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Abstract

Malaria remains one of the most prevalent infectious diseases in the tropics and subtropics,

and Mozambique is not an exception. To design geographically targeted and effective inter-

vention mechanisms of malaria, an up-to-date map that shows the spatial distribution of

malaria is needed. This study analyzed 2018 Mozambique Malaria Indicator Survey using

geostatistical methods to: i) explore individual, household, and community-level determi-

nants of malaria in under-five children, ii) prepare a malaria prevalence map in Mozambique,

and iii) produce prediction prevalence maps and exceedence probability across the country.

The results show the overall weighted prevalence of malaria was 38.9% (N = 4347, with

95% CI: 36.9%–40.8%). Across different provinces of Mozambique, the prevalence of

malaria ranges from 1% in Maputo city to 57.3% in Cabo Delgado province. Malaria preva-

lence was found to be higher in rural areas, increased with child’s age, and decreased with

household wealth index and mother’s level of education. Given the high prevalence of child-

hood malaria observed in Mozambique there is an urgent need for effective public health

interventions in malaria hot spot areas. The household determinants of malaria infection

that are identified in this study as well as the maps of parasitaemia risk could be used by

malaria control program implementers to define priority intervention areas.

Background

Malaria is an infectious disease caused by a parasite that is transmitted from one subject to

another by blood-sucking female anopheles mosquitoes. It is a major public health problem,

especially in Africa and Asia. Many countries made an incredible progress in the fight against

malaria, and as a result malaria deaths have fallen by more than 50% globally between 2000

and 2015. Seventeen countries eliminated malaria, and six were certified by WHO as malaria-

free [1]. Based on WHO recent report, on a global scale, progress has levelled off but no gains

were achieved in reducing malaria case incidence over the last five years [2]. The WHO strate-

gic advisory group predicts that there will be 11 million cases of malaria in Africa by 2050 [2].

The current COVID-19 pandemic places extra burden on health systems worldwide, and espe-

cially in sub-Saharan Africa which accounts for more than 90% of global malaria cases and

deaths. Recently, WHO recommends, countries to move quickly to save lives from malaria in

sub-Saharan Africa [1].
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In Africa, more than two-thirds of all malaria deaths occur in children under-five years old

[3]. Because of a continual fight against malaria by intervention programs, malaria infection

prevalence and clinical incidence decreased by 50% and 40%, between 2000 and 2015, respec-

tively [4]. In 2017, an estimated 219 million cases and 435 thousand deaths of malaria occurred

worldwide, of which 200 million (92%) malaria cases were in the WHO African Region [3].

Fifteen sub-Saharan Africa countries and India carried 80% of the global malaria burden and

Mozambique accounts for 5%. Children under 5 years of age are the most vulnerable group

affected by malaria and they accounted for 61% of all malaria deaths worldwide [3].

In Mozambique, malaria is a common disease with seasonal fluctuation in all parts of the

country with seasonal peak ranging from December to April [5]. The prevalence varies across

different ecological zones and transmission occurs year-round with relatively higher preva-

lence in the northern part of the country. Various factors influence the dynamics of malaria

transmission and infection ranging from natural (i.e. rainfall, temperature) to social factors.

Previously conducted national surveys showed that the prevalence of malaria in under five

children was 39% and 40% in the years 2011 and 2015, respectively. Malaria accounts for 29%

of all deaths and 42% of deaths in under-five children in the country [6].

Even though, Mozambique’s entire population is at risk of malaria due to different environ-

mental and ecological factors [7], pregnant women and under-five children are at higher risk

of severe illness due to their low immunity [8–10]. Thus, efficient interventions and preventive

measures could be improved by advancing our understanding of the spatial patterns of malaria

prevalence distribution and the underlying factors.

