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Abstract: Amyotrophic lateral sclerosis (ALS) is the most frequent motor neuron disease and a
neurodegenerative disorder, affecting the upper and/or lower motor neurons. Notably, it invariably
leads to death within a few years of onset. Although most ALS cases are sporadic, familial amyotrophic
lateral sclerosis (fALS) forms 10% of the cases. In 1993, the first causative gene (SOD1) of fALS was
identified. With rapid advances in genetics, over fifty potentially causative or disease-modifying
genes have been found in ALS so far. Accordingly, routine diagnostic tests should encompass the
oldest and most frequently mutated ALS genes as well as several new important genetic variants in
ALS. Herein, we discuss current literatures on the four newly identified ALS-associated genes (CYLD,
S1R, GLT8D1, and KIF5A) and the previously well-known ALS genes including SOD1, TARDBP, FUS,
and C9orf72. Moreover, we review the pathogenic implications and disease mechanisms of these
genes. Elucidation of the cellular and molecular functions of the mutated genes will bring substantial
insights for the development of therapeutic approaches to treat ALS.

Keywords: amyotrophic lateral sclerosis; motor neuron; genome signature; cell damage;
neurodegeneration

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by
both upper and lower motor neuron degeneration, paralysis, and ultimately limiting survival from two
to five years after onset [1]. Disease onset typically occurs in late middle-life with the mean age being
65 years. It results in relentless progressive muscle atrophy and weakness, ending with respiratory
failure [2,3]. In addition, this neurodegenerative disorder has an estimated worldwide mortality rate
of 30,000 patients per year [4]. ALS cases are estimated to occur in 2–3 per 100,000 individuals in
Europe, and less than one in Asia [5], thus categorizing it as a rare disease. Furthermore, up to 10% of
ALS-affected individuals have an affected family member or members with familial ALS (fALS), in which
most have inherited the disease in an autosomal dominant manner [6]. The remaining ALS patients,
with no clear genetic linkage, are called sporadic ALS (sALS) [7]. At present, mutations in over 50 genes
have been shown to contribute to the ALS pathogenesis [8,9]. Some of them such as SOD1, C9orf72,
FUS, and TARDBP were shown to present deleterious mutations, while other variants mostly found
by association studies rarely occur in the less frequent genes [8–10]. Several studies have identified
oxidative stress, glutamate excitotoxicity, apoptosis, neurofilament dysfunction, protein misfolding
and aggregation, impairment of RNA processing, disrupted axonal transport, endosomal trafficking
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dysfunction, inflammation, and mitochondrial impairment as the molecular pathways which lead
to the disease and indicate ALS pathogenesis. RNA metabolism and protein metabolism have been
indicated as commonly proposed ALS pathogenic mechanisms [11].

Since the end of the 19th century, there have been many studies on ALS, but its pathogenesis is
still unclear [4]. Many genetic variants that contribute to the missing heritability of ALS are yet to be
discovered. Nowadays, the number of studies on finding novel ALS genes and their functions on disease
pathogenesis is growing quickly [12–20]. This review discusses the current genetic understanding and
landscape of ALS and summarizes its disease mechanisms. Here, we specifically review the genes
involved in ALS in three categories, the most prevalent, the less frequent (≤1%), and the most recent
ALS genes, and depict how genomic signatures turn into pathogenic molecules in ALS.

2. Genetics of ALS

To date, 5–10% of all ALS cases suffer the known mutant genes [21,22]. SOD1 is the most frequently
mutant gene with 20% prevalence; mutant TARDBP and FUS in 5% and 4% of fALS cases, respectively,
have been identified as well. In the United States and Europe, 40% of fALS cases suffer C9orf72 variants,
and the rest are caused by variants in other known or unknown genes (Figure 1) [23]. Simultaneously,
variants in C9orf72 and SOD1 genes, which occur most frequently, constitute 7% and 1% of sALS
cases, respectively [24]. To provide historical context, we illustrate the yearly number of publications
from PubMed that include the terms “ALS” and “the gene name” in the title and abstract (Figure 1C).
According to the timeline of gene discoveries, SOD1, TARDBP, FUS, and C9orf72 are the first to fourth
genes found with more than 1% occurrences in the patients in the years 1993, 2006, 2009, and 2011,
respectively. Furthermore, there are some genes involved in ALS with less frequent variants (≤1%)
(Table 1) and several recent genes over the past two years with relatively rare variants such as CYLD,
S1R, GLT8D1, and KIF5A, which are precisely discussed in this review.Cells 2020, 9, x FOR PEER REVIEW 3 of 23 

 

 

Figure 1. Proportional contribution of mutated genes in ALS and timeline of ALS gene study. (A) The 

proportion of mutant genes in fALS cases. (B) The proportion of mutant genes in sALS cases. (C) 

Timeline of ALS gene discoveries and researches for SOD1, TARDBP, FUS, and C9orf72. The Y-axis 

shows the number of publications in PubMed that include the terms “ALS” and “the gene name” by 

year until November 2020. 

