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ABSTRACT 
Sarcomas are rare connective tissue cancers thought to arise from aberrant mesenchymal stem 
cell (MSC) differentiation. Liposarcoma (LPS) holds valuable insights into dysfunctional 
differentiation given its well- and dedifferentiated histologic subtypes (WDLPS, DDLPS). Despite 
well-established differences in histology and clinical behavior, the molecular pathways 
underlying each subtype are poorly understood. Here, we performed single-nucleus multiome 
sequencing and spatial profiling on carefully curated human LPS samples and found defects in 
adipocyte-specific differentiation within LPS. Loss of insulin-like growth factor 1 (IGF1) and gain 
of cellular programs related to early mesenchymal development and glucagon-like peptide-1 
(GLP-1)-induced insulin secretion are primary features of DDLPS. IGF1 loss was associated 
with worse overall survival in LPS patients. Through in vitro stimulation of the IGF1 pathway, we 
identified that DDLPS cells are deficient in the adipose-specific PPARG isoform 2 (PPARG2). 
Defects in IGF1/PPARG2 signaling in DDLPS led to a block in differentiation that could not be 
fully overcome with the addition of exogenous IGF1 or the pro-adipogenic agonists to PPARG 
and GLP-1. However, we noted upregulation of the IGF1 receptor (IGF1R) in the setting of IGF1 
deficiency, which promoted sensitivity to an IGF1R-targeted antibody-drug conjugate that may 
serve as a novel therapeutic strategy in LPS. In summary, lineage-specific defects in 
adipogenesis drive dedifferentiation in LPS and may translate into selective therapeutic 
targeting in this disease. 
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INTRODUCTION 
Soft tissue sarcomas (STS) comprise a heterogeneous collection of mesenchymal 

neoplasms linked to aberrant mesenchymal stem cell (MSC) differentiation. Half of all patients 
diagnosed with STS will develop metastatic disease, for which the median overall survival is 12-
18 months(1, 2). The therapeutic landscape for STS overall has not evolved significantly in the 
past 40 years(2). Due to the rarity of each sarcoma subtype and the lack of representative 
model systems, the molecular drivers of sarcomagenesis are poorly understood. Liposarcoma 
(LPS) is one of the most common subtypes of STS and serves as an informative archetype to 
study dysregulated differentiation given its well- and dedifferentiated histologic subtypes 
(WDLPS and DDLPS, respectively). Both subtypes share a pathognomonic amplification of a 
portion of chromosome 12q inclusive of MDM2, but their histopathology and clinical behavior 
are exceptionally divergent and often co-occur within the same patient. WDLPS is histologically 
similar to normal adipose tissue, has a 50% local recurrence rate, and is generally thought to 
have no metastatic risk. In contrast, DDLPS displays a fibroblastic phenotype, has an 80% local 
recurrence rate, and high metastatic risk. In approximately 25% of diagnosed WDLPS cases, a 
DDLPS component emerges, increasing the risk of metastasis and disease-related death(3). 
Therefore, understanding the molecular mechanisms responsible for the evolution of 
dedifferentiation in LPS would have major clinical implications. 

Previous studies have attempted to identify the drivers of the transition from WDLPS to 
DDLPS. Genomic analysis of paired WDLPS and DDLPS patient samples revealed no highly 
recurrent subtype-specific genomic events(4). Bulk transcriptomic studies illustrated that 
adipogenesis pathways are enriched in WDLPS and cell cycle programs in DDLPS(5), and have 
linked higher MDM2 expression to an early mesenchymal phenotype(6); however, bulk 
sequencing studies are limited in their ability to resolve individual cell type specific changes. A 
single-cell RNA-sequencing (scRNA-seq) study investigated the cellular origins of WDLPS and 
DDLPS and suggested a role for transforming growth factor-beta (TGF-β) signaling within LPS 
subtypes(7). However, the scRNA-seq droplet-based strategy employed (as opposed to single-
nucleus RNA-sequencing (snRNA-seq)) requires the removal of larger cells and niches of cells 
that are difficult to dissociate(8). Therefore, the larger, more differentiated WDLPS cells may 
have been preferentially excluded, making comparison between LPS subtypes difficult. Thus, to 
date, the intrinsic molecular differences between WDLPS and DDLPS tumor cells remain 
unknown. 

In contrast to the observed aberrant differentiation in LPS, normal adipocyte 
differentiation begins in MSCs and is maintained through various feedback loops. Among these 
is an autocrine insulin-like growth factor 1 (IGF1) loop, which regulates the levels of, and signals 
through, the IGF1 receptor (IGF1R) to increase expression of peroxisome proliferator-activated 
receptor gamma (PPARG) (9–13). PPARG is a master transcription factor (TF) and regulator of 
adipose differentiation(10, 14, 15) and PPARG isoforms 1 and 2 (PPARG1 and PPARG2, 
respectively) are both important for adipogenesis. Low levels of PPARG1 are expressed in 
nearly all tissues, although under pro-adipogenic stimuli in normal preadipocytes, it induces the 
expression of PPARG2. PPARG2 is adipose-specific and is upregulated early in adipocyte 
differentiation. PPARG2 predominantly drives the expression of markers of terminal adipocyte 
differentiation such as LPL, FABP4, ADIPOQ, among others(14, 16, 17). While adipocytes 
share lineage with LPS tumor cells, whether these properties are specifically dysregulated in 
WDLPS or DDLPS pathogenesis are unknown. 

Here, we hypothesized that distinct differentiation-specific epigenetic and transcriptomic 
programs of WDLPS and DDLPS underlie the biological properties driving these LPS subtypes. 
To address this hypothesis, we performed single-nucleus multiome-sequencing (‘multiome’; 
paired snRNA-seq and single-nucleus ATAC-seq (snATAC-seq)) to concurrently profile 
epigenetic and transcriptomic data from normal adipose, WDLPS, and DDLPS human patient 
tissue samples for integrated comparative analysis. We found that IGF1 chromatin accessibility, 
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IGF1 expression, and predicted signaling through IGF1/IGF1R/PPARG were all largely absent 
in DDLPS. We validated these observations through orthogonal spatial profiling and projection 
of identified transcriptomic signatures within external LPS bulk RNA-seq cohorts. Through 
subsequent in vitro modeling, we identified that DDLPS stimulation with exogenous IGF1 did not 
induce PPARG2 expression. Finally, after confirming upregulation of IGF1R in the setting of 
dampened IGF1/PPARG2 signaling across LPS subtypes, we demonstrated IGF1R-antibody 
drug conjugate (ADC)-mediated selective cytotoxicity in LPS in vitro models. IGF1R-targeted 
therapies may therefore represent a novel mechanism-based selective therapeutic strategy in 
LPS.  
 
