the gene” and species® level in driving
the variability in patient drug response and toxicity. Thus,
understanding the mechanisms of microbial mediated drug
biotransformation and quantifying the microbial origins of
variability in drug response may improve patient treatment
outcomes.

One of few therapeutic drugs for which we have a mechanistic
understanding of how the gut microbiome specifically influences
drug metabolism is the colorectal cancer chemotherapeutic and
prodrug irinotecan (CPT-11). CPT-11, in combination with fluor-
ouracil and leucovorin, is one of three first-line treatments for
metastatic colorectal cancer (CRC).”® CPT-11 is administered to
patients intravenously and converted to its active form (SN-38) by
carboxylesterases in the liver>® It is inactivated by UDP-
glucuronosyltransferases to a glucuronidated form (SN-38G) that
enters the intestine via biliary excretion.'®'" Damage to intestinal
epithelial cells and severe diarrhea can occur when SN-38G is
reactivated by microbial B-glucuronidases (BGs) in the gut, which
recognize the glucuronidated drug as a carbon source”. Adverse
drug responses (ADRs) to CPT-11 vary substantially in patient
populations,’®'" potentially reflecting inter-individual variation in
gut metabolism of the excreted drug. When CPT-11 is adminis-
tered as a single agent, 30-40% of patients experience grade 3-4
diarrhea,'? considered life-threatening and requiring hospitaliza-
tion.”®> More commonly, CPT-11 is administered as a part of
treatment regimens including other therapeutics; here 11-37% of
patients experience grade 3-5 diarrhea.'

Historically, oral antibiotics were used to reduce CPT-11 induced
toxicity,'> however indiscriminant depletion of gut microbes may
impair protective functions, including the ability to resist infection
and the capacity to metabolize dietary substrates. Furthermore,
gut microbiota depletion directly impacts chemotherapy treat-
ment through a variety of mechanisms, including the prevention
of beneficial crosstalk with the immune system.'® Recent efforts to
reduce CPT-11 toxicity include targeted inhibition of microbial
enzymes that convert the inactive form of the drug to its active
form. Wallace et al., 2010, identified potent Escherichia coli BG
inhibitors which substantially reduce CPT-11 induced toxicity in
mice while having no effect on the orthologous mammalian
enzyme.®

We hypothesized that patterns of BG gene abundance, and
potentially other genes present in the gut microbiome, are linked
to drug metabolism phenotypes and therefore may predict
individual patient responses to drugs. Here, we have identified
gut microbiome-derived metagenomic signatures linked to an
individual’'s microbial community level capacity to convert the
inactive form of CPT-11, SN-38G, to the active form, SN-38, using
high throughput genomics in combination with metabolomics to
quantitate gut microbiota-produced metabolites of SN-38G.

RESULTS

Subject characteristics

Fecal samples were collected from 20 healthy individuals; details
of the cohort are provided in Table S1. The participants were
healthy young adults without antibiotic exposure within 6 months
prior to study enrollment.
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Fig. 1 Two distinct metabolizer phenotypes or ‘metabotypes’ based
on % SN-38 formation during a time course incubation of SN-38G
with fecal samples from 20 individuals quantified by LC-MS/MS.
Participants were sub-grouped into low (n=16) and high (n=4)
metabolizer phenotypes. All samples were run in triplicate and
values are the mean + sem

Human fecal microbiota mediated SN-38G metabolizer
phenotypes

We studied 20 microbiomes to characterize the variability in
human gut microbiota mediated conversion of SN-38G into SN-38
and to determine the microbial basis of this variability. We first
defined metabolism of SN-38G for each individual using time
course ex vivo incubations of fecal extracts with SN-38G and
targeted LC-MS/MS for the quantitation of SN-38 formed. We
identified two distinct metabolizer phenotypes, or ‘metabotypes’,
based on % SN-38 formation, which can be sub-grouped into low
(0.04-8.72%) and high (26.46-77.11%) metabolizer phenotypes
(Fig. 1).

Specificity of assays to quantify SN-38G metabolizer phenotypes
Fecal BG activity is commonly measured based on the turnover of
p-Nitrophenyl B-D-glucuronide (PNPG) to p-Nitrophenyl (PNP)
using a plate-based absorbance assay.'”” PNPG assays have the
advantages of being faster, cheaper and more amenable to high
throughput analysis. We therefore sought to determine whether
the low and high metabotypes could be resolved by incubating
fecal samples with PNPG and using a plate-based assay for
quantification. We found no correlation between the targeted
metabolomics assay and the PNPG assay (R=0.2, p=0.39)
(Figure S1).

