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Abstract 

Validated preclinical studies have provided evidence that anti-vascular endothelial growth factor (VEGF) compounds 
enhance the activity of subsequent antitumor therapy, but the mechanism of this potentiation is far from clear. The 
most widespread explanation is enhanced delivery of therapeutics due to vascular remodeling, lower interstitial pres-
sure, and increased blood flow. While the antiangiogenic effects on vascular morphology have been fairly consistent 
in both preclinical and clinical settings, the improvement of tumor vessel function is debated. This review focuses on 
the effect of anti-VEGF therapy on tumor microenvironment morphology and functions, and its therapeutic benefits 
when combined with other therapies. The uptake and spatial distribution of chemotherapeutic agents into the tumor 
after anti-VEGF are examined.
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Background
Deregulation of angiogenesis is a hallmark of cancer 
which causes an abnormal microenvironment, promoting 
tumor progression and affecting the delivery of chemo-, 
radio-, and immunotherapy [1]. Tumor angiogenesis 
offers an attractive therapeutic target, shared by most 
cancers. Angiogenesis inhibitors have therefore been 
investigated and exploited for their therapeutic applica-
tion in most human tumors. The most validated antian-
giogenic approaches act on the vascular endothelial 
growth factor (VEGF) axis, blocking VEGF or its recep-
tors (VEGFRs) [2, 3]. Examples include the humanized 
anti-VEGF monoclonal antibody bevacizumab, approved 
in the clinic for a number of malignancies [4], and the 
VEGF-Trap protein aflibercept formed by the fusion of 
the immunoglobulin domain of VEGFR with the human 
IgG Fc fragment, approved for second-line treatment of 
metastatic colorectal cancer (CRC) [5]; both compounds 
are in general used in combination with chemotherapy. A 

number of small molecules, such as sunitinib, sorafenib, 
pazopanib, and cediranib, inhibit the tyrosine kinase 
activity of VEGFR and have been approved as single ther-
apies [6, 7]; due to frequent severe adverse effects, they 
are rarely used in combination with chemotherapy.

Because of the structural similarities between VEGFR 
and other receptor tyrosine kinases (RTKs), these recep-
tor tyrosine kinase inhibitors (RTKIs) often inhibit multi-
ple targets, thus affecting not only the tumor vasculature 
but other components of the tumor stroma and neoplas-
tic cells themselves. On the other hand, some drugs that 
were developed for their cytotoxic effects on tumor cells 
also induce antiangiogenic responses by down-regulating 
pro-angiogenic factors or by directly targeting endothe-
lial cells. For example, paclitaxel and other tubulin-bind-
ing agents target tumor vessels, inhibiting endothelial cell 
functions related to angiogenesis, at lower concentra-
tions than those required for the anti-mitotic activity [8].

We review therapeutic strategies that use antiangiogen-
ics in combination with chemotherapy to enhance their 
potential. We focus on anti-VEGF compounds, particu-
larly bevacizumab, since they are the main angiogenesis 
inhibitors used in clinical application combined with 
chemotherapy. We illustrate the antitumor effects of the 
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combination, taking into account the effects of VEGF 
inhibition on pharmacokinetics, biodistribution, and 
tumor penetration of chemotherapy.

Pharmacodynamic and functional effects 
of antiangiogenics on tumor microenvironment
The vasculature network in tumors is structurally abnor-
mal, with tortuousities and dilatations, disproportionate 
branching, and arteriovenous shunts. The angiogenic 
process, driven by high levels of growth factors and 
inflammatory cytokines, is extensive, and the newly 
formed vessels are extremely leaky due to defective peri-
cyte coverage and discontinuous basement membranes. 
The structural abnormalities of the tumor vasculature, 
together with the compression of blood vessels by cancer 
cells, cause functional impairment of blood flow, such as 
temporary stagnation, turbulent flow, local hemorrhages, 
and high outflow of plasma macromolecules. The con-
sequences are increased tumor interstitial fluid pressure 
(TIFP) and the formation of hypoxic/necrotic regions [9]. 
These structural and functional aberrations occur in a 
heterogeneous spatial (in different areas of tumor tissue) 
and temporal (during tumor growth and progression) 
manner.