Table 1. Genes known to carry ALS-causing mutations. 

Gene Cases/Control Frequency (Familial) Frequency (Sporadic) Reference (s) 

SOD1 2874/6405 20% 1% [25] 

TARDBP 526/1262 4% 1% [26] 

OPTN 673/781 <1% <1% [21] 

SPG11 3056/900 <1% <1% [27] 

VCP 288/1569 1% 1% [28] 

hnRNPA1 517/625 <1% <1% [29] 

ATXN2 915/980 <1% <1% [30] 

ANG 1629/1264 <1% <1% [31] 

CHCHD10 4853/1991 <1% <1% [32] 

SIGMAR1 158/1100 <1% <1% [33,34] 

FIG4 473/558 <1% <1% [35] 

SETX 49/100 <1% <1% [36] 

SQSTM1 546/738 1% <1% [37] 

Figure 1. Cont.
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Figure 1. Proportional contribution of mutated genes in ALS and timeline of ALS gene study.
(A) The proportion of mutant genes in fALS cases. (B) The proportion of mutant genes in sALS cases.
(C) Timeline of ALS gene discoveries and researches for SOD1, TARDBP, FUS, and C9orf72. The Y-axis
shows the number of publications in PubMed that include the terms “ALS” and “the gene name”
by year until November 2020.

Table 1. Genes known to carry ALS-causing mutations.

Gene Cases/Control Frequency (Familial) Frequency (Sporadic) Reference (s)

SOD1 2874/6405 20% 1% [25]
TARDBP 526/1262 4% 1% [26]

OPTN 673/781 <1% <1% [21]
SPG11 3056/900 <1% <1% [27]
VCP 288/1569 1% 1% [28]

hnRNPA1 517/625 <1% <1% [29]
ATXN2 915/980 <1% <1% [30]

ANG 1629/1264 <1% <1% [31]
CHCHD10 4853/1991 <1% <1% [32]
SIGMAR1 158/1100 <1% <1% [33,34]

FIG4 473/558 <1% <1% [35]
SETX 49/100 <1% <1% [36]

SQSTM1 546/738 1% <1% [37]
TBK1 252/827 1% <1% [38]
NEK1 1022/7315 1% 1% [39]
TAF15 357/1100 <1% <1% [40]
FUS 583/1446 4% 1% [41]
ALS2 42/533 <1% <1% [42]
VAPB 24/400 <1% <1% [43]
NEFH 530/447 <1% <1% [44]

C9orf72 696/909 40% 7% [45]
CHMP2B 400/640 <1% <1% [46]
MATR3 108/1051 <1% <1% [47]
PFN1 274/1089 <1% <1% [48]
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Table 1. Cont.

Gene Cases/Control Frequency (Familial) Frequency (Sporadic) Reference (s)

PRPH 189/380 <1% <1% [49]
TUBA4A 363/5510 1% <1% [50]

ELP3 781/702 <1% <1% [51]
DCTN1 333/200 <1% <1% [52]
EWSR1 817/1082 <1% <1% [53]
GLE1 933/190 <1% <1% [54]

UBQLN2 200/928 <1% <1% [55]

2.1. The Newly Identified ALS-Associated Genes (2018–2020)

Several novel ALS-associated genes have been proposed by the researchers over the past two
years. Farhan et al. identified DNAJC7 as a novel gene for ALS that encodes a member of the
heat-shock protein family, HSP70, and has a key role in protein function such as protein folding and
stabilization. Alteration of HSP70 and DNAJC7 gene expressions causes protein aggregation in ALS
model [17]. Another gene, WDR7, was proposed by Course et al., in which the human-specific 69 bp
variable number tandem repeat in the last intron of this gene may be associated with ALS. WDR7
repeat expansions may act similar to the specific range of CAG repeat expansion numbers at ATXN2,
which are enriched in ALS cases. It was shown that WDR7 repeat expansion could form microRNAs,
RNA aggregates, and lead to RNA editing [18]. Further study has shown that ATXN1 overexpression
disturbs TDP-43 nucleocytoplasmic transport, which leads to a decrease in the nucleocytoplasmic
ratio of TDP-43. Hence, mislocalization and aggregation of TDP-43 can be considered the hallmark
of ALS [19]. Finally, ACSL5, a neurotoxic A1 astrocyte-related gene, is upregulated in ALS cases.
ACSL5 can induce A1 astrocytes, leading to motor neuron death and ALS progression. Overexpression
of ACSL5, similar to the previously discovered gene GPX3, is associated with rapid weight loss in
humans [8,20]. Although the mentioned genes above have been identified as ALS associated genes,
the study on their contribution to ALS pathogenesis is still limited.