RESULTS 
Multiome analysis of LPS patient tissue samples 

We performed single-nucleus multiome sequencing on WDLPS, DDLPS, and adipose 
patient samples (total n = 23, Figure S1A), allowing for the simultaneous characterization of 
both RNA sequencing and ATAC sequencing at single cell (nucleus) resolution. Pathology of 
the sequenced tissue was confirmed by surgical pathology reports as well as an independent 
pathology review of the specimens, in which all LPS samples had evidence of chromosome 12q 
amplification. To assess baseline biological characteristics between WDLPS and DDLPS 
without major confounding variables (e.g., adipose tissue depot and systemic treatment 
exposure), we selected patient samples that were derived from the visceral abdominopelvic or 
retroperitoneal regions and were predominantly treatment-naive at the time of sample collection. 
Patient age and sex were consistent with known LPS epidemiology (Figure S1A). 
  After sequencing and filtering for high quality nuclei from the snRNA-seq data, 164,229 
nuclei were carried forward for downstream gene expression analysis. Cell types were 
annotated based on marker gene expression and inferred amplification of chromosome 12q 
(Figure S1B, S2), and cell types observed were consistent with those found in visceral adipose 
tissue17. snATAC-seq quality control assessments yielded 15,984 nuclei for downstream 
analysis. Similar cell types were recovered as seen in the snRNA-seq data, and tumor cell 
identity was confirmed with inferred amplifications in chromosome 12q (Figure S1C, S3). For 
both the snRNA-seq and snATAC-seq data, nuclei clustered according to cell type annotation 
and appeared to not be biased toward discernible clinical variables or confounding technical 
artifacts (Figures S4, S5).  
 
LPS subtypes have distinct transcriptomic cellular programs 

Given the divergent clinical behavior between WDLPS and DDLPS tumors, we first 
hypothesized that distinct tumor cell transcriptional programs defined each LPS subtype. We 
performed differential gene expression analysis to identify differentially expressed genes 
(DEGs) between the WDLPS and DDLPS tumor cells. We found that IGF binding proteins, 
IGF1, and PPARG had significantly higher expression in WDLPS, whereas collagens (COL1A2, 
COL1A1) and IGF1R were highest in DDLPS (Table S1). We next evaluated enrichment of 
known biological pathways comprised by these subtype-specific DEGs ensuring equal patient 
representation and generalizability with BEANIE(18). Adipogenesis, insulin response, and lipid 
metabolism pathways were robustly enriched in WDLPS tumor cells relative to DDLPS tumor 
cells (Figure 1; Figure S6). Although TGF-β signaling was previously nominated as an enriched 
pathway in WDLPS(7), we observed enrichment of the TGF-β signaling pathway in only two 
WDLPS samples therefore this finding did not generalize across our cohort (Figure S6). 
  To complement these analyses, we performed consensus non-negative matrix 
factorization (cNMF)(19) to identify gene activity programs (“usage programs”) in LPS cells. 
Seven total usage programs were found in LPS tumor cells (Figure S7, Table S2), two of which 
were present across multiple patients and were significantly associated with either the WDLPS 
or DDLPS subtype (Figure 1C, D). The genes important to the DDLPS-associated program, 
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termed “Early Development,” overlapped with developmental and early mesenchymal pathways 
involving genes such as ROBO1, ROBO2, and IGF1R. The WDLPS-associated program, 
termed “Insulin-mediated adipogenesis,” was composed of genes such as PPARG and IGF1 
and overlapped with adipocyte differentiation and insulin/receptor tyrosine kinase (RTK) 
signaling. Thus, both differential gene expression and cNMF analysis independently identified 
enrichment of genes and gene activity programs associated with insulin-mediated adipogenesis 
in WDLPS relative to DDLPS. 
  
The epigenetic landscape of LPS subtypes reveals differential IGF1 signaling regulation 

The presence of histologic differences and absence of clear somatic genetic differences 
between WDLPS and DDLPS, paired with the identified divergence in transcriptional 
programming described above, led us to hypothesize that regulation of the WDLPS and DDLPS 
phenotype may be regulated at the epigenetic level. To probe this hypothesis, we performed 
differential accessibility analysis to identify differentially accessible peaks (DAPs; predicted open 
chromatin regions) within the snATAC-seq data  in adipocytes, WDLPS, and DDLPS cells (total 
n = 8,873) (Figure 2A). As expected, adipocyte-specific DAPs were enriched for adipocytokine 
signaling, regulation of adipocyte differentiation, lipid metabolism, and insulin signaling (Figure 
2B and Figure S8). DAPs in WDLPS tumor cells were enriched for IGF1 signaling, driven by 
peaks found within the IGF1 and PPARG gene bodies. DDLPS tumor cells had differential 
accessibility within RAP1B, GLP1R, and GNG12, along with other genes that regulate GLP-1-
mediated insulin secretion(20).  
  Because both the transcriptomic and chromatin accessibility differences seen in WDLPS 
and DDLPS converged on insulin/IGF1 signaling, we next investigated whether the apparent 
loss of IGF1 pathway enrichment in DDLPS tumor cells was due to epigenetic silencing and 
subsequent expression loss of IGF1. We focused our analysis on only those peaks that 
overlapped the IGF1 gene body and calculated differential accessibility between pathologies. 
We observed that two peaks were significantly more accessible in WDLPS relative to DDLPS. 
The identified peaks were located at candidate response elements (CREs) within the IGF1 locus 
(Figure 2C). 

The observed IGF1 chromatin accessibility in WDLPS and inaccessibility in DDLPS 
aligned with the observed IGF1 expression levels, as IGF1 was nearly ubiquitously expressed in 
WDLPS tumor cells and only expressed in approximately 10% of DDLPS tumor cells (Figure 
2D). Chromatin inaccessibility over IGF1 CREs, coupled with the loss of IGF1 expression in 
most DDLPS tumor cells, suggest that IGF1 may be an important regulator of a more well-
differentiated LPS phenotype. 
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Figure 1. Transcriptomic analysis of WDLPS and DDLPS patient samples. (A) Schematic of 
the snRNA-seq analysis of LPS multiome cohort: UMAP of integrated snRNA-seq data subsetted 
to 80,881 tumor cells for downstream analysis, nuclei colored by LPS subtype. (B) Representative 
gene set enrichment plots of robustly enriched (as defined by BEANIE) gene sets in WDLPS (W) 
relative to DDLPS (D). (C)UMAP of unintegrated tumor cells as cNMF input colored by LPS 
subtype pathology (left). UMAP of tumor cells colored by relative usage of cNMF-derived cellular 
programs ‘Early development’ (middle) and ‘Insulin-mediated adipogenesis’ (right). (D) Violin plot 
of normalized usages of the cNMF programs in (C) colored by LPS subtype. *** p<0.001 by Mann-
Whitney U test. 
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Figure 2. Epigenetic analysis of LPS patient tumors. (A) Schematic of epigenetic analysis of LPS snATAC-
seq cohort. UMAP of subsetted 8,873 adipocytes and LPS tumor cells, colored by pathology. (B) Left, number 
of differentially accessible peaks per pathology and a heatmap of relative accessibility of top 250 statistically 
significant peaks per group. Right, top 5 significantly enriched pathways by pathology. (C) Coverage plot over 
IGF1 gene body by pathology. Regions highlighted in light gray are statistically significant results when using the 
FindAllMarkers function; regions highlighted by black arrows are significant using FindMarkers function on 
WDLPS and DDLPS cells only, both using logistic regression adjusted for sequencing depth. Significance 
defined as adjusted p value < 0.05 by logistic regression. Candidate response elements (CREs) denoted by 
orange bars. (D) Multiome tumor cell RNA-seq UMAP showing scaled relative IGF1 expression (left) and tumor 
cell pathology (right). 
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Retained IGF1 expression in DDLPS is associated with better patient outcomes 
As a small subset of DDLPS tumor cells retained IGF1 expression, we subsequently 