Antiangiogenic therapy restores the balance between 
pro- and antiangiogenic molecules and the vascular 
architecture of tumor tissue by pruning immature ves-
sels and remodeling the remaining ones [10, 11]. Several 
preclinical studies agree on the modifications induced 
by antiangiogenics (e.g. bevacizumab) in tumor vascula-
ture, both macroscopically and microscopically. In dif-
ferent tumor models, antiangiogenic treatment reduced 
the density, diameter, and tortuosity of capillaries and 
induced vessel maturation by re-establishing pericyte and 
basement membrane coverage [12].

Clinical studies have provided evidence of vascu-
lar changes in cancer patients treated with antiangio-
genic agents, despite the difficulties of biopsying tumors 
after pharmacologic therapy [13–17]. Tumor biopsies 
from non-metastatic CRC patients from a phase I study 
showed evidence of the antiangiogenic effects of anti-
VEGF therapy with bevacizumab [18]. Pathologic analy-
sis indicated that bevacizumab reduced tumors from 
hyperemic, hemorrhagic lesions to pale masses, and 
microscopically led to an increase in pericyte coverage, 
favoring vessel maturation and stabilization [18].

Whether these morphological changes are accompa-
nied by functional modifications of the tumor vasculature 
is debated. Hypothetically, antiangiogenics can improve 
blood perfusion, with a consequent drop in TIFP and 
alleviation of hypoxia [11, 12]. This suggests that the 
blood transport capacity of vessels that survive antian-
giogenic treatment is increased, favoring the arrival of 

oxygen and nutrients to tumor tissues. If anti-VEGF 
therapy really improves the blood flow and oxygenation 
of tumor tissue, then the question arises whether it may 
actually favor tumor growth. Although this is possible 
in theory, there are no studies describing promotion of 
tumor growth with antiangiogenics, rather the contrary 
is true. This is probably due to the long-term inhibition of 
new vessel formation that starves the tumor after a tem-
porary favorable increase in blood flow and oxygenation.

In preclinical studies, bevacizumab reduced the tumor 
uptake of fluorescent dyes—analyzed by microscopy, or 
of contrast agents—seen with vital imaging techniques 
[19–21]. Using intravital multiphoton microscopy to 
monitor the transit velocity of erythrocytes, it was seen 
that bevacizumab increased blood flow velocity and 
reduced vascular permeability in the tumor [22]. Arte-
rial spin labeling magnetic resonance imaging (ASL-
MRI) showed a specific decrease of tumor perfusion after 
bevacizumab, which was associated with the reduction of 
vessel diameter observed with histological analysis [23]. 
Clinical studies reported reduced penetration of contrast 
agents in the neoplastic bulk, independently of tumor 
shrinkage [24–29]. These effects are probably caused by 
vessel constriction, due to the suppression of nitric oxide 
production by bevacizumab [30], and/or the reduction of 
vessel permeability because of VEGF sequestration [31]. 
Changes in tumor perfusion after angiogenesis inhibi-
tion can have predictive value in patients. Glioblastoma 
patients with increased tumor blood perfusion are those 
most likely to benefit from antiangiogenic treatment [32].

Evaluating downstream effects of antiangiogenics on 
tumor tissue is difficult. Reliable methods to measure 
TIFP are still lacking. Wick-in-needle (WIN), which is 
the best standard to quantify TIFP, is limited by its inva-
siveness causing tissue damage that makes measurement 
untrustworthy [33]. Despite this problem, several experi-
mental studies have reported decreases in TIFP after 
treatment with VEGF antagonists [9, 18, 20, 34].

Contrasting results were obtained regarding the 
effects of angiogenesis inhibitors on tumor hypoxia. 
The different outcomes can be explained by the kinet-
ics of the pharmacodynamic effects of antiangiogenics. 
The improvement in tumor oxygenation seems to last 
2–4 days after anti-VEGF treatment [11]. At later times, 
increased intratumoral hypoxia was reported after beva-
cizumab treatment, probably due to the reduction of 
vessel density [35]. The transient drop in tumor hypoxia 
can be exploited to enhance the efficacy of radiotherapy 
[36]. There is also preclinical evidence that combining 
antiangiogenic agents with immunotherapy can improve 
the response, probably due to a reduction in tumor tis-
sue hypoxia that favors the delivery of immune effector 
cells [37].
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Antiangiogenesis in combination 
with chemotherapy improves anticancer efficacy
Preclinical studies reported responses in different tumor 
models after treatment with anti-VEGF monoclonal anti-
bodies [12], and these were significantly better when 
combined with other treatment modalities, mainly chem-
otherapy [20, 34, 38–40]. In the clinical setting, anti-
VEGF has been proven effective as monotherapy only 
in certain cancers [41], but, added to first-line chemo-
therapy, it significantly improved clinical outcomes in 
different malignancies [42–45]. Bevacizumab has now 
been approved in combination with standard chemo-
therapy for patients with metastatic CRC [46], recur-
rent/advanced non-small cell lung cancer (NSCLC) [47], 
advanced cervical cancer [48], and advanced ovarian 
cancer [49–52], although its effectiveness is limited and 
lower than expected, especially in end-stage tumors. In 
general, angiogenesis inhibitors, and bevacizumab in par-
ticular, can be administered for extended periods safely 
and with manageable toxicity, so the potential benefit of 
the treatment is not limited by increased adverse events.