Long-lasting insecticidal nets (LLINs) is one of the main interventions mechanisms for pre-

venting malaria infection, and the 2017-2022 Mozambique strategic plan aims to achieve one

net for every two people LLINs coverage across the country [6]. Currently, disruptions to

insecticide-treated net campaigns due to COVID-19 pandemic and in access to antimalarial

medicines could lead to increase in the number of malaria deaths and co-morbidities. This

requires malaria affected countries like Mozambique should identify malaria hot-spot areas

and move quickly to save lives from malaria. The spatial distribution risk map of malaria is an

important tool for effective planning, malaria control intervention, resource mobilization,

monitoring and evaluation process. As a result, to advance intervention mechanisms, spatial

distribution maps of malaria prevalence across the study area have been produced using geos-

tatistical modeling approaches [11–21] with the aim of identifying areas where greatest control

effort should be focused. Previously generated maps depicted the geographical distribution of

malaria risk in Mozambique either at province or continental-scale [4, 7, 22–25], not at coun-

try-level. However, those maps may not reflect the current malaria situation in the country, as

they rely on historical and outdated survey data. Malaria risk maps based on historical data

cannot reflect the current situation which is changing due to ongoing interventions.

To date, to the best of my knowledge, the only map available for the spatial distribution of

malaria prevalence in Mozambique based on recent data was produced for Chimoio [7] and

Maputo province [5, 22] which do not represent the current situation since it does not take

into account contemporary effects of interventions and socio-economic status. Further,

recently produced reports related with malaria in Mozambique do not address the spatial dis-

tribution of malaria across survey clusters of the country by taking into account other factors

[6, 26].

In this study, the 2018 Mozambique Malaria Indicator Survey (MMIS) data were analyzed

using geostatistical modeling approaches to: i) identify determinant factors associated with

malaria risk, ii) produce a prevalence map of malaria among children under the age of five

across survey clusters and regions of Mozambique, and iii) produce prediction prevalence

maps and exceedence probability across the country. Predicted malaria prevalence maps
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generated in this study would help policy makers to identify high-risk areas and design tar-

geted interventions.

Materials and methods

Mozambique MIS data

The data for this study were obtained from the 2018 Mozambique Malaria Indicator Survey

(MMIS). The main aim of this survey was to obtain population-based estimates of malaria

indicators by considering a nationally representative dataset which serves as input for strategic

planning and evaluation of malaria control program([26]). Stratified two-stage sampling tech-

nique was used to select enumeration areas (EAs) and households. Sampling procedures of the

survey have been mentioned in the survey final report [26]. Permission to use the 2018 MMIS

data was obtained from the DHS website (www.dhsprogram.com). Fig 1 (left panel) presents

the map of survey cluster locations where raw dataset were collected, and prevalence is

depicted (right panel).

The geostatistical modeling includes: individual-level variables: child age, gender, anaemia

level, child slept under bed net; household-level variables including educational level of the

mother, household wealth index, and availability of bed nets in the household; and commu-

nity-level variables: place of residence, mean temperature, estimated malaria incidence in the

cluster, ITN coverage, and region were used in the analysis. Cluster-level geospatial data used

in this study (ITN-coverage, malaria incidence) were obtained from DHS Program Geospatial

Covariate Datasets (www.dhsprogram.com), and the construction procedures of geospatial

data were explained in [27]. Furthermore, to see the change in the prevalence of malaria by dif-

ferent factors in the past seven years, the 2011 Mozambique demographic and health survey

used [28]. In addition to this, to compare the overall risk of malaria with neighboring coun-

tries, nationwide malaria prevalence in Tanzania, Malawi, Zambia, and Zimbabwe considered.

Fig 1. Study clusters of the 2018 MMIS (left), and cluster level RDT prevalence (right panel).

https://doi.org/10.1371/journal.pone.0241680.g001
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Statistical analysis

Malaria indicator survey data-sets are often complex in nature for two reasons: i) the use of

stratified multistage cluster sampling to increase sampling and cost efficiency, and ii) unequal

probabilities of selection from target-populations for sampled elements, often as a result of

oversampling of key subgroups. Thus, the data analysis tools employed sampling weights for

generating unbiased population estimates [29].