Dobson-Stone et al. identified a novel missense variant in CYLD gene as the genetic cause
of ALS in a large European Australian family [16]. Previously, they found a disease locus on
chromosome 16 by genome-wide linkage analysis [56]. The missense variant in CYLD leads to alteration
of CYLD immunoreactivity in the brain tissue [16], and shows two ALS-associated pathological
phenotypes: an elevation of cytoplasmic TDP-43 level [57] and an impairment of autophagy function [58].
Overexpression of CYLD inhibited transport of TDP-43 into the nucleus from the cytoplasm. In the
nucleus, TDP-43 controls the expression of ATG7, which mediates the fusion of lysosomes with
autophagosomes. Decreased expression of ATG7 resulted in a loss of autolysosome formation [57–59].
Notably, overexpression of CYLD leads to the failure of autophagosome–lysosome fusion, causing the
malfunction of autophagy [16,60] (Figure 2A).
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Figure 2. A scheme for illustrating neuropathogenesis of CYLD, S1R, GLT8D1, and KIF5A genes in
ALS. (A) CYLD: Overexpression of CYLD inhibits the nuclear transport of TDP-43 from the cytoplasm,
leading to the mislocalization of TDP-43. Lower TDP-43 level in the nucleus decreases the expression of
ATG7, which is responsible for the fusion of lysosomes with autophagosomes. This results in a loss of
autolysosome formation, causing a loss of autophagy function. (B) S1R: Mutant S1R leads to ER calcium
and ATP depletion and perturbs mitochondrial dynamics and respiration. Subsequently, depletion of
ATP leads to TDP-43-induced toxicity. (C) GLT8D1: (1) Mutant GLT8D1 increases the ganglioside
signaling, leading to the transit of mature gangliosides to the cell membrane where they disrupt cell
signaling. (2) On the other hand, knock down of GLT8D1 impairs its glycosyltransferase activity from
the Golgi and diminishes ganglioside signaling. (D) KIF5A: Lack of KIF5A expression disrupts axonal
transport, accumulates phosphorylated neurofilaments and APP, and causes cytoskeletal defects in
neurons. (Inlet) In contrast, the disruption of axonal transport reduces APP level in the synapse and
triggers neurodegeneration.

Sigma-1 receptor (S1R), another potential therapeutic target gene in ALS discovered by Couly et al.,
regulates mitochondrial respiration and controls cellular defense against endoplasmic reticulum and
oxidative stress [15]. S1R is mainly located in a special compartment of the Endoplasmic reticulum
(ER) called the mitochondria-associated membrane (MAM) and has a role in ATP production [61].
S1R also protects TDP-43-induced toxicity by rescuing ATP production. ATP binds to the N-terminal
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domain of TDP-43 to enhance its oligomerization, and prevents the aggregation of TDP-43 into its
toxic form [62]. Mutant S1R (mS1R) leads to ATP depletion and perturbs mitochondrial dynamics
and respiration [15]. Therefore, it is demonstrated that an overexpression of mS1R is neurotoxic,
leading to mitochondrial dysfunction, thus highlighting the role of S1R in ALS therapy [15] (Figure 2B).
A recent study demonstrated that mS1R leads to Drosophila photoreceptor organization alteration
and spontaneous walking behavior [15]. Moreover, the motor performance in S1R knockout mice
diminished including muscle weakness, axonal degeneration, and loss of motor neuron [63]. Finally,
the protective role of S1R has been dementated in the ALS mice (G93A) model with S1R knockout by
behavioral and longevity experiments [64].

Cooper-Knock et al. proposed variants in the GLT8D1 gene which are recognized to be causal
in ALS [14,65]. GLT8D1, expressed within the Golgi, is a member of the glycosyltransferase family 8
involved in catalyzing the transfer of glycosyl groups. In addition, gangliosides are synthesized in the
ER, which are remodeled to maturation from the cis-Golgi to the trans-Golgi network via glycosylation
by GLT8D1 [66]. The mature gangliosides, which are moved to the cell membrane, are involved in
cell signaling [67] and produce neuroinflammation in motor neurons. ALS-associated mutations in
GLT8D1 prevent the normal activity of glycosyltransferase enzyme and negatively impacts ganglioside
signaling. The overexpression of mutant GLT8D1 increases ganglioside signaling, which leads to the
transit of mature gangliosides to the cell membrane where they disrupt cell signaling. In contrast,
the knock down of GLT8D1 impairs its glycosyltransferase activity from the Golgi and diminishes
ganglioside signaling. The previous study demonstrated that both knock down and overexpression of
mutant GLT8D1 induce motor neuron dysfunction and produce cytotoxicity in zebrafish consistent
with ALS. In the previous studies, genetic variants in this gene showed a significant increase in disease
severity and cytotoxicity in ALS patients [14,68] (Figure 2C).