Several explanations have been proposed for the mech-
anisms by which antiangiogenic agents boost the effi-
cacy of chemotherapy: (a) a direct effect on neoplastic 
cell viability and induction of cytotoxicity independently 
of the vascular effects [22]; (b) impairment of the tumor 
cell’s ability to repopulate between successive courses 
of chemotherapy [53]; (c) block of pro-survival signals 
and consequent chemosensitizing effect on endothelial 
cells, leading to disruption of vessels and starvation of 
neoplastic cells [38]; (d) “normalization” of the vascular 
microenvironment causing TIFP to drop and increasing 
intratumoral delivery of chemotherapy [54, 55]; (e) tem-
porary improvement of the oxygen and nutrient supply to 
tumor cells that renders them more sensitive to the cyto-
toxic activity [56]; (f ) killing or inhibiting the mobiliza-
tion of pro-angiogenic bone marrow-derived circulating 
endothelial progenitors [57]; (g) stimulation of the host 
immune response against the tumor by improving tumor 
delivery of immune cells and/or alleviating the tumor 
immunosuppressive microenvironment [58].

Alarmingly, some preclinical studies reported increased 
dissemination and metastases after VEGF/VEGFR inhibi-
tion, mainly with RTKIs [59–61] and in a neoadjuvant 
setting or when distant metastases are not established 
yet [62]. This seems to be counteracted by an appropriate 
combination with certain cytotoxic drugs [62]. Experi-
mental evidence of increased invasion and metastasis 
after bevacizumab is not consistent [40, 63]. Accordingly, 
clinical trials have not yet reported any increase in malig-
nancy on VEGF inhibition [64], probably because some 
antiangiogenics are used in an adjuvant setting (e.g., 
RTKIs) and/or in combination with chemotherapy (e.g., 

bevacizumab). Several trials indicate that prolonged pro-
gression-free survival and improved response rates after 
antiangiogenic therapy are not always translated into an 
overall survival benefit [4, 65].

Optimization of the treatment schedule combining 
antiangiogenics and cytotoxics is becoming increasingly 
important to achieve efficacy. Preclinical and clinical 
evidence indicates that the benefit of angiogenesis inhi-
bition is transient, and there is only a narrow window of 
opportunity during when synergy with chemotherapy 
can be achieved [11]. The optimal dosing of the antian-
giogenic agent is also critical, as excessive suppression of 
the tumor vasculature may be counterproductive [37]. 
Improved clinical responses have been observed when 
chemotherapy was combined with low- rather than high-
dose bevacizumab [66].

Effects of antiangiogenics on pharmacokinetics 
and tumor uptake of chemotherapy
In terms of drug distribution, one would expect the vas-
cular access of anticancer drugs to tumors to be impaired 
by inhibiting angiogenesis. However, the enhanced 
response to chemotherapeutics when given in combina-
tion with antiangiogenic compounds suggests that they 
do not necessarily reduce drug delivery to tumor tissue, 
but rather the opposite. The “normalization” theory pro-
vides an explanation for this apparent paradox, according 
to which an appropriate dose of antiangiogenic agent can 
restore normal blood flow and reduce TIFP, thus favoring 
the penetration of cytotoxic agents [11].