Weighted confidence interval for proportions. Constructing a confidence interval for

proportion p is one of the most basic analyses in statistical inference, and it is an important

aspect of reporting statistical results. Let Y denote a binomial variate for sample size n, and let

p̂ ¼ Y
n denote the sample proportion. Under asymptotic normality of the sample proportion

and estimating the standard error, an approximate 100(1 − α)% confidence interval for P is

p̂ � z1� a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1 � p̂Þ=n

p
: ð1Þ

The large-sample Wald intervals (Eq 1) are known to perform poorly [30], but the Wilson

intervals [31] given by Eq 2 have been shown to perform well in a variety of situations.

p̂ þ z2
1� a=2

=2n
1þ z2

1� a=2=n
�
z1� a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1 � p̂Þ þ z2

1� a=2=4n
q

ffiffiffi
n
p
ð1þ z2

1� a=2=nÞ
ð2Þ

Both Wald (Eq 1) and Wilson (Eq 2) intervals are appropriate for survey data with simple

random sampling designs, but they are not designed to accommodate clustering or unequal

weights of more complex sample surveys, like the data analyzed in this manuscript.

A common approach to construct confidence intervals for proportions from complex sam-

ple survey data is to modify the inputs of Eq 2 to account for survey weights and the design

effect. The survey-weighted, estimated proportion, p̂, is used along with a consistent design-

based estimate, V̂arðp̂Þ, of its variance. For complex survey data. [32] propose a modified ver-

sion by replacing z1−α/2 with tc(1 − α/2) in equation Eq 2, and replacing n with the effective

sample size, defined as neff ¼ n= ^Deff ðp̂Þ where

^Deff ðp̂Þ ¼
V̂arðp̂Þ

p̂ð1 � p̂Þ=n
¼

P
h

Nh
N

� �2
1 �

nh
N

� � p̂ð1� p̂Þ
nh

p̂ð1 � p̂Þ=n
¼
n
Pn

i w
2
i

ð
Pn

i wiÞ
2

as the estimated design effect ([33]), wi is the weight of the ith unit selected in the sample, w
represents sampling weights that denote the inverse of the probability that the observation is

included because of the sampling design.

Geostatistical modeling. Non-spatial modelling approaches assume independence

between study locations where the data collected inadvertently neglect potential spatial depen-

dency between neighboring locations due to unobserved common exposures. To overcome

such limitations, geostatistical models relate disease prevalence data with potential predictors

and quantify spatial dependence via the covariance matrix of a Gaussian process facilitated by

adding random effects at the observed locations [34]. Such type of geostatistical models have

already been applied to model malaria risk at different geographical scales in different Africa

countries [11–13, 15, 19, 20, 35].

In model Eq 3 below, malaria status Yij of child i at location j take a value of 1 if the child

has malaria and 0 otherwise; follows a Bernoulli probability distribution. Conditionally on a

zero-mean stationary Gaussian process S(l) and additional set of study location specific
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random effects bj, the linear predictor of the model assumes the form:

log
pij

1 � pij

 !

¼ x0ijbþ SðljÞ þ bj: ð3Þ

In Eq 3 x is a vector of child, household, and cluster-level covariates with associated regression

coefficients β, S = (S(l): l 2 R2) is a Gaussian process with mean zero, and variance σ2, and cor-

relation function ρ(u) = Corr(S(l, S(l0)). Among different parametric families, such as exponen-

tial, Gaussian, spherical have been proposed for ρ(u). [36] recommends the use of Matern

correlation function [37] given by

rðu;�; kÞ ¼
2k� 1GðkÞ

ðu=�Þkkkðu=�Þ
; u > 0

where ϕ> 0 is a scale parameter, κ> 0 is the shape parameter, κκ(�) is the modified Bessel

function of the second kind of order κ> 0, and u = ||l − l0|| is the Euclidean distance between

two locations.