Microbiome structure and composition across metabotypes

To determine if metabotypes were correlated with specific
bacteria we profiled the taxonomic composition across metagen-
omes. At the phylum level, all samples were dominated by
Bacteroidetes (mean relative abundance 64%) and Firmicutes
(mean relative abundance 29%) (Figure S2a). At the family level
samples vary widely independent of metabotype with a few
dominant families. Bacteroidaceae were the most prevalent across
most samples, making up to 77.59% of the family level relative
abundance count within a participant (Figure S2b). Minor
dominant taxa included Lachnospiraceae (mean relative abun-
dance 22%) and Ruminococcaceae (mean relative abundance 9%).
Profiling microbial community composition at multiple levels of
resolution did not predict low or high metabotype via correlation
analyses.
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Enterobacteriaceae BGs (normalized count)

Fig. 2 Relationship between the distribution of the Enterobacter-
iaceae family and Enterobacteriaceae fB-glucuronidase. Enterobac-
teriaceae BGs were identified from the RefSeq, UniProtKB, and PDB
protein databases, clustered at 99% identity, and mapped to
assembled metagenomes

Relationship between Enterobacteriaceae family and BG gene
abundances

To determine whether Enterobacteriaceae family members, which
have been the focus of efforts to inhibit BGs in the context of CPT-
11 toxicity> and other glucuronidated drugs,'® were more
dominant in high metabolizers, and thus whether Enterobacter-
iaceae family distribution related directly to the abundance of
Enterobacteriaceae BGs, we first used STAMP' to assess
differential abundance. We found that samples within the high
metabotype group did not have an increased abundance of
Enterobacteriaceae members; instead, this family was variably
distributed across samples (Figure S2b).

To look specifically at Enterobacteriaceae-like BGs in our
samples we assessed their evenness using the Simpsons Equit-
ability (ED) metric®® and distribution (Fig. 2). Enterobacteriaceae
BGs are more evenly shared (ED = 0.938) across the samples while
the Enterobacteriaceae family members are more variably
distributed (ED=0.629) across samples independent of
metabotypes.

Diversity, abundance, and mobility of BGs across metabotypes

We observed that BG gene abundance is variable among healthy
subgroups of people (Fig. 3a). To determine whether particular
sets of BG predict the low or high metabotypes, we first compiled
an extended database of BG sequences, including BG sequences
from the healthy individuals in the Human Microbiome Project.
We next mapped participant metagenomes to this database. We
identified BGs from a predicted uncultured Clostridium spp.,
Faecalibacterium prausnitzii and a Bacteroides species that were
significantly differentially abundant between high and low
metabolizers (Fig. 3b).

BGs and the progression to colorectal cancer

BG activity is greater in colorectal cancer patients’’ and we
therefore asked whether the BGs present in the healthy
participant sample set reflected the BGs present in carcinoma
patients. Using the ref. 22 dataset of patients (n=156) with
advanced adenomas, carcinomas and age matched healthy
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Fig. 3 Phylogenetic distribution and abundance of loop positive
and negative BGs of healthy individuals. a The BG tree is rooted
using the E. coli and B. thetaiotamicron p-galactosidase sequences,
the E. coli sequence is indicated by an arrow. Phylum-level taxonomy
is indicated by branch color. Salmon colored bars represent loop
positive sequences while the light blue bars indicate loop negative
sequences as defined by Wallace, 2015. The adjoining heat map
displays the relative abundance of BG sequences represented in the
tree with values normalized on a scale from 0, being least abundant
to 1, being most abundant. b Differentially abundant BGs between
the low and high metabotype individuals were determined based
on the Welch’s t-test, two-sided with a Storey FDR, adjusted g-value
<0.05 and followed by an effect size filter (ratio of proportions
effect size < 2.00)

controls, we found that an overlapping set of BGs are carried by
the high metabotype and carcinoma patients (Figure S3).