Although the effects of antiangiogenic therapy on the 
remodeling of vascular architecture have been demon-
strated in various preclinical models, the consequences 
on drug distribution are often under-explored. Table  1 
summarizes some in vivo experimental studies in which 
anti-VEGF antibodies were administered prior to antitu-
mor agents and concentrations of the second drug in the 
tumor were measured with different methods. It is hard 
to compare the results because of the different tumor 
models and histotypes, the angiogenesis inhibitor dos-
ages, and the combination schedules. Most studies agree 
on the morphological vessel changes after anti-VEGF 
treatment, such as decreased vessel density and greater 
pericyte coverage, but this is not always associated with 
functional modifications, such as increases in vessel 
perfusion and permeability. Results are discordant in 
terms of drug delivery to the tumor: some studies show 
increased uptake after antiangiogenic therapy [20, 34, 
67–71], but others report reduced drug delivery [72–77]. 
Enhanced tumor uptake of chemotherapeutics was con-
comitant in some instances with improvement of vessel 
functionality [68, 78], whereas in other cases there was 
worsening of perfusion/permeability [34, 69]. Inefficient 
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drug delivery was often associated with the reduction of 
tumor perfusion or vessel permeability.

We and others have shown that the concentrations 
of small molecules (cisplatin [75], paclitaxel [77], or 
doxorubicin [77]) in tumors were decreased after beva-
cizumab treatment. This decrease was confirmed in dif-
ferent tumor models and with angiogenesis inhibitors 
(e.g., RTKIs) other than bevacizumab [73, 79, 80]. In our 
studies, this decrease was often associated with delayed 
efflux of chemotherapeutics from tumors [77–79]. The 
reduced uptake of chemotherapeutics after bevacizumab 
treatment was corroborated by the reduction of tumor 
perfusion or vessel permeability, as measured by dynamic 
contrast enhancement-magnetic resonance imaging 
(DCE-MRI) [77, 81]. Nevertheless, in all models the 
combination delayed tumor growth significantly more 
than single treatment. Thus, one could speculate that 
angiogenesis inhibitors enhance the efficacy of certain 
chemotherapeutics by prolonging contact time of drugs 
with neoplastic cells [3, 79]. Some studies clearly illus-
trate the importance of the treatment schedule, showing 
the temporary time window in which the antiangiogenic 
agent exerts beneficial effects on drug pharmacokinet-
ics. In fact, drug penetration in tumors was enhanced 
only when the chemotherapeutic agent was administered 
within a narrow interval after anti-VEGF therapy (i.e., 
bevacizumab) [20, 67, 68].

Most of the pharmacokinetic studies in the clinical lit-
erature assessed the concentrations of drugs and their 
metabolites in plasma but not in the tumor. However, 
the association between the two compartments may 
not be direct [82]. To our knowledge, only one study in 
humans describes the effect of antiangiogenic therapy 
on chemotherapeutic levels in tumors. It was reported 
that bevacizumab induced rapid, significant reductions 
in perfusion and [11C]docetaxel uptake in NSCLC [83]. 
This study highlights the importance of drug scheduling 
and calls for further analysis to optimize combination 
modalities.

Outcomes differed in relation to the type and molec-
ular weight of the antitumor drug administered after 
antiangiogenics. Antiangiogenic therapy can improve 
nanoparticle uptake in a size-dependent manner, 
with this effect being limited to drugs with a diameter 
shorter than 10  nm, whereas the tissue penetration of 
larger molecules (with a diameter longer than 100 nm) 
is prevented [84]. In line with this situation, preclini-
cal studies have shown that the pre-administration of 
anti-VEGF reduces the intratumoral accumulation of 
therapeutic antibodies [72–74, 76] and control IgG [76], 
along with the reductions of tumor blood flow and ves-
sel density.

Effect of anti‑VEGF therapy on intratumoral 
perfusion and drug spatial distribution
Solid tumors are heterogeneous, not only in terms of 
cancer cell genotype and phenotype but also in their 
stromal composition. The tumor microenvironment can 
physically hinder the penetration of chemotherapy to 
neoplastic tissue, and inadequate arrival of the effective 
drug to some cancer cells may cause recurrence or limit 
the response [85].