In Eq 3, location-specific random effects bj were included in the model to account for unex-

plained non-spatial variation. These random effects are assumed to be independent normal

distributed with zero mean and variance τ2 (i.e. bj* N(0, τ2)), with τ2 as the nugget effect

accounting for the non-spatial variation. The marginal distribution of the outcome variable in

Eq 3 is a multivariate Gaussian process with mean vector Xβ and covariance matrix S(θ) with

diagonal elements σ2 + τ2 and off-diagonal elements are σ2 ρ(u), with u the distance between

locations l and l0.
Since Monte Carlo methods enable flexibility in fitting complex models and minimize

computational problems encountered in the solely likelihood-based fitting [38, 39], in this

study the model fitting was carried out using Monte Carlo maximum likelihood, as opposed to

MCMC methods by considering the PrevMap package in R [40]. The likelihood function for

parameters β and θT = (σ2, ϕ, τ2) is obtained by integrating out the random effects included in

Eq 3, where σ2 is the variance, ϕ is the range, and τ2 is the nugget effect. Furthermore, to iden-

tify different risk factors, by taking in to account survey design weights, a non-spatial multi-

level mixed model is fitted to the data and results presented in the S1 File.

Spatial prediction. For mapping, we predicted prevalence of infection at 7892 grid loca-

tions covering the entire Mozambique. Since it is difficult to get individual-level data at predic-

tion location, The predictive map of malaria risk in Mozambique was created using the null

geostatistical model 3.

Spatial distribution maps of malaria prevalence by survey clusters and regions of the country,

and likelihood-based geostatistical modeling and spatial prediction were developed using R [41].

Results

A total of 4,347 children of age 6-59 months were tested for malaria from 221 nationally repre-

sentative survey clusters. Table 1 presents the overall weighted proportion of children age 6-59

months classified as having malaria based on rapid diagnostic test(RDT) results according to

different background characteristics. The mean age of children in this study was 32 months

with standard deviation 15.5 month, and 64.57% of the children lived in rural areas. The over-

all weighted prevalence of malaria by RDT in Mozambique was 38.9% (with 95% CI: 36.9%—

40.8%).

According to their place of residence, the prevalence of malaria was 46.4% (with 95% CI:

43.9%–48.9%) in rural areas, and 18.5% (95% CI:16.2%-21.1%) in urban areas (Table 1). Fig 1
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Table 1. RDT prevalence of children of age 6-59 months classified as having malaria by different background characteristics and relative change between 2011 DHS

and 2018 MMIS.

Factors 2011 DHS 2018 MIS

n Proportion 95% CI n Proportion 95% CI

Residence

Urban 1599 0.167 (0.146,0.191) 1540 0.185 (0.162, 0.211)

Rural 3317 0.537 (0.442,0.483) 2807 0.464 (0.439, 0.489)

Province

Niassa 434 0.521 (0.426,0.531) 446 0.483 (0.427, 0.539)

Cabo Delgado 413 0.472 (0.476,0.579) 398 0.573 (0.519, 0.625)

Nampula 411 0.433 (0.512,0.620) 434 0.478 (0.428, 0.529)

Zambezia 594 0.548 (0.409, 0.495) 457 0.445 (0.387, 0.505)

Tete 455 0.364 (0.583,0.684) 373 0.295 (0.245, 0.351)

Manica 480 0.279 (0.676,0.760) 510 0.473 (0.424, 0.522)

Sofala 645 0.305 (0.655,0.732) 487 0.293 (0.254, 0.336)

Inhambane 342 0.365 (0.578,0.689) 352 0.351 (0.300, 0.405)

Gaza 404 0.215 (0.740,0.823) 374 0.169 (0.129, 0.217)

Maputo Province 388 0.032 (0.944,0.982) 297 0.012 (0.004, 0.035)

Maputo City 350 0.0145 (0.965,0.994) 219 0.009 (0.002, 0.036)

Mother education

No education 1538 0.467 (0.437,0.496) 908.00 0.52 (0.483, 0.562)

Primary 2261 0.383 (0.359,0.408) 1960 0.423 (0.395, 0.452)

Secondary/higher 1117 0.228 (0.199,0.261) 858 0.152 (0.114, 0.199)