hypothesized that IGF1-expressing LPS tumors may exhibit clinical behavior more consistent 
with WDLPS and therefore confer a better patient prognosis. We coupled patient outcomes data 
with IGF1 expression in our snRNA-seq data and found that patients with DDLPS that retained 
the highest IGF1-expression levels remained recurrence free for more than 5 years, whereas 
patients with DDLPS who had lower IGF1 expression experienced recurrence and/or disease-
related death (Figure 3A). We validated this finding within the LPS TCGA bulk RNA-seq data 
and observed that TCGA patients with IGF1 expression above the median had significantly 
longer overall survival than patients with IGF1 expression below the median (Figure 3B). Thus, 
IGF1 might orchestrate a more differentiated tumor cell transcriptional program, leading to better 
prognosis in patients with WDLPS and IGF1-expressing DDLPS tumors.  
 
IGF1/IGF1R/PPARG signaling is absent in DDLPS 

Given the above molecular findings and overall patient survival benefit of IGF1 
expression in LPS, we next sought to understand the specific mechanism by which IGF1 might 
affect LPS differentiation state. As a known regulator of adipogenesis, IGF1 acts in an autocrine 
fashion to upregulate PPARG and increase expression of downstream markers of adipocyte 
terminal differentiation(11–13, 21). Previous studies have also demonstrated that IGF1 
negatively regulates IGF1R(22–24) (Figure 4A). Given the known importance of autocrine IGF1 
signaling in maintaining adipose tissue homeostasis, we evaluated whether genes involved in 
IGF1 autocrine were expressed as expected in LPS. We found that normal mature adipocytes 
exhibited relatively high expression of IGF1, PPARG and markers of terminal differentiation, 
FABP4 and LPL (Figure 4B). WDLPS tumor cells showed a similar expression pattern. In 
contrast, DDLPS tumor cells expressed low levels of IGF1, FABP4, and LPL, while the 
expression of IGF1R was increased more than two-fold relative to adipose tissue. These 
findings suggest that autocrine IGF1 signaling may be absent in DDLPS tumor cells. 

To confirm these findings, we derived an IGF1 signaling gene signature and performed 
signature scoring within the snRNA-seq data (Methods). The signaling score allowed for a 
simplified metric to infer the relative activity of the IGF1 signaling pathway for later use across 
different sequencing modalities. As expected, adipocytes scored highest and DDLPS cells 
scored lowest for the derived IGF1 signature (Figure 4C). We subsequently evaluated the IGF1 
signature in bulk RNA-seq data from an external patient cohort of normal adipose and LPS 
patient tissue samples(6) (total n = 35), demonstrating that DDLPS patient samples had a 
significantly lower IGF1 signaling score compared to normal adipose and WDLPS tissues 
(Figure 4D). Taken together, the coordinated expression and apparent loss of IGF1 signaling is 
a generalizable finding across DDLPS patient cohorts. 
 
Insulin-mediated adipogenesis and IGF1 signaling scores spatially segregate by 
histopathology 

Given that LPS subtypes can exist as pure WDLPS tumors or as tumors that have co-
occurrence of WDLPS and DDLPS components, we next hypothesized that even in the 
transition zone (where WDLPS and DDLPS tumor cells are spatially proximal) the derived 
insulin/IGF1 associated cellular programs from the multiome data would spatially segregate by 
histology. To probe this, we performed spatial transcriptomics at the transition zone of a mixed 
LPS patient tissue sample. We found that the WDLPS region of the sample was enriched for the 
WDLPS-associated Insulin-mediated adipogenesis cNMF usage program compared to the 
DDLPS region. Likewise, the WDLPS region exhibited a higher IGF1 signaling signature score 
relative to the  
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Figure 3. IGF1 expression and LPS patient outcomes. (A) Bar graphs of relative mean expression 
values of IGF1 per patient in DDLPS (blue, top) and WDLPS (orange, bottom) samples, in ascending 
order of expression. If a patient had two samples in the cohort, sample IGF1 expression values were 
averaged. Boxes signify whether the patient has died, had recurrent LPS (gray), or has remained 
disease free for > 5 years (red). (B) TCGA bulk RNA-seq data comprising 58 patients with DDLPS 
and one patient with WDLPS was assessed for overall survival based on IGF1 expression greater 
than the median expression value for the cohort (‘high’) or less than (‘low’) the median. Kaplan-Meier 
analysis curves (top) and number at risk (bottom). Statistical significance determined by log-rank test. 
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DDLPS region (Figure 4E). These findings confirm that IGF1-associated tumor cell 
transcriptional programs appear specific to WDLPS tumor cells even in close proximity to 
DDLPS cells. The data imply that IGF1 may act in a tightly regulated autocrine fashion in 
WDLPS or that most DDLPS cells are resistant to IGF1 downstream signaling. 
 
IGF1-mediated in vitro adipose differentiation reveals that DDLPS cells are deficient in 
PPARG2  

The above results suggest that IGF1 is critical in maintaining a well-differentiated 
adipose phenotype in LPS. We thus investigated whether exposing DDLPS cells to an IGF1-
based differentiation media (IGF1-DM) was sufficient to induce adipose differentiation or 
whether additional defects exist in this pathway. We first selected DDLPS cell lines with 
transcriptional profiles similar to those of patient tumors, exhibiting low expression of IGF1, 
PPARG, LPL, and FABP4, but high expression of IGF1R (Figure S9). We cultured DDLPS-
derived LPS6 tumor cells in IGF1-DM. We also cultured non-transformed human adipose-
derived MSCs with IGF1-DM in parallel to serve as a positive control for the expected 
transcriptional response to IGF1-DM. We then compared the expression of PPARG1, PPARG2, 
and ADIPOQ, a marker of adipocyte terminal differentiation, at baseline and after differentiation 
induction. At baseline, DDLPS cells exhibited lower levels of PPARG1 and PPARG2 relative to 
the undifferentiated MSCs (Figure S10). After inducing differentiation, we observed a lack of 
response to IGF1-DM in DDLPS cells relative to MSCs, as evidenced by the difference in 
induction of ADIPOQ. In MSCs, ADIPOQ expression increased by more than 10,000-fold 
relative to baseline, largely due to the increase in PPARG2 upstream. In DDLPS cells, neither 
PPARG2 or ADIPOQ significantly increased expression in response to IGF1-DM (Figure 5A). 
These data are consistent with previous work illustrating that PPARG2 is the major PPARG 
isoform involved in the terminal differentiation(25–27) of normal MSCs to adipocytes and 
suggest that PPARG2 is both deficient and not inducible in DDLPS cells.  