Thus far, several studies have described the clinical evolution and the genetic findings of
the KIF5A gene in sALS and fALS [12,13,69,70]. The genome-wide association study comparing
20,806 ALS cases and 59,804 controls discovered KIF5A as a novel gene associated with ALS [13].
Independently, rare variant analysis was conducted on 426 patients with fALS and 6137 control
subjects, which identified enriched KIF5A splice-site variants in the cases. The genetic variants
associated with ALS are located at the C-terminal cargo-binding tail domain of the KIF5A gene,
which is also expressed in neurons. Considering the contribution of axonal transport deficits in the
pathogenesis of motor neuron degeneration [71–73], variants in KIF5A disrupt axonal transport and
amyloid precursor protein (APP) depletion in the synapse, which causes neurodegeneration. Therefore,
a lack of KIF5A expression, which transports cargo by binding to distinct adaptor proteins, has been
associated with the accumulation of phosphorylated neurofilaments and APP in the neuronal cell,
which leads to cytoskeletal defects [13,74]. Moreover, previous studies confirmed the involvement of
intracellular transport processes and strengthened the role of cytoskeletal defects of mutated KIF5A in
ALS pathogenesis (Figure 2D). The first genotype–phenotype relationship showed that ALS patients
with KIF5A loss-of-function mutations correlated with disease onset at an earlier age and longer
survival [13]. The second was proposed by Brenner et al., in which adult onset, rapid progression,
and early death were shown in the patients with KIF5A splice-site mutations [12].

2.2. The Old Genes with Important Contribution to ALS

SOD1, TARDBP, FUS, and C9orf72, as the oldest and most frequently mutant ALS genes,
are described and their function in ALS pathogenesis are illustrated (Figure 3).
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Figure 3. A scheme for illustrating neuropathogenesis of mutant genes (SOD1, TARDBP, FUS,
and C9orf72) with major contribution to ALS. (A) SOD1: Mutant SOD1 (mSOD1) leads to oxidative
stress by elevating free radicals that damage protein folding and impair axonal transport in motor
neurons. Additionally, misfolded mSOD1 protein is not able to transport across mitochondrial
membranes and accumulates onto the outer mitochondrial membrane, triggering motor neuronal
death. On the other hand, mSOD1-induced ER stress results in the activation of UPR and ERAD,
causing motor neuronal damage. (B) TARDBP: (1) Mutant TDP-43 (mTDP-43) is aggregated in the
cytosol and TDP-43 dysfunction abnormally accumulates mRNA in the nucleus. (2) The loss of nuclear
TDP-43 function leads to inhibition of TDP-43 binding to STMN2 RNA and mis-splicing of STMN2
RNA, which subsequently inhibits axonal regeneration of motor neurons. (3) On the other hand,
upregulation of cytoplasmic TDP-43 forms inclusion bodies and it further propagates to neighbor
cells, causing motor neuronal degeneration. (C) FUS: Mutant FUS (mFUS) disrupts nucleocytoplasmic
transport and leads to its depletion from the nucleus. Then, mFUS aggregates in the cytoplasm and
induces neurotoxicity. mFUS may also disrupt translation of transcripts associated with mitochondrial
function, which leads to mitochondrial shrinkage. (Inlet) Moreover, mFUS binds to mature mRNAs in
the cytoplasm and affects mRNA translation. Suppressed protein translation impairs the dendrites
and axon terminals. Inhibition of local intra-axonal protein translation, that are required for synaptic
maintenance and function, causes synaptic defects and dysfunctions. (D) C9orf72: (1) The nuclear RNA
foci are generated by the aggregation of repeat-containing C9orf72 RNAs in the nucleus and cause
neurotoxicity. (2) Sequestration of RanGAP by G4C2 RNA disrupts the nucleocytoplasmic transport
function. The loss of nuclear Ran depletes nuclear TDP-43 levels and elevates cytoplasmic TDP-43 levels.
(3) Furthermore, the imported dipeptide repeats (DPRs) into the nucleus are associated with nucleolar
proteins and cause nucleolar stress. (Inlet) The loss of C9orf72 function in endosomal trafficking
regulation by interactions with nuclear pore complex proteins eventually increases cytoplasmic TDP-43
inclusions. Furthermore, reduction of C9orf72 expression inhibits Shiga toxin transportation from the
plasma membrane to the Golgi apparatus, and alters the ratio of LC3, an autophagosome marker,
leading to autophagy dysregulation.
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2.2.1. SOD1