A putative transport mechanism for SN-38G into bacterial cells
Bacterial metabolism of SN-38G requires entry into the bacterial
cell, however the specific genes involved in this process are
unknown. To determine whether there were shifts in the sets of
transporters present in low and high metabotypes, assembled
metagenomes were mapped against the Transporter Classification
Database.”®> We identified transporters involved in carbohydrate
uptake that were more abundant in the high metabotypes (Fig. 4).
Several transporter proteins from the Carbohydrate Uptake
Transporter-1 (CUT1) family were differentially abundant and
enriched in the high metabotype samples (Enzyme Commission
ID: 3.A.1.1). Other proteins that were more abundant in the high
metabotype were part of the Gluconate:H+ Symporter (GntP)
Family (2.A.8), the PTS Mannose-Fructose-Sorbose (Man) Family (4.
A.6), the Heavy Metal Efflux (HME) Family (2.A.6.1), and the Holin
LLH (Holin LLH) Family (1.E.26). These results link metabotypes to
sets of transporters at the level of metagenome; the specific
genomes of origin were not resolved.
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Community-level microbiome changes in metabolism across
metabotypes

To determine whether there are differences in microbial
metabolism at the broader level of the entire metagenome
between metabotypes we used topological analyses of an
enzyme-centric metabolic network. Previous studies on bacterial
metabolic network dynamics and structure found that network
topological features relate to an enzyme’s relational position in a
pathway (e.g., first step, intermediate step, nutrient uptake step)
and that peripheral enzymes have higher rates of horizontal gene
transfer.?*?’ To examine variation in gene abundance in the
context of community level metabolic network characteristics we
identified enriched genes across the low and high metabotypes
using the odds ratio and differential abundance score as defined
by ref. 27 High metabotype-enriched genes (OR>2), are
predominantly involved in carbohydrate and amino acid meta-
bolism (Fig. 5a) (Table S2).

To identify central vs. peripheral enzymes involved in metabolic
pathways, a network was constructed based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) orthologous groups
present in the metagenomes and betweenness centrality was
calculated using Cytoscape.®**® To determine whether the
distribution of centrality scores differed between high
metabotype-associated vs. non-associated KEGG groups we used
a Wilcoxon rank-sum test with a p value<0.05 cutoff for
significance. High-metabotype enzymes have lower centrality
(Fig. 5b) and are more peripheral in the community metabolic
network, suggesting that the high metabotype can be distin-
guished from the low by a greater abundance of enzymes
involved in processes that potentially interface with the gut
environment.

DISCUSSION

Glucuronidation is a common modification of xenobiotics as part
of phase Il drug metabolism. Both sick and healthy individuals
ingest a variety of glucuronidated compounds—prescribed or
purchased over the counter—that are excreted via the biliary
route.3>*" In addition to irinotecan, examples include paracetamol,
codeine, chloramphenicol, vitamins, and tamoxifen.3°3* An
unanswered question is how the microbiome influences variability
in community level conversion efficiency of these glucuronidated
substrates. Our study presents a framework to address this
question. We quantify the microbial basis of variability in SN-38G
turnover, a key determinant of irinotecan-induced toxicity. We find
associations between the efficient microbiota-mediated turnover
of SN-38G and specific microbial BGs from abundant gut species
and we propose a putative transport mechanism for SN-38G entry
into bacterial cells (Fig. 6).

Using LC-MS/MS for the quantitation of gut microbiota
produced metabolites of SN-38G, we stratified our patients into
low (0.04-8.72% hydrolysis; n = 16) or high (26.46-77.11% hydro-
lysis; n=4) metabolizer phenotypes or 'metabotypes' (Fig. 1).
Notably, the metabotypes identified via LC-MS/MS would be
indistinguishable in the PNPG-based assay of BG activity,
suggesting substantial diversity in glucuronide substrate utiliza-
tion among BG enzymes (Figure S1). Most samples from our
healthy donors had a low microbiota mediated biotransformation
of SN-38G, which is consistent with the clinical prevalence of
ADRs.'>'*3> Accordingly, our data provide the first quantitative
experimental evidence that inter-individual variation in total
community level microbiome bacterial protein activity can result
in differential metabolism of SN-38G. Future work is necessary to
determine whether fecal turnover correlates with irinotecan-
induced toxicity and whether the microbiome might therefore
serve as an accurate predictor of patient ADR risk.
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Fig. 4 Functional profiling of the fecal microbiome transporter diversity using metagenomics. Metagenomic reads were mapped to the
Transporter Classification Database (TCDB). Differential abundance between metabotypes was determined using the Welch's t-test, two-sided
with a Storey FDR, adjusted g-value < 0.05 and followed by an effect size filter (ratio of proportions effect size < 2.00)