Child age(years

1 565 0.25 (0.208,0.297) 514 0.33 (0.277, 0.388)

2 1156 0.396 (0.362,0.431) 923 0.367 (0.326, 0.411)

3 1076 0.368 (0.334,0.403) 1000 0.429 (0.391, 0.470)

4 1089 0.416 (0.381,0.451) 933 0.379 (0.338, 0.422)

5 1030 0.414 (0.378,0.451) 977 0.414 (0.373, 0.456)

Child sex

Male 2406 0.394 (0.371,0.417) 2154 0.397 (0.368, 0.425)

Female 2510 0.368 (0.346,0.392) 2193 0.381 (0.354, 0.408)

HH Mosquito bednet

No 1751 0.403 (0.375,0.431) 388 0.483 (0.421, 0.620)

Yes 3165 0.369 (0.348,0.389) 3959 0.379 (0.359, 0.399)

Wealth index

Poorest 874 0.548 (0.510,0.586) 852 0.58 (0.539, 0.620)

Poor 937 0.515 (0.478,0.553) 865 0.517 (0.476, 0.559)

Middle 955 0.412 (0.376,0.450) 815 0.422 (0.375, 0.469)

Rich 1100 0.257 (0.227,0.290) 988 0.207 (0.177, 0.241)

Richest 1050 0.054 (0.040,0.074) 827 0.028 (0.017, 0.047)

Anaemia level

Non-anaemic 1699 0.478 (0.148,0.193) 974 0.218 (0.181, 0.259)

Anaemic 3217 0.169 (0.457,0.498) 3369 0.434 (0.412, 0.456)

Total/National Level 4916 0.381 (0.365,0.397) 4347 0.389 (0.369,0.408)

https://doi.org/10.1371/journal.pone.0241680.t001
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(right panel) presents the contemporary malaria situation in survey locations of the country

and can be used for malaria interventions in Mozambique.

Compared with the neighboring countries, the prevalence of malaria in Mozambique was

more than twofold higher (Table 2).

The prevalence of malaria varies from province to province: lowest in Maputo (1%) and

higher in Cabo Delgadi (57.3%) provinces of the country (Table 1, Fig 2, left panel).

The results of geostatistical model which took into account the spatial correlation and non-

spatial multilevel analysis by including survey design weights are given in Table 3.

From the geostatistical model, place of residence, mothers educational level, child age,

household wealth index, child anaemia level, cluster-level malaria incidence rate and ITN-cov-

erage were found significantly associated with malaria infection. In the geostatistical modeling

part an exponential correlation function was assumed. The assumption proved to be correct as

the correlation function is supported by the empirical variogram (Fig 3).

For a child living in a rural area, the odds of being malaria parasitaemia is 2.9 times as large

as the odds of a child living in urban areas. The odds of being malaria-positive for anaemic

child is 3.5 times that of non-anaemic child. Further, the odds of being malaria-positive for a

child whose mother education level is secondary or higher is 0.64 times less likely compared

with a child whose mothers are not educated.

Table 2. Prevalence of malaria in children under five years from recent surveys in neighboring countries of

Mozambique.

Neighboring country Survey year & data source Child malaria prevalence(%)

Tanzania MIS 2017 7.312

Malawi MIS 2017 15.203

Zambia MIS 2018 9.011

Zimbabwe MIS 2016 0.202

https://doi.org/10.1371/journal.pone.0241680.t002

Fig 2. Observed malaria prevalence at different provinces of Mozambique (left panel) and country altitude (right

panel).

https://doi.org/10.1371/journal.pone.0241680.g002
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The likelihood of being parasitaemia for children living with middle and better wealth

index household were less likely compared with children living with poor(est) wealth index.

Child sex and the availability of bed nets in the household were not significantly related with

malaria prevalence (P − value> 0.05).