The SOD1 gene (encoding superoxide dismutase 1 (Cu/Zn)), which maps to chromosome
21q22.1, was the first gene identified in fALS [75]. According to a recent genome-wide meta-analysis,
approximately 15–30% of fALS and less than 2% of sALS cases have been identified to have the
pathogenic variants of SOD1 [24]. Currently, 180 genetic variants have been discovered to affect
the functional domains of the SOD1 gene including D90A, which is identified as the most frequent
missense variant (Figure 4). Recently, the SOD1 homozygous truncating variant, c.335dupG, with total
absence of SOD1 activity was identified in ALS affected patients [76]. Depending on the genetic variant,
different molecular morphological changes can result, and patients with SOD1-related ALS who harbor
particular variants have distinct clinical features [10,77]. For example, patients with the A4V, H43R,
L84V, G85R, N86S, and G93A variants show rapid disease progression and shorter survival times,
while patients carrying the G93C, D90A, or H46R variants show a longer life expectancy [78].
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Figure 4. A scheme for exhibiting variant sites in SOD1 protein. (Top) the SOD1 protein structure;
(Bottom) 180 SOD1 variants shown in ALS cases. Data were taken from the ALS online database
(ALSoD) [79]. The variations are only identified on the amino acid sequence of the protein, and not all
are proven to be pathogenic for ALS.

SOD1 is an antioxidant homodimeric protein of 153 amino acids, containing one copper and one
zinc atom [22,80]. It can be localized from nucleus to cytosol or mitochondrial intermembrane space.
The function of SOD1 is to protect cells from reactive oxygen species toxicity. Both copper and zinc
play specific roles in SOD1 activity and structural stability, respectively, and are directly involved in the
deactivation of toxic superoxide radicals [22,81,82]. Previous studies have supported that SOD1-ALS
is caused by a gain of function, increasing the function of producing free radicals [83]. Mutant SOD1
modifies the oxidative activity, which causes accumulation of toxic hydroxyl radicals [77,84].
Accumulation of free radicals in the intermembrane space of the mitochondria leads to mitochondrial
damage and disrupted protein folding, significantly affecting distal axons of motor neurons [82,85,86].
ER is a cellular compartment including chaperone-assisted proteins to help fold proteins. Mutant SOD1
activates ER stress which leads to activation of the unfolded protein response (UPR) and ER-associated
degradation (ERAD). Resulting in the refolding of misfolded proteins and export of misfolded proteins
from the ER to the ubiquitin proteasome system (UPS) for degradation, respectively. Long activation of
the ER can cause pro-apoptotic consequences [87]. On the other hand, mutations in SOD1 impairs axonal
transport. Therefore, misfolded SOD1 is not able to transport across the mitochondrial membranes
and accumulates in the outer mitochondrial membrane, triggering the mitochondrial-dependent cell
apoptosis program [88] (Figure 3A).

Pansarasa et al. identified a difference between protein expression and mRNA levels in wild-type
SOD1 and sALS patients, and then proved their hypothesis on translocation and re-localization of the
missing SOD1 in the nucleus. Furthermore, they found that the higher amounts of soluble SOD1 in the
nucleus are positively correlated with a longer duration of disease, indicating a possible protective role
of SOD1 [89]. Therefore, SOD1 can be considered as a good target for ALS therapy. In this perspective,
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riluzole, a sodium channel blocker and glutamate release inhibitor, has been applied to improve ALS
symptoms and is approved by the FDA for treating ALS [90]. shRNA, miRNA, and RNAi have been
evaluated for mediating SOD1 silencing in transgenic mice, which are under investigation for ALS
treatment [91]. Moreover, SOD1-ALS patients show some features and clinical characteristics that
are slightly different compared to other ALS patients such as earlier age of onset, longer duration of
disease, and motor symptoms that begin more often in the lower limbs [92,93].