We identified three BGs that were more abundant in the high
metabolizers and have not been previously associated with
deconjugation of therapeutics (Fig. 3b). All were identified based
on sequence homology to known or predicted glycosyl hydro-
lyases or BGs from genera that have experimentally confirmed BG
activity. One of the identified BG was most similar to a predicted
uncultured Clostridium species. Among Clostridium species, C.
perfringens has been found to have higher BG activity than E. coli,
Staphylococcus, Corynebacterium spp., Bacillus spp., Enterococcus
spp., Acinetobacter spp., Streptococcus spp., and Klebsiella spp.3®
However, many other Clostridium spp. have been reported to have
little to no BG activity®” suggesting gene loss and a polyphyletic
relationship among some species for BGs, as observed in other
carbohydrate metabolizing genes in other bacterial species.®® The
second BG identified was most similar to a F. prausnitzii glycosyl
hydrolyase. Notably F. prausnitzii subspecies vary in the presence
or absence of BG activity.>”*° This is suggestive of selection on
sets of BG genes in which the host diet potentiallg/ drives the
prevalence of BG activity among Faecalibacterium.***° Redirection
of carbohydrate metabolism capacity has been demonstrated
experimentally in Bacteroides thetaiotaomicron, which diverts its
carbohydrate metabolism capacity from dietary to host poly-
saccharides, such as the mucus layer overlying the epithelium, in a
nutrient availability-dependent manner.*® Low carbohydrate diets
may promote species level adaptive foraging of carbohydrates
from xenobiotics and host sources. The third BG is homologous to
a Bacteroides species glycosyl hydrolase. BG activity is broadly
found in Bacteroides.>’ It is notable that all three of these high
metabotype-associated BGs are phylogenetically distinct and have
different structural features from the well-studied E. coli G
(Fig. 3a),* suggesting that pairing biochemical assessment of
phylogenetically diverse BGs with genomically defined metabo-
types will be an important step towards designing better
inhibitors to target microbial BGs." Our findings suggest that a
diverse set of BGs may need to be targeted for inhibition to be
successful in the context of the human gut.

In addition to species level diversity in BG activity we also
considered whether differences in substrate uptake preference
played a role in distinguishing the high and low metabotypes. To
date, no mechanism of entry for SN-38G into bacterial cells has
been established. We identified two Gluconate:H+ Symporter
(GntP) Family (2.A.8) transporters that were more abundant in the
high metabotype group (Fig. 4). These transporters are involved in
a transport system that was first characterized in Streptococcus
pneumoniae, which is dependent on carbohydrates for growth
while living in the low carbohydrate environment of the human
airway.*' GntP family transporters are a part of the gluconate
transport system, which releases carbohydrates from glycol-
conjugates that are N or O linked. This system also involves a
phosphoenolpyruvate-dependent  phosphotransferase  system
(PTS), an unsaturated glucuronyl hydrolase (Ugl) and a
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hyaluronate lyase (Hyl) capable of cleaving glycosaminoglycan
hyaluronic acid for use as a carbon source.*’ The abundance of the
PTS system sugar specific Ell component in high metabotype
samples represents a potential mechanism, heretofore unknown,
by which the glucuronidated drug enters the bacterial cells
efficiently.

The results here highlight close associations between BG
activity, phylogenetic diversity, and clinically important metabo-
lites and provide insight into the broad variability in BG
abundance and activity in healthy individuals. Notably, BG activity
is greater in colorectal cancer (CRC) patients and with meat
consumption; it is hypothesized that BG mediated deconjugation
of heterocyclic amine produces reactive metabolites that damage
colonic mucosal cells,®’ suggesting that BGs may play a role in
both the etiology and treatment efficacy for CRC. Colorectal
cancer can be characterized by alterations in the microbiome****
and consequentially colorectal cancer patients may have non-
overlapping sets of BGs with our healthy EMP cohort. We found
that high metabotypes and carcinoma patients carry overlapping
sets of BGs, however more work is needed to assess if BG
metabolism in colorectal cancer patients correlates with the same
microbiome markers identified here in healthy subjects.