To ensure that the observed deficit of PPARG2 in DDLPS cell lines was relevant to 
human LPS tissue, we performed QPCR analysis to assess the expression of PPARG isoforms 
in human normal adipose, WDLPS, and DDLPS tissue samples (n = 19; Methods). We 
observed that the expression of PPARG1 was about eight-fold higher in adipose and WDLPS 
tissue relative to DDLPS. The expression of PPARG2 was nearly 200-fold higher in adipose and 
WDLPS tissue relative to DDLPS (Figure 5B). These data confirm that loss of PPARG2 
expression is a feature of human DDLPS. 

We next hypothesized that loss of PPARG2 in DDLPS may be due to epigenetic 
silencing over the PPARG isoform 2 transcription start site (TSS). Analysis of the snATAC-seq 
data illustrated that there are two DAPs within the PPARG gene body between WDLPS and 
DDLPS (Figure S11 and Figure 5C). The observed DAPs indicate that WDLPS cells had 
accessible chromatin over a promoter-like sequence adjacent to the TSS of PPARG2. This 
same region was inaccessible in DDLPS cells. These data suggest that chromatin compaction 
over a promoter region proximal to the PPARG2 TSS may contribute to the lack of PPARG2 
expression in DDLPS and a diminished capacity to respond to pro-adipogenic signals. 
Furthermore, the presence or absence of PPARG2 may serve as a major switch between the 
well and de-differentiated subtypes in human LPS. 
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Figure 4. IGF1 signaling in patient LPS samples. (A) Model of adipocyte-specific autocrine IGF1 signaling. (B) 
Dotplot depicting scaled mean expression and percent of cells with detectable expression for each gene by LPS 
subtype within snRNA-seq data of multiome cohort. (C) IGF1 signaling gene signature scored within the snRNA-
seq data  colored by pathology. (D) IGF1 gene signature scored within external bulk RNA-seq LPS data colored 
by pathology. E. Spatial transcriptomic analysis of FFPE section of WDLPS/DDLPS transition zone. Left, H&E 
image of assessed 6.5 x 6.5 mm tissue section, LPS subtype (WDLPS, left and DDLPS, right) demarcated by 
dashed line. Middle, cNMF usage program with highest score assigned to each spot, colored by program name. 
Right, IGF1 signaling gene signature score per spot, visualized using a color scale spanning from the 10th to the 
90th percentile of the calculated score, where the minimum value corresponds to the 10th percentile and the 
maximum to the 90th percentile *** p < 0.001 by Mann-Whitney U test. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2025. ; https://doi.org/10.1101/2025.01.20.633920doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.20.633920
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 
 
 
 
 

PPARG1

PPARG2

B Differentially accessible chromatin peaks 
across selected region in PPARG 

C

Fo
ld

 c
ha

ng
e 

(r
el

at
iv

e 
to

 D
D

LP
S

)
Fo

ld
 c

ha
ng

e 
(r

el
at

iv
e 

to
 D

D
LP

S
)

PPARG isoform expression in human tissue

A

Fo
ld

 c
ha

ng
e 

re
la

tiv
e 

to
 c

on
tro

l

Fo
ld

 c
ha

ng
e 

re
la

tiv
e 

to
 c

on
tro

l

MSC
LPS6

PPARG1 PPARG2 ADIPOQ
C DMC DMC DM

PPARG1 PPARG2 ADIPOQ
C DMC DMC DM

PPARG

Promoter

Peaks

12340000 12350000 12360000 12370000

PPARG2 

chr3 position (bp)

N
or

m
al

iz
ed

 s
ig

na
l

(r
an

ge
 0

 -2
8)

DDLPS

WDLPS

MSC

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2025. ; https://doi.org/10.1101/2025.01.20.633920doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.20.633920
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5. PPARG isoform expression in distinct differentiation states in vitro and in LPS 
patient tissue samples. (A) Expression of PPARG1, PPARG2, and ADIPOQ in MSCs before 
(control, gray) and after exposure to IGF1+DM (DM, green). On the right, expression of 
PPARG1, PPARG2, and ADIPOQ in LPS6 cells before (C, gray) and after IGF1+DM exposure 
(DM, blue). Gene expression levels are fold change delta-delta CT, normalized to beta-actin and 
relative to control for each cell line. Statistical significance determined by Student’s t-test. * p < 
0.05. (B) Expression of PPARG1 (top) and PPARG2 (bottom) in human adipose (green, n = 3), 
WDLPS (orange, n = 6), and DDLPS (blue, n = 10) tissue samples (total n = 19; 12 samples are 
derived from adjacent tissue of tumors sequenced in multiome cohort, augmented by 7 
additional patient samples). PPARG2 transcript was not detected in one WDLPS and two 
DDLPS samples. Statistical significance defined as p < 0.05 by Kruskal Wallis. (C) Coverage 
plot over selected region of PPARG gene body containing differentially accessible peaks (light 
gray) in the snATAC-seq multiome data, colored by LPS subtype. Peaks deemed significantly 
differentially accessible between WDLPS and DDLPS cells by logistic regression, adjusted for 
sequencing depth. Significance defined as adjusted p value < 0.05. Promoter-like signature 
region (‘Promoter’) denoted by the red bar. PPARG2 transcription start site indicated by arrow. 
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Therapeutic targeting of the IGF1/IGF1R/PPARG signaling axis 
The combination of the above single-nucleus multiome and in vitro analyses identified 

three molecular features of DDLPS: 1) chromatin inaccessibility within and loss of expression of 
IGF1, 2) the inability to transcriptionally express or upregulate PPARG2; and 3) a relative 
overexpression of IGF1R. Leveraging the defined IGF1/IGF1R/PPARG2 signaling deficits 
observed in DDLPS cells, we aimed to explore novel therapeutic strategies in cell line LPS 
models. First, we investigated whether PPARG2 expression loss could be overcome by 
hyperactivation of PPARG1. Activated PPARG1 has increased TF binding affinity to adipose-
specific downstream genes, including PPARG2. Others have shown that patient WDLPS cells 
cultured ex vivo with high concentrations of insulin (acting through IGF1R) and PPARG agonists 
had adipogenic potential(14); however, the effect of PPARG agonists on DDLPS cells deficient 
in PPARG2 are unknown. To explore this, we added rosiglitazone (a PPARG1 and PPARG2 
agonist) to IGF1-DM to culture LPS6 cells or adipose derived human MSCs. We observed that 
the addition of rosiglitazone was not able to induce expression of PPARG2 or increase the 
efficiency of ADIPOQ induction (Figure S12A) in DDLPS. This result suggests that 
hyperactivated PPARG1 alone, in the absence of appreciable PPARG2, is not sufficient to 
promote DDLPS cell differentiation. This finding is consistent with observed inaccessible 
chromatin at the PPARG2 TSS, which may inhibit TF binding of activated PPARG1.  