2.2.2. TARDBP

In the 1990s, Leigh et al. concluded that neuronal cytoplasmic ubiquitinated inclusions were
found in the spinal cord samples from ALS patients [94]. In 2006, TAR DNA-binding protein 43
(TDP-43) was discovered as the main reason for the protein aggregation in sALS cases [57,95]. Later,
in 2008, several studies identified genetic variants in the TARDBP gene and the deviation of TDP-43 as a
primary cause of ALS and neurodegeneration [26,96–99]. To date, over 40 variants have been identified
in various ethnic groups with around 5% in fALS and up to 2% in sALS cases [100]. The majority of
variants are missense variants located in the glycine-rich region at the transcript carboxy-terminal,
which interacts with other heterogeneous ribonucleoproteins (Figure 5). The carboxy-terminal region
is also involved in pre-mRNA splicing regulation [57,101]. Further studies on both fALS and sALS
patients have shown the existence of TDP-43 in cytoplasmic aggregates of those without pathogenic
variants in the TARDBP gene and carrying C9orf72 hexanucleotide repeat expansions [102–104].
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TARDBP/TDP-43 is a DNA/RNA binding protein composed of 414 amino acids that are encoded by
TARDBP/TDP43 gene. TDP-43 belongs to the ribonucleoprotein family and has various functions such as
gene transcription, microRNA processing, RNA splicing and stabilization, and mRNA transport [105].
TDP-43 has both nuclear localization and export signals and continuously shuttles between the nucleus
and cytoplasm [106,107]. Any interference in the normal intracellular trafficking of TDP-43 between the
cytoplasm and nucleus can result in cytoplasmic aggregation and the loss of nuclear TDP-43 function in
regulating transcription, splicing, and mRNA stability [108–110]. The challenging question about the
role of TDP-43 in ALS is whether a toxic gain of function of cytoplasmic aggregates or a loss of its normal
function in the nucleus is responsible for disease. During cellular stress, TDP-43 plays a significant
role in controlling mRNA stability, translation, and nucleocytoplasmic transport [111]. In the case of
ALS, while the loss of nuclear TDP-43 function leads to dysmorphic nuclear shape, deregulation of the
cell cycle, and apoptosis [112], an overexpression of TDP-43 leads to abnormal mRNA accumulation
in the nucleus, cytoplasmic accumulation [113,114], and a lost normal functioning in the nucleus.
Furthermore, the upregulation of cytoplasmic TDP-43 forms the inclusion bodies and the capacity
to propagate among cells as a “prion-like” protein, a significant reason for the neurodegeneration
observed in motor neurons [115]. However, several studies used cultured cells, animal models,
and patients autopsies, demonstrating how cytoplasmic TDP-43 aggregates have an important role
in motor neuronal death and neurodegeneration observed in ALS patients [115,116]. Melamed et al.
proposed that ALS is associated with loss of nuclear TDP-43 [117]. Their results confirm that reduction
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of nuclear TDP-43 inhibits regeneration of motor axons, which is the consequence of reduction in
stathmin-2 (STMN2), an essential protein for axonal growth and maintenance (Figure 3B) [117,118].

The discovery of TARDBP/TDP-43 and FUS, two RNA-binding proteins, highlights the importance
of RNA processing in ALS pathogenesis. Previous studies have focused on understanding how exactly
these mutant proteins disrupt RNA transcription and modification [119]. As expected, upregulation of
TARDBP/TDP-43 in motor neurons increased ALS risk by altering RNA splicing and stability [120–122].
On the other hand, lack of TARDBP/TDP-43 in the forebrains of mice resulted in age-dependent brain
atrophy by downregulating protein Tbc1d1 in skeletal muscles, leading to compromised neuronal
function [121,122]. In addition, Tsao et al. developed a Tardbp knockout mice model and showed a
decrease in TARDBP/TDP-43 levels as well as a loss in body weight caused by an increase in fat oxidation
and acceleration of fat loss in adipocytes [121]. Another study in Tardbp knock-in ALS mice indicated
that mutant TDP-43 causes early-stage and dose-dependent motor neuron degeneration [123]. A recent
study demonstrated that ALS patient-derived TARDBP/TDP-43 mutation at the carboxyl-terminal
domain (M337V) causes splicing deregulation without motor neuronal degeneration in mice [124].