Consistent with previous studies profiling the gut microbial
community of healthy individuals we found that taxa are relatively
stable across the healthy fecal microbiomes at the phylum level
and are variable at the family to species levels.** Taxonomic
variation among healthy individuals favors the hypothesis that the
healthy human microbiome may be instead defined by core
functional capabilities.*> These findings lead us to hypothesize
that taxonomic diversity and functional traits such as the SN-38G
metabotypes might not be linked. For example, the non-steroidal
anti-inflammatory drug, diclofenac, like SN-38, is detoxified via
glucuronidation and excreted into the gut and reactivated in a
subset of patients resulting in enteropathy.'® In mice, co-
administration of diclofenac with the fluoroquinolone antimicro-
bial agent, ciprofloxacin, reduces diclofenac-induced toxicity.'®
The authors implicate microbial BGs and hypothesize that
Enterobacteriaceae BGs are the major players in both diclofenac-
glucuronide and SN-38G metabolism and the resulting adverse
responses.'® Furthermore, due to the effectiveness of inhibitors
designed against the E. coli BG to reduce irinotecan toxicity in
mice,” we looked at the relationship between the Enterobacter-
iaceae family and Enterobacteriaceae-like BGs across samples and
found that Enterobacteriaceae-like BGs are widely distributed
across samples and incongruent with taxonomic abundance
(Fig. 2). These results suggest that the Enterobacteriaceae BG
can be more prevalent in individual microbiomes than Enter-
obacteriaceae family members, suggesting that this gene is likely
horizontally exchanged in microbial populations and that 16S-
based taxonomic profiling would not be sufficient to predict
Enterobacteriaceae BG abundance.
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In bacteria, metabolic network topology is a product of the
functional interdependence between genes such that central
genes in a network are proposed to be involved in intermediate
steps of metabolism while peripheral genes are involved in either
the first (e.g., nutrient uptake) or last steps (e.g., a product that
interacts with the gut environment).?®*® Differences in the gain
and loss of peripheral enzymes may explain the enzyme-level
variability associated with high and low metabotypes. Peripheral
enzymes in our samples span multiple functional categories but
are dominated by carbohydrate metabolizing enzymes (Table S2),
suggesting that differences in the utilization of available
carbohydrates may be a distinguishing feature between
metabotypes.

What are additional mechanisms driving the gut microbiome
signatures that are associated with our metabotypes? This study
suggests that a variable and diverse set of BGs may be critical to
the metabolic efficiency of SN-38G transformation. Additional
work to more thoroughly characterize these BGs is necessary, for
example, examining the timescales of BG expression post SN-38G
exposure. To fully understand the scope and scale of metabolic
diversity, additional work quantifying the efficiency of SN-38G
turnover in more individuals will reveal how generalizable our
metabotypes are to larger populations. Future work will address
correlations between BG activity and drug response in patients
receiving regimens containing CPT-11. Our high metabotype-
associated BGs are promising targets for predicting and modulat-
ing adverse drug responses in patients. Metagenomic assessment
of carbohydrate-active enzymes represents a non-invasive
approach to developing biomarkers for colorectal cancer treat-
ment outcomes and is a first step towards engineering microbial
community composition to promote human health.

MATERIALS AND METHODS

Participant recruitment and sample collection

To examine the association between SN-38G metabolites and the
microbiome 20 healthy individuals were recruited to participate in the
Einstein Microbiome Project (EMP) for one-time fecal sampling. No
previous study has investigated the reactivation of SN-38G by the gut
microbiota in a comparable manner; therefore, no power analysis for the
sample size could be performed. The study was approved by the Albert
Einstein College of Medicine Institutional Review Board. Subjects were
recruited via flyers posted at Albert Einstein College of Medicine. Subjects
who were >18 years of age, had no health conditions and had not used
antibiotics within the prior 6 months were enrolled and provided informed
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consent. Age, gender and BMI were recorded. Participants collected fecal
samples using the Commode specimen collection system (Fisher) and
delivered them to the laboratory within 2 hours of being produced.
Samples were immediately stored at —80 °C. After thawing, samples were
divided into 0.3 g aliquots for DNA extraction and metabolic analysis.