Given the epigenetic enrichment of GLP-1-induced regulation of insulin signaling in 
DDLPS, we also investigated whether GLP-1 could promote tumor cell differentiation in DDLPS 
through the addition of a GLP-1 agonist to IGF1-DM. Liraglutide is a long-acting GLP-1 agonist 
thought to promote adipocyte differentiation by propagating insulin signaling(28, 29). However, 
when we exposed DDLPS cells to liraglutide, we did not observe an increased expression of 
PPARG2. Interestingly, liraglutide exposure did result in a robust increase in ADIPOQ gene 
expression within DDLPS tumor cells relative to IGF1-DM alone, though not to the level seen in 
MSCs with liraglutide exposure (Figure S12B). These results suggest that terminal 
differentiation of DDLPS with PPARG or GLP-1 agonists is unlikely to be an effective DDLPS 
treatment strategy on its own, consistent with past clinical trials. Thus, the lack of preclinical 
efficacy for existing pro-adipogenic therapeutics to overcome IGF1 signaling dysregulation in 
DDLPS is consistent with the finding that PPARG2 gene expression is not inducible in DDLPS. 

Although direct targeting of PPARG or insulin/GLP-1 may not specifically impact IGF1-
associated DDLPS biology, IGF1 expression loss also correlates with a relative overexpression 
of IGF1R in both WDLPS and DDLPS compared to normal adipose tissue (Figure 4B). IGF1R 
canonically acts as a plasma membrane-bound RTK and we confirmed that IGF1R localized to 
the plasma membrane in LPS cells (Figure 6A). Previously, IGF1R monoclonal antibodies were 
investigated in several phase I and II trials across multiple cancer types and demonstrated 
acceptable toxicity profiles(30–33). In an effort to improve the anticancer impact of monoclonal 
antibodies, IGF1R-ADCs have been developed(34), and there is an ongoing trial of an IGF1R-
ADC across advanced solid tumors (W0101, NCT03316638). We therefore hypothesized that 
an IGF1R-targeted ADC (IGF1R-ADC) would be lethal in both WDLPS and DDLPS cells. To 
investigate whether an IGF1R-ADC would be cytotoxic to LPS cells, we exposed the WDLPS-
derived 93T449 cell line, as well as a normal human cell line (non-transformed human aortic 
endothelial cells, HAECs) as a negative control, to increasing concentrations of an IGF1R-ADC 
conjugated to an anti-mitotic chemotherapeutic agent, monomethyl auristatin E (MMAE)(34). 
We found that the IGF1R-ADC was specifically cytotoxic to LPS cells (Figure 6B). These 
analyses serve as preclinical rationale for the use of IGF1R-targeted agents in LPS. Ongoing 
investigation of the IGF1/PPARG signaling axis in LPS may yield further opportunities for drug 
development. 
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Figure 6. IGF1R-ADC in vitro cytotoxicity. (A) Immunofluorescence (IF) image of 93T449 cells illustrating 
membranous localization of IGF1R (green), highlighted by the white arrow. Phalloidin is shown in red and nuclear 
staining (DAPI) in blue. (B) 93T449 cells and (C) Human aortic endothelial cells (HAECs) were exposed to 
increasing concentrations (0-10  µg/ml) of anti-IGF1R or isotype control antibody conjugated to MMAE (IGF1R-
ADC or Isotype control-ADC, respectively) in complete cell culture media for 72 hours. Cell viability was 
determined by XTT assay, setting 0 µg/ml isotype control as 100% viability. 
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DISCUSSION 
This study defines LPS subtype-specific molecular defects in adipocyte differentiation. 

We first performed single-nucleus multiome sequencing of human LPS patient tissue samples. 
The choice of a single-nucleus sequencing technique is a critical consideration in mesenchymal 
tumors and LPS specifically, as it allows for the characterization of both dense, fibrous tissues 
as well as larger adipocytes as opposed to previous single-cell sequencing modalities(8, 35). 
Multiome sequencing and spatial profiling from a carefully selected cohort of LPS patient 
samples enabled high-resolution dissection of differences in transcriptomic and epigenomic 
tumor cell programs and their spatial patterning. The integrated multiome sequencing analysis 
converged on IGF1/PPARG signaling loss as a key feature of most DDLPS cells and higher 
levels of IGF1 expression in DDLPS were associated with longer overall survival. By coupling 
the multiome data with in vitro analyses of DDLPS cell lines and LPS patient tissue samples, we 
were able to further identify the loss of PPARG2 gene expression as an additional defect of 
adipose differentiation in DDLPS. Finally, we leveraged the relative overexpression of IGF1R in 
LPS to demonstrate that IGF1R-ADCs may have clinical utility in LPS.  
 Our work additionally confirms findings from several other sequencing-based studies of 
LPS. We found transcriptomic enrichment of adipogenesis pathways in WDLPS as shown in 
Hirata et al.(5) The previously published maturity score in LPS, which predicts tumor cell 
differentiation and inversely correlates with MDM2 expression(6), also likely encapsulates the 
biology of the IGF1 differentiation pathway presented in this study, thus potentially bridging 
MDM2 and IGF1-induced adipogenesis. Our study also provides insights regarding the general 
lack of response observed in early clinical trials of PPARG agonists as LPS treatments(36). It 
should be noted that many of the historical in vitro and clinical trial studies of PPARG agonists 
included numerous LPS subtypes (myxoid, pleomorphic), and we now appreciate that those 
driven by MDM2 amplification (e.g., WDLPS, DDLPS) represent a distinct disease entity. Our 
data suggest that in IGF1/PPARG2-deficient DDLPS, chromatin inaccessibility upstream of the 
PPARG2 TSS prevents activated PPARG1 from binding and increasing PPARG2 gene 
expression. To pursue future adipocyte differentiation-based therapies, investigating the 
mechanisms driving epigenetic silencing of IGF1 and isoform-specific PPARG gene expression 
will be critical.  

Leveraging the relative overexpression of IGF1R seen in both WDLPS and DDLPS cells 
compared to normal adipose tissue, we demonstrated the selective toxicity of an IGF1R-ADC in 
LPS cell lines. To date, there are no FDA-approved therapies for patients with WDLPS, and our 
preclinical data showing cytotoxicity in WDLPS-derived 93T449 cells may therefore have major 
clinical implications. ADCs are currently being engineered with multiple linker and payload 
combinations, and future formulations of an IGF1R-targeted ADC may be even more effective in 
LPS. 

Additionally, the differential chromatin accessibility around genes involved in the GLP-1 
pathway and the observed modest effect of liraglutide on markers of adipose differentiation in 
vitro underscores the need for understanding the role of GLP-1 in adipocytes, MSC 
differentiation, and sarcomagenesis. The exact mechanisms through which GLP-1 influences 
cellular processes in adipocytes remains unknown, although our study identifies a potential new 
role for this process in DDLPS specifically that warrants further investigation.  