2.2.3. FUS

The next discovered gene that may rival the impact of TDP-43 on ALS research is the FUS gene
(also known as TLS), which maps to the ALS6 locus on chromosome 16p11.2. Variants in the FUS gene
are known to be causal for fALS [41,125]. The disease onset of ALS patients with ALS6 variants spans
across a wide range of ages (from 26 to 80 years old) with a mean duration of around 33 months [80].
Over 70 variants in FUS have been identified in ALS patients, some of which have proved to be causal
(Figure 6). ALS patients with FUS variants have a shorter life span, although extensive intrafamilial
variability has been observed [126]. Waibel et al. showed two truncating FUS variants associated with
consistent early onset and an aggressive disease course [127]. FUS variants have been reported to
contribute 4% and 1% in fALS and sALS cases overall, respectively [128]. The most recent FUS variants
were indicated as the most frequent cause of early-onset ALS (at ages less than 35 years) in German
fALS patients with 8.7% frequency [127,129].
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FUS is an RNA binding protein encoded by a ubiquitously expressed gene and composed of 526
amino acids. FUS, EWSR1, and TAF15 belong to FET families, which are involved in transcription and
alternative splicing by interacting with the transcription pre-initiation complex and various splicing
factors. Under normal physiological conditions, FUS is mostly localized in the nucleus, but it shuttles
to the cytoplasm and functions in nucleocytoplasmic transport [130]. Therefore, mutant FUS (mFUS)
disrupts nucleocytoplasmic transport, leads to a depletion in the nucleus, aggregates in the cytoplasm,
and causes neurotoxicity [131]. Mutant FUS binds to mature mRNAs in the cytoplasm, unlike WT
FUS, which binds to precursor mRNAs. Abnormal binding of mFUS affects mRNA expression but
has only modest expression changes. Mutant FUS not only suppresses global protein translation
but also local protein translation, impairing the dendrites and axon terminals. Considering FUS
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as a part of RNA transport granules and its role in activated synapses [132,133], there would be
defects in synaptic homeostasis and dysfunction in cells suffering from FUS mutations [134,135].
Diminishing of the proteins required for synaptic maintenance and function may lead to an ALS
phenotype [136]. Furthermore, the gene binding profile has been altered in mFUS, which leads to
neurotoxicity and mitochondrial size reduction due to disruption of the translation of transcripts
associated with mitochondrial function [137] (Figure 3C).

In a study developed in 2015, while homozygous FUS knockout mice survived into adulthood,
they had the phenotypes related to neuropsychiatric and neurodegenerative conditions, but different
from ALS [138]. In further study, a model with conditionally removed FUS developed from the motor
neurons of mice showed no significant effect on motor neuron survival or function. This suggests that
a loss of FUS is not a sufficient cause for ALS [139]. However, Sasayama et al. found another layer of
results when they used Drosophila FUS knockdown models [140]. They showed that decreasing the
expression of Drosophila ortholog of FUS plays an important role in the degeneration of motoneurons
and locomotive disability in the absence of abnormal cytoplasm aggregates. This suggests that the
pathogenic mechanism of FUS-ALS can be considered as a loss of physiological FUS function in
the nucleus rather than cytoplasmic FUS aggregate toxicity [140]. Moreover, mFUS transgenic rats
developed progressive paralysis due to a loss of neurons in the cortex and hippocampus [141]. Later,
Chen et al. showed that age-dependent progressive motor neurons were damaged when WT, R524S,
or P525L mFUS were over-expressed in photoreceptors [142]. Recently, it was demonstrated that mFUS
causes accumulation of NEAT1 isoforms and paraspeckles, which contribute to degenerating spinal
motor neurons [143].

2.2.4. Chromosome 9 Open Reading Frame 72 (C9orf72)

Hexanucleotide repeat expansion (HRE), GGGGCC (G4C2), in the non-coding region of the C9orf72
gene was found as the most common inherited cause of ALS in European cohort in 2011 [45,144].
Renton et al. proposed that the G4C2 HRE in the first intron on the affected haplotype in ALS patients
is larger compared to healthy subjects (less than 30 HREs) [144,145] (Figure 7). However, increasing the
repeat expansions is thought to be pathogenic. The exact cut-off between normal alleles and pathogenic
expanded alleles is still unclear. In European cohorts, this HRE frequently occurs approximately in
40% and 7% of fALS and sALS, respectively, but is less frequent in Asian cohorts [24].
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Figure 7. C9orf72 gene structure, transcript variants, and protein isoforms. The C9orf72 gene consists of
11 coding exons (green) and non-coding exons (orange). The G4C2 or C4G2 HRE is located in the first
intron of variants 1 and 3 and within the promoter region of variant 2. This figure was adapted from
Balendra and Isaacs’s study [146].
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The known mechanisms for how HREs cause the disease can be categorized into two primary
mechanisms [147]. First, mechanisms driving C9orf72 gain of function where RNAs containing
G4C2 and C4G2 expanded repeats are bi-directionally transcribed and then aggregated in the cell
nucleus. Dipeptide repeat proteins (DPRs) can be generated from repeat-containing RNAs that leave
the nucleus. The imported DPRs into the nucleus can bind to the nucleolar proteins and cause
nuclear stress [147–150]. On the other hand, RNA repeat-expansions can be retained in the nucleus
and generate RNA foci, which has an important role in RNA-binding proteins, changes in RNA
processing, nucleocytoplasmic transport impairment, and toxicity in the cell. C9orf72 RNA can
sequester nucleolar proteins, bind to nuclear pore complex proteins, and disrupt nucleocytoplasmic
transport. In addition, sequestration of RanGAP by the G4C2 RNA causes a reduction in the
nuclear–cytoplasmic (N/C) distribution of Ran GTPase (Ran) and disrupts functional nucleocytoplasmic
transport [131,151]. The nucleocytoplasmic trafficking correlated with mislocalization of TDP-43 in
the cytoplasm. The second is C9orf72 loss-of-function mechanisms. In this mechanism, HRE leads to
disrupted transcription, downregulation of C9orf72, and a loss of function. Previous studies showed
the involvement of C9ORF72 in endosomal trafficking regulation as well as the inverse correlation
between C9-isoform interactions with the nuclear pore complex and TDP-43 cytoplasmic inclusion
levels. Then, a strong reduction of C9orf72 expression caused an inhibition of Shiga toxin transportation
from the plasma membrane to the Golgi apparatus and altered expression of the autophagosome
marker LC3 ratio [152,153]. Therefore, neurons from ALS patients with variants in C9orf72 have
increased sensitivity to autophagy inhibition, suggesting that reductions in gene levels can lead to
cellular distress [146] (Figure 3D).