An extension of the “normalization” theory supports 
the idea that hemodynamic changes induced by antian-
giogenics lead to more uniform distribution of blood 
flow and to a reduction of hypoxic/necrotic areas in 
tumor tissue. This situation would favor more homoge-
neous intratumoral distribution of anticancer therapies. 
Our understanding of how antiangiogenic pretreatment 
affects intratumoral distribution of chemotherapeutic 
agents is far from complete, since experimental data are 
scanty. Some imaging techniques have been employed 
to investigate drug localization in tumor tissue, such as 
positron emission tomography (PET), single photon 
emission computed tomography (SPECT), magnetic 
resonance spectroscopy, autoradiography, fluorescence 
microscopy, and mass spectrometry imaging (MSI) [82, 
86]. In an orthotopic neuroblastoma xenograft model, 
contrast-enhanced ultrasonography indicated that beva-
cizumab pretreatment induced more homogeneous con-
trast enhancement throughout the tumor mass than in 
controls where enhancement was restricted to the tumor 
periphery [20]. Accordingly, using longitudinal perfu-
sion computed tomography (CT), sorafenib was shown 
to favor perfusion in areas that initially showed minimal 
or no blood flow [87]. A clinical study on hepatocellular 
carcinoma reported that patients in whom bevacizumab 
reduced tumor blood flow heterogeneity had a better 
prognosis [88].

Using histological staining and MSI to visualize pacli-
taxel localization in tissues, we found that its distribu-
tion was inadequate in poorly vascularized areas of 
tumors, but more homogeneous in the bevacizumab-
treated tumors, where there was a reduction of necrotic 
areas and more functional vascularization [77]. This was 
observed in different tumor xenografts (ovarian and 
colon), implanted in different (orthotopic and ectopic) 
sites, and always associated with not increased paclitaxel 
concentrations. We had similar results, not only after 
antiangiogenics but also after chronic pretreatment with 
low doses of paclitaxel, whose antiangiogenic effect was 
clearly demonstrated [89], favoring homogeneous intra-
tumoral distribution of a single subsequent high dose 
of paclitaxel [90]. The improved distribution of pacli-
taxel in tumor tissue might partly explain the antitumor 
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potentiation of the combination with antiangiogenic 
treatment in solid tumors.

Different results were obtained combining antican-
cer antibodies with antiangiogenics. A preclinical study 
using multispectral fluorescence indicated that bevaci-
zumab significantly hampered the penetration of trastu-
zumab (anti-HER2/neu receptor antibody)-Alexa750 in 
tumor tissue, despite a more uniform tumor vasculature 
[72]. The antibody localized solely in the periphery of the 
bevacizumab-pretreated tumors. Similarly, Pastuskovas 
et al. [73] showed that anti-VEGF restricted trastuzumab 
distribution to the tumor margin, consistently with vessel 
localization. In RIP-Tag2 transgenic mice, the inhibition 
of VEGF signaling reduced the tumor vascularity. The 
antibody distribution per surviving tumor vessel was bet-
ter. Antibodies given after antiangiogenics preferentially 
accumulate in the sleeves of basement membrane left 
behind by regressing tumor vessels [91].

Conclusions
VEGF inhibitors are mainly used in oncology with chem-
otherapy, but the mechanism by which antiangiogenic 
agents help chemotherapy is not completely understood. 
The outcome of using bevacizumab in combination with 
chemotherapy probably depends on the tumor type and 
stage and very closely on the dose/schedule of treatment.

It is widely recognized that vessel changes occur after 
antiangiogenic treatment, but how this can modify ves-
sel patency, TIFP, hypoxia, and ultimately drug uptake 
and distribution is still not clear. Some preclinical studies 
reported functional improvement in tumor blood perfu-
sion after angiogenesis inhibitors, with increased tumor 
exposure to cytotoxic drugs. However, in other studies, 
tumor vascular patency decreased and hypoxia increased, 
with impaired cytotoxic drug uptake. The causal rela-
tionships between the effect on the microvasculature, 
the TIFP reduction, and the trans-vascular transport of 
drugs are still not completely understood.

We have proposed that the greater antitumor activ-
ity of paclitaxel after bevacizumab is not necessarily due 
to high drug concentrations, but to the restoration of a 
more functional tumor microenvironment that facilitates 
the distribution of chemotherapy. Whether this holds 
true for other combination modalities, different angio-
genesis inhibitors, and other chemotherapeutics remains 
to be established. It also needs to be shown whether this 
paradigm can be translated to patients’ tumors under 
treatment. Monitoring the activity of antiangiogenics is 
a practical challenge in the clinical setting, where non-
invasive imaging procedures need to be improved to 
monitor the administration and determine the efficacy of 
antiangiogenesis-based combination regimens in every 
tumor.
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