While we have uncovered LPS subtype-specific aberrations in adipocyte differentiation 
with the potential for clinical translation, our study has several limitations. First, despite 
consistent multiome sequencing library preparation and computational analysis across the 
cohort, sample-specific batch effects cannot be mitigated entirely. Additionally, the number of 
high-quality nuclei for analysis within the snRNA-seq and snATAC-seq from the multiome data 
was unbalanced. We preferentially used the highest-quality nuclei for both assays at the 
expense of fewer analyzable nuclei within the snATAC-seq assay. Finally, we are limited by a 
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lack of bona fide WDLPS human cell lines with which to further investigate adipose 
differentiation pathways in vitro.  

In summary, we characterized the transcriptional, epigenetic, and spatial features of 
WDLPS and DDLPS patient tissue samples, identified deficits in IGF1 and PPARG2 as a 
characteristic of most DDLPS cells that may contribute to dysfunctional adipose differentiation, 
and illustrated that targeting IGF1R may serve as a novel therapeutic strategy for LPS patients. 
Further investigation into the upstream epigenetic regulators of IGF1 and isoform-specific 
PPARG gene expression may yield additional opportunities to improve LPS patient outcomes. 
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METHODS 
Sample collection and nuclear isolation  

Human tissue samples were collected after written informed consent obtained under the 
Institutional Review Board-approved Dana-Farber Cancer Institute research protocol #21-468. 
Independent pathological review of each patient sample was performed by Dr. Jason Hornick 
(Director of Surgical Pathology and Immunohistochemistry, Department of Pathology, Brigham 
and Women’s Hospital). 

Resection specimens of human LPS tumor or adipose tissue were collected and snap-
frozen in liquid nitrogen. Nuclei were isolated in accordance with 10x Genomic Chromium Next 
GEM Single Cell Multiome ATAC+ Gene Expression User Guide (Rev E) by first mincing the 
tissue with spring scissors and triturating with a pipette for a total of 10 min in Tris-Salt-Tween 
(0.03% Tween) extraction buffer on ice(35). The resulting nuclei suspension was filtered through 
a 30 um MACS SmartStrainer. Filtered nuclei were centrifuged (500 x g, 5 min, 4C) and the 
pellet was resuspended and permeabilized in a lysis buffer on ice for 2 minutes. Nuclei were 
then washed, centrifuged, and resuspended in Diluted Nuclei Buffer. Nuclei were stained with 
DAPI (Invitrogen ProLong Gold Antifade Mountant with DAPI) and manually counted on a 
hemocytometer. A maximum of 16,000 nuclei per sample were loaded onto a channel of the 
Chromium Next GEM Chip J for use with the 10x Chromium Controller. Following transposition, 
snRNA-seq and snATAC-seq libraries were prepared following the 10x Genomics Multiome 
protocol. Library metrics were analyzed with the Agilent Bioanalyzer and sequenced per the 
specifications in the 10x Genomic Multiome User Guide. All libraries were sequenced by the 
Molecular Biology Core Facilities at Dana-Farber Cancer Institute using an Illumina NovaSeq 
6000 sequencer.  

snRNA-seq data preprocessing 
10x Cell Ranger ARC v2.0.0 (Cell Ranger v6.1.1) was used to demultiplex multiome 

sequencing data, process barcodes, align sequencing reads to genome GRCh38, and perform 
UMI counting. Non-duplicate reads that mapped confidently to the genome were counted to 
form a gene-barcode matrix. To capture as many high-quality nuclei from each snRNA/ATAC-
seq assay individually, the cellranger ARC output raw feature matrix was carried forward for 
downstream pre-processing and analysis. First, quality control and filtering of cell nuclei were 
performed for each snRNA-seq and snATAC-seq assays separately per patient sample.  

Within the snRNA-seq data, Cellbender v0.2.2(37) was used to remove barcodes 
representing empty droplets. The learning rate, epochs, and total droplets included were 
adjusted per sample to ensure an appropriate training curve. Scrublet v0.1(38) was used to 
simulate droplets containing doublets in the snRNA-seq data. Expected doublet rate was 
calculated based on number of barcodes per sample after filtering for empty droplets 
(https://demultiplexing-doublet-detecting-docs.readthedocs.io/en/v0.0.4/test.html). A manual 
threshold was set for each sample bisecting a bimodal distribution of cells (presumed singlets 
and doublets). Droplets predicted to be doublets were removed from the gene-barcode matrix of 
the snRNA-seq data. Scanpy v1.9.3(39) was used for further filtering of low-quality nuclei, 
where nuclei with fewer than 500 UMI, fewer than 200 genes, or more than 5% of mitochondrial 
transcripts were removed. After, gene expression values were log-normalized, filtered for highly 
variable genes, and scaled. Linear dimensionality reduction with principal component analysis 
(PCA) was performed and a KNN graph was calculated (n_neighbors = 15), before non-linear 
dimensionality reduction and visualization with Uniform Manifold Approximation and Projection 
(UMAP). Unsupervised Leiden clustering was performed using the first 40 principal components 
(PCs) with a resolution between 0.2-0.4. Differential gene expression between each Leiden 
cluster and the aggregate of all other clusters was performed with a two-sided Wilcoxon rank-
sum test and Bonferroni correction. The resulting DEGs were used to broadly annotate cluster 
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cell types. Inferred copy number alteration (CNA) analysis was performed using both the 
inferCNV (https://github.com/broadinstitute/inferCNV) and SCEVAN(40) algorithms, using 
immune cells as the reference cell type. From this, malignant cells were identified by the 
presence of predicted CNA amplification at chromosome 12q, as well as differential expression 
of known marker genes. 

After filtering nuclei and designating broad cell type annotations per individual patient 
sample snRNA-seq data, raw gene expression counts from each individual patient sample  were 
then merged. After merging, genes detected in less than three cells and nuclei barcodes with 
more than 8,000 genes were additionally filtered. Expression values were then log-normalized 
and scaled across all merged patient nuclei. As each sample was processed individually, 
Harmony_py v0.0.6(41) was used to mitigate potential batch effects prior to performing 
dimensionality reduction and unsupervised clustering. After batch effect correction with 
Harmony_py, PCA was performed on the first 50 PCs, KNN graph calculated (n_neighbors = 
15), followed by Leiden clustering at a resolution of 0.4 and UMAP visualization. Further 
downstream analysis was performed on either the raw or log-normalized and scaled expression 
values as specified below.  
 
Differential gene expression, cNMF, and gene set enrichment analysis  

To further evaluate the LPS tumor cells, the 80,881 nuclei annotated as tumor were 
isolated, re-integrated, and clustered with 40 PCs at a resolution of 0.4 as detailed above. 
Differential gene expression analysis comparing WDLPS and DDLPS tumor cells was 
performed on the log-normalized expression values. Gene set enrichment of Hallmark 2020 and 
Gene Ontology Biological Processes gene sets from MSigDB(42) was evaluated with 
BEANIE(18) using the genes derived from differential gene expression analysis between 
WDLPS and DDLPS cells. 