In C9orf72-ALS patients, the age of onset is mostly between 30 and 70 years and bulbar onset has
been more frequently observed [154]. Not only ALS and FTD but also parkinsonism and psychotic
symptoms can be caused by C9orf72 expansions [155,156]. Considering the decreasing levels of C9orf72
mRNA and proteins in ALS patients with repeat expansions [157,158], Koppers et al. tested the validity
of this hypothesis by developing a C9orf72 conditional knockout mouse model. However, evidence of
motor neuron degeneration or motor deficits were unobserved [159]. A recent report case study
highlights the phenotypic variability, including age of onset, within a family with the C9orf72 repeat
expansion [160].

2.3. The Less Frequently Mutated Genes in ALS

Nowadays, by developing next-generation sequencing technologies, rare genetic variants were
discovered in several studies. However, the specific link between gene variants and disease mechanisms
is sometimes unclear because of the small number of patients carrying those variants. Functions of the
discovered genes can be categorized into four categories: (1) genes that influence RNA processing such
as ANG [31], SETX [36], MATR3 [47], ATXN2 [30], TAF15 [161], EWSR1 [53,162], ELP3 [51], hnRNPa1,
hnRNPA2B1 [29], ATXN1 [163], and GLE1 [164]; (2) genes involved in protein trafficking and degradation
such as ALS2 [42], VAPB [43], CHMP2B [46], FIG4 [35], UBQLN2 [55], SQSTM1 [37], SIGMAR1 [33],
OPTN [21], VCP [165] and TBK1 [166]; (3) genes that influence cytoskeletal and axonal dynamics such as
DCTN1 [167], PFN1 [48], SPG11 [27], TUBA4A [50], NEFH [168], PRPH [49], NEK1 [169], C21orf2 [170];
and (4) CHCHD10 [171] and C19orf12 [172] involved in mitochondrial dysfunction.

3. Conclusions

Although we have come a long way since proposing SOD1 as the first ALS gene 27 years ago,
the causative pathogenic mechanisms in ALS remain obscure. The function of mutant CYLD, S1R,
GLT8D1, and KIF5A as the recently discovered genes involved in ALS pathogenesis is illustrated in
Figure 2. In addition, Figure 3 provides previous findings of the genetic effects of mutant SOD1,
TARDBP, FUS, and C9orf72 and the fundamental mechanisms of ALS pathogenesis. According to
the genes and genetic functions reviewed in this paper, multiple factors are involved in ALS disease
development and progression, in which the most commonly proposed ALS pathogenic mechanisms
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are RNA metabolism and protein metabolism. Furthermore, genetic and phenotypic variants between
patients make it difficult to draw general conclusions on ALS pathogenesis and predict the future
outcomes in ALS research. However, further research on finding novel genes, gene modifiers,
and their molecular pathways might improve our understanding about this neurodegenerative
disorder, which is still fatal. In addition, new therapeutic strategies, by either the identification
of shared disease pathways or targeted therapies known for genetic variants can be developed by
proposing novel ALS causal genes. As of now, riluzole is the only successfully established therapy
for ALS that exerts transient effects on cortical and axonal hyperexcitability [173], whereas several
drug trials targeting glutamatergic neurotransmission have been unsuccessful [174]. Regarding the
irreversibility of genetic variants, developing therapeutic approaches is difficult and specific drugs that
target the treatment of ALS are quite limited [175]. Considering how genetic variants result in epigenetic
modifications and how epigenetic alterations are reversibly modulated in various neurodegenerative
disorders such as Alzheimer’s disease and Huntington’s disease, it would be reasonable to design
therapeutic approaches that target the epigenetic components to ameliorate the onset and symptoms
of ALS [176–178]. Therefore, in future studies, a combination of treatments that modulate the multiple
targets of epigenetic components could be the more effective therapeutic strategy for treating ALS.
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