Time course ex vivo incubations of fecal samples with SN-38G
To quantify the microbiome metabolism of SN-38G we carried out ex vivo
incubation of SN-38G with each fecal sample as follows: To remove debris,
0.3 mg of each fecal sample was mixed with 3 ml of Dulbecco’s phosphate-
buffered saline, homogenized, centrifuged at 10,000xg for 15 min at 4 °C
and the supernatant was collected for further processing. A final
concentration of 200 ug/ml total protein per sample was prepared using
the Bradford assay. Each sample was then incubated with 100 uM SN-38G
at 37°C. Reactions were terminated at 0, 1.5, and 3 min by removing a
sample aliquot and adding a quenching solution containing the internal
standard, 100 uM hydroxycampotothecin-d5 (ISTD), in 50% methanol. The
ISTD is a compound similar in structure to SN-38 that is not metabolized by
the gut microbiota. Samples were centrifuged at 12,000xg for 10 min and
5 ul of supernatant was added to 45 ul of 10% methanol.

LC-MS/MS analysis

The concentrations of SN-38G, SN-38 and the ISTD in the fecal extracts
were determined by multiple reaction monitoring, focusing on selective
jons for SN-38 (393.2—349), SN-38G (579.0 —394.1), and ISTD
(371.1-327.1) (Table S3). The instrument used, the Agilent G6490 Triple
Quadrupole Mass Spectrometer, was operated in the positive ionization
mode and connected online to a 1290 Infinity series UHPLC. Mobile phase
A was aqueous with 10% acetonitrile and 0.1% formic acid to maintain the
lactone form of SN-38. Mobile phase B was composed of 100% acetonitrile.
Each sample was run in triplicate at a flow rate of 0.350 ml/min with blanks
consisting of sample buffer placed between each set of samples and the
variance in triplicate points was determined (Table S4). A calibration curve
was established for each metabolite and the ISTD in both methanol and
using a pooled fecal extract to determine the lower limit of detection and
lower limit of quantitation. This work was carried out with the Albert
Einstein College of Medicine Proteomics Core.

DNA extraction, library construction, and shotgun metagenomic
sequencing

The PowerFecal DNA isolation kit (MO BIO Laboratories, Inc., San Diego, CA)
was used to extract DNA per protocols established by the Human
Microbiome Project.*” Library construction and sequencing was carried out
at the New York Genome center using the TruSeq Nano DNA LT Library
Preparation Kit (lllumina, Inc, San Diego, CA), which generates 450 bp
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transporters that are more prevalent in high metabotype individuals. Following cell entry, high metabotypes metabolize SN-38G more
efficiently using BGs from a predicted uncultured Clostridium spp., Faecalibacterium prausnitzii and a Bacteroides species

libraries and sequenced on the HiSeq 2500 System at 2x 125 bp read
length resulting in ~250 M reads.

Read filtering, assembly and gene calling

The clc_quality_trim program was used to quality filter paired reads by
removing bases on both ends with quality scores below 20 and with an
allowance of 10% low-quality bases. Filtered reads were assembled with
the SPADES assembler (v3.7.1)*® with default parameters. Gene calls were
made using Prodigal®® with the —-p meta flag and otherwise default
parameters.

Shotgun metagenomic sequence analysis

The assembled metagenomes were mapped against the following
functional databases using USEARCH version 8 with an e-value cutoff of
1e-40 in order to ensure longer sequence hits for improved taxonomic and
functional resolution: KEGG EC/KO (n=2,000,708),>° Transporters (n=
5,7229), Carbohydrate active enzyme (CAZy) (n=7215),>" and a curated
database of both cultured and metagenomically identified BGs developed
in-house.>> The abundance of KEGG orthologous groups and modules
were determined using the HUMANN pipeline® with default parameters.
For the KEGG, Transporters and CAZy databases abundance counts were
aggregated across samples. Differential abundance of pathways and genes
between low and high metabotypes was performed using STAMP's
implementation of the Welch’s t-test'® with a Storey FDR adjusted g-value
< 0.05 and followed by an effect size filter (ratio of proportions effect size <
2.00). For all analyses carried out in STAMP we used the Welch's t-test due
to the unequal size of the metabotypes groups and the approximate
normality of the BG and transporter data. The Shapiro-Wilk normality test
implemented in R (R version 3.3.1)°* demonstrated no significant
departure from normality based on the distribution of hits in the the
BGs (p=0.863) and Transporters (p = 0.880) databases.