To identify gene activity programs, cNMF analysis(19) was performed on the LPS tumor 
cells. Raw counts were used as input to the cNMF algorithm with parameters of 200 iterations, 
5000 genes, a seed of 333, and a k range of 5-15. Balancing the calculated stability and error 
rate, cNMF usage programs identified at k = 7 were selected for further investigation. Gene set 
overlap(43) analysis (FDR < 0.05) with MSigDB Hallmark, Gene Ontology Biological Processes, 
Kegg legacy, and medicus gene sets(42) was performed using the genes derived from the 
cNMF usage program gene lists (top 200 genes).  
 
snATAC-seq data preprocessing 

FASTQ files were input to Cell Ranger ARC v2.0.0 for read filtering and alignment 
(GRCh38). For each sample, a peak-barcode matrix was constructed by calling peaks on the 
sample fragment file using MACS3 within Signac v1.8.0(44, 45). The matrix was then used to 
create a chromatin assay and Seurat object (Seurat v4.3.0) with CreateChromatinAssay and 
CreateSeuratObject functions at default thresholds. Doublets were removed using scDblFinder 
v1.12.0(46) with default parameters. The following quality control metrics were used to filter out 
barcodes that did not meet the following criteria: peak region fragments > 1000, FRiP > 0, TSS 
> 2, and blacklist fractions and nucleosome signals that were < 3 times the mean absolute 
deviation from the median. Nuclei that passed quality control underwent normalization with term 
frequency-inverse document frequency (TF-IDF) and linear dimensionality reduction with 
singular value decomposition (SVD) to produce latent semantic indexing components (LSI). 
Non-linear dimensionality reduction with UMAP was performed, nearest neighbors were 
computed, and unsupervised clustering was performed at a resolution between 0.1-0.3. Nuclei 
clusters were broadly annotated by cell type with information from the following analysis: 
differential gene activity (GeneActivity function, FindAllMarkers with latent.var = 
peak_region_fragments, test.use = LR), marker gene activity, and by inferring CNAs with 
CopyscAT v0.40(47).  
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To perform analysis on a cohort-level object across all patient samples, individual patient 
sample-level peak sets were combined to create a common peak set. Common peaks across all 
patient samples were quantified per individual patient sample using the sample-level fragment 
file. The resulting peak-by-cell matrices per individual patient sample were merged to generate 
the aggregated cohort-level object. Quality control was performed on the cohort with the same 
metrics described above followed by normalization, dimensionality reduction, clustering, and 
UMAP visualization (dimensions 2-8 and resolution of 0.1). Non-malignant cell types clustered 
together so integration was not performed. Peaks were re-called by cell type and served as the 
final peak set for analysis. With the final peak set, we created the final ATAC object by 
constructing a cohort-level count matrix, performing normalization, dimensionality reduction, and 
clustering.  
 
Differential peak accessibility and genomic enrichment analysis 

Tumor-adipose differential accessibility analysis was performed by subsetting the cohort-
level ATAC object to cells labeled “adipocyte,” “WDLPS,” and “DDLPS,” before normalization, 
dimensionality reduction, and clustering, as above. Adipocytes were included in this analysis as 
a positive control for the biological relevance of ATAC data given the relative low number of 
cells compared to snRNA-seq analysis. Differential accessibility was calculated with Signac 
FindAllMarkers using a logistic regression adjusting for sequencing depth (nCount_ATAC) as a 
latent variable. Differentially accessible peaks with an adjusted p-value of < 0.05 (Bonferroni-
Hochberg correction) and log2 fold change of at least 1 were considered for downstream 
analysis. BED files from the differentially accessible peaks of each group were created and 
coordinates were lifted over to the hg19 reference genome using the liftOver function from 
rtracklayer v1.58.0(48) to input as the “Test regions” with GREAT v3.0.0(49) with default 
parameters. Coverage plots for peaks overlying a gene body were generated with Signac’s 
CoveragePlot function. Differentially accessible peaks specific to IGF1 were calculated by first 
identifying peaks in the tumor-adipose object that overlapped with coordinates of the IGF1 gene 
body using the findOverlaps function. Next, the tumor-adipose count matrix was subsetted to 
include only those peaks that overlap IGF1. Finally, differential accessibility across IGF1 in 
WDLPS, DDLPS, and adipocytes was calculated with FindMarkers (where ident.1 = WDLPS 
and ident.2 = DDLPS) or FindAllMarkers functions. Candidate response element genomic 
coordinates were derived from the UCSC Genome Browser (hg38)(50). Similar analysis was 
carried out for peaks within the PPARG gene body. 
 
Bulk transcriptomic analysis, signature scoring, and survival analysis 

Raw bulk RNA-seq data of LPS and normal adipose patient samples published in Bevill 
et al(6) was processed using Scanpy v1.9.3 with CPM normalization and log2 transformation. 
Log-normalized (TPM) cell line bulk RNA-seq data was obtained from the Broad Institute’s 
Cancer Cell Line Encyclopedia(51). The IGF1 autocrine signature score was calculated by 
summing the expression values of the positively regulated genes (IGF1, PPARG, FABP4, LPL) 
and subtracting the expression of IGF1R. Statistical significance was assessed by the Wilcoxon 
rank-sum test. 

For survival analysis, transcriptomic data from patients with a primary diagnosis of 
“dedifferentiated liposarcoma” or “liposarcoma, well differentiated” were downloaded from The 
Cancer Genome Atlas (TCGA) Research Network: https://www.cancer.gov/tcga. Raw 
expression values underwent variance stabilizing transformation using the DESeq2 package 
v1.42.0(52). The median expression value of IGF1 expression in the TCGA cohort was 
calculated (median value = 8.1655) and used as a cutoff to divide the cohort into “IGF1 high” 
and “IGF1 low” groups. A Kaplan-Meier curve was used to visualize the overall survival of each 
group using the survfit function and survival probabilities were calculated with the survdiff (rho = 
0) function of the survival package v3.7_0(53). 
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Spatial transcriptomic sample preparation and library construction 

Spatial gene expression profiling of FFPE tissues was performed with the 10x Genomics 
Visium CytAssist Spatial Gene Expression (Rev E). Tissue sections of 10-µm thickness were 
placed on a slide, and H&E staining was performed by the Brigham and Women’s Hospital 
Pathology Department. Additional scrolls of 10-µm thickness were collected and stored at 40C. 
RNA quality was assessed using RNA extracted from scrolls with the Qiagen RNeasy FFPE kit 
and integrity measured by DV200 value with the Agilent 4200 TapeStation with RNA High 
Sensitivity Screen Tape. FFPE H&E slides were imaged according to the Visium Imaging 
Guidelines Technical Note. The sample was then de-crosslinked and de-stained all in 
accordance with the 10x Genomics Visium CytAssist Spatial Tissue Preparation Guide 
(CG00518 Rev C). Library construction and sequencing of the 6.5 mm x 6.5 mm tissue section 
was completed according to the Visium CytAssist Spatial Gene Expression User Guide 
(CB000495, Rev E) using Visum Human Transcriptome probe set v2.0 (18,536 genes targeted 
by 54,518 probes). Libraries were normalized and pooled for sequencing on Illumina NextSeq 
150 flow cells (Illumina, Inc., San Diego, CA, USA). 

Spatial transcriptomic data processing and signature scoring  
Space Ranger v2.1.1 was used to demultiplex sequencing data, process barcodes, input 

slide images, align sequencing reads to genome GRCh38, and perform UMI counting. Spatial 
transcriptome sequencing data was analyzed using Squidpy v1.2.3(54). Filtering for high quality 
barcodes (spots) was based on the following metrics: counts >1,000 and < 30,000, 
mitochondrial read percentage < 20%, and genes filtered based on their presence in 10 cells or 
more. Counts were normalized using scTransform v0.01(55) for Python. Normalized values 
underwent dimensionality reduction, UMAP visualization, and clustering at a resolution of 0.8. 
The IGF1 autocrine signature score was applied to the spatial data and visualized. Additionally, 
cNMF programs were assessed as a signature score by summing the expression of the top 50 
genes in each program. Comparison of spatial distribution of the two cNMF signature scores 
was assessed by designating each spot as belonging to the cNMF program for which it had the 
highest score. 

Cell lines and differentiation 
LPS6 human DDLPS-derived cells were a generous gift from the Shapiro Lab (DFCI) 

and were maintained in RPMI-1640 medium, supplemented with 10% FBS, 1% glutaMaX, 1,000 
U/ml penicillin and 1 mg/ml streptomycin. The 93T449 WDLPS-derived cell line and adipose-
derived human mesenchymal stem cells (MSCs) were purchased from ATCC and cultured 
according to the manufacturer’s instructions. Human Mesenchymal Stem Cells (MSC) were 
maintained in mesenchymal stem cell basal medium supplemented with the HMSC growth kit-
low serum (ATCC). Human Aortic Endothelial Cells (HAOEC) were purchased from Milipore 
Sigma and maintained in endothelial cell growth medium MV with supplement mix, containing 
10% FBS (PromoCell). Cells were grown at 370C in a humidified atmosphere with 5% CO2. 
Media was replaced every two to four days and cells passaged at approximately 70-80% 
confluency. For adipogenic differentiation, LPS cell lines were seeded at 30-50% confluency 
and treated with 10% charcoal stripped FBS with a cocktail of dexamethasone (Dex 1 mM), 
indomethacin (IDM, 50 mM), 3-isobutyl-1-methylxanthine (IBMX, 0.5 mM), and human 
recombinant IGF-1 (Miltenyi Biotec, 200 nM). Media and differentiation cocktail was replaced 
every three days. Differentiation induction measured at day 3.  
 
Gene Expression Analysis/Real-Time PCR 

Total RNA from cell lines was extracted using the Qiagen RNeasy Mini Kit following the 
manufacturer’s instructions. The quantity of RNA was measured using a NanoDrop 8000 
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spectrophotometer. For cDNA synthesis, 0.5 - 1 µg of total RNA was reverse transcribed using 
the High-capacity cDNA RT kit (Applied Biosystems) according to the manufacturer’s instruction 
and performed in a PTC Tempo Thermal Cycler (BioRad). Real-time quantitative PCR (QPCR) 
was performed using the 7500 Fast Real-time PCR system and Powerup SYBR Master mix 
(Applied Biosystems). Each 10 µl reaction contained master mix, 1 µl cDNA template, and 300 
nM primer concentration. Primers were designed using NCBI Primer Blast tool and oligos were 
synthesized by Integrated DNA Technologies (IDT). Primers for target genes (PPARG, 
ADIPOQ, and reference gene (ꞵ-actin) are listed in Table 1. The relative expression levels of 
the target genes were calculated using the ΔΔCt method with ꞵ-actin as the internal control. All 
reactions were performed in duplicate, and data are presented as mean +/- SD.  

 
Immunostaining of liposarcoma cells  

Cells were cultured on 20 mm round coverslips for 1–2 days, rinsed with PBS, and fixed 
with 4% formaldehyde freshly prepared in PBS for 15 minutes at room temperature. Following 
fixation, the cells were rinsed three times with PBS. For permeabilization and blocking, cells 
were incubated for 60 minutes at room temperature in blocking buffer composed of 1X PBS, 5% 
normal serum (CST #5425), and 0.3% Triton X-100. Coverslips were then incubated overnight 
at 4°C with either primary antibody IGF-1Rꞵ (D23H3) (1:100 dilution, #9750, Cell Signaling 
Technologies) or dilution buffer alone (PBS with 1% BSA and 0.3% Triton X-100) as a negative 
control. The next day, cells were rinsed with PBS and incubated with secondary antibody (anti-
rabbit IgG (H+L), F(ab’)2 Fragment, Alexa Fluor® 488, #4412, CST) for 2 hours in the dark at 
room temperature. Afterward, coverslips were washed three times with PBS and stained with 
Alexa Fluor® 555 Phalloidin (CST) for 15 minutes at room temperature, followed by a final PBS 
rinse. Coverslips were mounted onto microscope slides using ProLong Gold Antifade Reagent 
with DAPI (#8961, CST). Fluorescence imaging was performed using a Leica THUNDER 
Imager, and final  image processing was completed with ImageJ software. 

Table 1. Primers used in QPCR. 

Gene  Forward 3’-->5’ Reverse 5’-->3’ 

𝛽-actin TCTGGCACCACACCTTCTAC  GATAGCACAGCCTGGATAGC 

PPARγ1 CGTGGCCGCAGATTTGA AGTGGGAGTGGTCTTCCATTAC 

PPARγ2 GAAAGCGATTCCTTCACTGAT TCAAAGGAGTGGGAGTGGTC 

Adipoq TGCTGGGAGCTGTTCTACTG TACTCCGGTTTCACCGATGTC 

IGF-1 CATGTCCTCCTCGCATCTCT  ATACCCTGTGGGCTTGTTGA  

IGF-1R CTCTTCAGTTCGTGTGTGGAGAC  CAGCCTCCTTAGATCACAGCTC 
 

Antibody drug conjugate cell viability assays 
IGF1R-targeted antibody drug conjugate (IGF1R-ADC) and IgG1 isotype control ADC 

were constructed as previously described (Akla et al.(34)) and purchased from Creative Biolabs 
(Shirley, NY). Specifically, lonigutamab antibody was linked to mc-MMAE (monomethyl auristain 
E) with a drug-to-antibody ratio (DAR) of 4. Human IgG1 isotype control antibody was also 
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linked to mc-MMAE with a DAR of 4. Assessment of cell viability was performed using 
CyQUANT XTT Cell Viability Assay™ (Invitrogen) following the manufacturer's instructions. 
Briefly, cells were seeded in 96-well plates and allowed to adhere 16-24 hours prior to 
treatment. After 72 hours of treatment, cells were incubated with XTT working solution for 4 
hours and absorbance was measured at 450 nm and 660 nm using the CLARIOstar Microplate 
reader.  

Statistical analysis  
Graphical data was expressed as the mean +/- standard deviation and statistics were 

calculated using GraphPad Prism 10 software. Statistical tests are specified in figure legends.  
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