Microbial taxonomic abundance estimates

For taxonomic profiling the reads were mapped against the MetaPhlAn
marker gene database® using Bowtie 2.2.1°° with default parameters.
MetaPhlAn scripts were used to extract normalized abundance counts
across phyla with default parameters.®” Statistical differences between the
stratified metabolizer phenotypes, low and high, were determined using
STAMP's implementation of the Welch's t-test'® with a Storey FDR,
adjusted g-value <0.05 and followed an effect size filter (ratio of
proportions effect size < 2.00).

npj Biofilms and Microbiomes (2017) 27

Characterizing phylogenetic diversity of BGs across samples

To characterize the phylogenetic diversity and distribution of BGs in both
our collected patient samples (EMP) as well as the metagenomes from
patients with colorectal cancer from the Feng et al. study,*? we included
BG sequences identified as a part of the Human Microbiome Project
extracted from the IMG-M database®” by searching for all assembled
scaffolds in each patient sample for genes annotated as EC:3.2.1.31, the
Enzyme Commission®® identifier for BGs. USEARCH 8 was used to search
the metagenomes against our protein database with an e-value cutoff of e-
40 and a bit score of 200. Patient metagenomes were also mapped to a
database of Enterobacteriaceae BGs identified from the RefSeq, UniProtkB
and PDB protein databases, clustered at 99% identity. To examine the
distribution of BGs in a colorectal cancer patient cohort, gene calls from
the ref. 22 shotgun metagenomic study of patients with advanced
adenomas, carcinomas and age matched controls, were compared to this
database of cultured and metagenomically identified BGs. This study
included in-depth nutritional survey of participants, extensive clinical data
collection and single time-point shotgun metagenomic profiling.

A community level phylogenetic tree was constructed by aligning the in-
house database of cultured and metagenomically identified BGs using
MUSCLE>® and PhyML®® with 1000 bootstrap replicates, a JTT model of
substitution, and otherwise default parameters. The E. coli and B.
thetaiotamicon (-galactosidase sequences were used as out-groups, as
described previously®.

Enrichment analysis of KEGG orthologous groups

To determine if there were differences in KEGG orthologous groups (KOs)
associated with the variation in SN-38G metabolism we identified KOs
associated with each metabolism phenotype (‘metabotype’). An odds ratio
was calculated for each enzyme as described by Greenblum et al.?” The
differential abundance score was defined as the absolute value of the fold
change in odds ratio (OR), abs[log2(OR)]. Differential abundance scores
were classified as high metabotype-enriched (OR > 2), high metabotype
associated (OR>1), high metabotype-depleted (OR<0.5) and high-
metabotype-other (OR > 0.5 and <1) as described previously.?’” To identify
KOs that are associated with the high metabotype, the abundance of each
enzyme in the set of samples obtained from high metabotype individuals
was compared with its abundance in low metabotype individuals.

Community-level metabolic network construction

To determine whether high metabotype-enriched enzymes occupy a
similar role in the context of a metagenome wide community level
metabolism, a community-level metabolic network was constructed from
the KOs present across all samples. Nodes in the network represent the
enzymes of KOs and directed edges between nodes indicate that a
product of the first enzyme is a substrate of the second enzyme.”” Using a
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list of the KOs present in the samples as input, the substrates and products
associated with each KO were identified using the MMNET R package®'
and the resulting igraph file was exported and analyzed using Cytoscape.”®

Enzyme-centric metabolic network analysis

Betweeness centrality was calculated using the Network Analyzer tool in
Cytoscape.”® A Wilcoxon rank-sum test was used to compare the
distribution of topological features of metabotype-associated enzymes
with the values obtained for non-associated enzymes with a p value < 0.05
cutoff for significance. The Spearman correlation test was used to examine
the correlation between an enzyme’s differential abundance scores and
each topological feature in the network with a p value < 0.05 cutoff for
significance. All enzymes were binned into three centrality tiers, central,
intermediate and peripheral as described in ref. 27 A hypergeometric
enrichment test was used to examine the over-representation of host
state-associated enzymes in each centrality tier with a p value < 0.05 cutoff
for significance.
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