Compared with the non-spatial variation (τ2 = 0.508) the spatial variation is higher (σ2 =

0.697). In the standard non-spatial multilevel modeling, the variance of the random intercept

which corresponds to the cluster-level variability is 0.844. Using the non-spatial model the

intraclass correlation is 0.204, ( 0:844

0:844þ3:29
¼ 0:204), implying that two subjects located in the

same cluster had a correlation equal to 0.204 to be parasitaemia.

Table 3. Parameter estimates from the geostatistical model (3) of malaria prevalence in children under five years

of age in Mozambique.

Factors AOR 95% AOR CI

b̂0
0.366 (0.195,0.684)

Child level factors

Age (in moth) 1.016 (1.010,1.021)

Sleep under bed net (ref: No) 0.736 (0.557,0.971)

Anemia (ref:not anemic) 3.502 (2.809,4.367)

Household level factors

Wealth index(ref:Poorest)

Poor 0.999 (0.801,1.246)

Middle 0.674 (0.534,0.852)

Rich 0.523 (0.396,0.691)

Richest 0.186 (0.111,0.313)

Mother education (ref:No education)

Primary 0.868 (0.712,1.053)

Secondary/higher 0.635 (0.455,0.887)

Cluster level factors

Residence (ref:urban)

Rural 2.902 (2.316,3.636)

Province(ref:Cabo Delgado)

Niassa 0.743 (0.506,1.090)

Nampula 1.011 (0.714,1.429)

Zamboza 0.808 (0.579,1.130)

Tete 0.373 (0.243,0.572)

Manica 0.833 (0.587,1.182)

Sofala 0.605 (0.421,0.870)

Inhambane 1.277 (0.862,1.891)

Gaza 0.138 (0.084,0.227)

Maputo Province 0.021 (0.007,0.060)

Maputo City 0.032 (0.007,0.143)

ITN coverage 0.25 (0.110,0.567)

Malaria incidence 4.005 (1.765,9.088)

Spatial Covariance Prams

σ2 0.697 0.396

ϕ 0.803 0.564

τ2 0.508 1.164

AOR stands for adjusted odds ratio, and CI for confidence interval.

https://doi.org/10.1371/journal.pone.0241680.t003
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Fig 4 presents spatial predictions over the study locations, fixing the model parameters at

the MCML estimates without any covariate. It also provides the predictive distribution of prev-

alence in each grid cell through the marginal prevalence (left panel) and probability that the

estimated prevalence is above 20% (right panel). Areas with greater than 80% probability of

exceeding the threshold were considered hot spots. Central and Northern provinces of

Mozambique have locations with predicted prevalence above 20%. The dark green areas show

locations where prevalence is above 20%, at 80% certainty.

Discussion

This study undertook geostatistical analysis of the 2018 MMIS data to identify determinant

factors of malaria risk. It also produced contemporary malaria risk maps of Mozambique for

children under five years of age across survey clusters and regions of Mozambique. The gener-

ated spatially referenced malaria risk map is the first of its kind for Mozambique from a

nationally representative geographically-referenced malaria indicator survey data. The map

produced illustrates an important synopsis of prevalence of malaria in the country. Therefore,

the observed predicted maps can serve as a resourceful tool in planning interventions and a

Fig 3. Plots from variogram diagnostic check for the presence of residual spatial correlation (left-hand panel) and

for compatibility of the data with the fitted geostatistical model 3 (right-hand panel). The solid line is the empirical

variogram of the data. The shaded areas are 95% tolerance bands under the hypothesis of spatial independence (left-

hand panel) and under the fitted model 3, (right-hand panel).

https://doi.org/10.1371/journal.pone.0241680.g003

Fig 4. Malaria prevalence predictions among children aged under five year in Mozambique (left panel) and

exceedance probabilities (right panel) for the MMIS data.

https://doi.org/10.1371/journal.pone.0241680.g004
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reference point in evaluating their impact across different administrative regions of the coun-

try. The predicted map (Fig 4) show that, the health impact of malaria is higher in the northern

and lowest in the southern part of the country. This Fig shows that most areas in the northern

part of the country are well above a threshold of 20% prevalence. This implies that in these

areas, control efforts towards malaria elimination can be considered. For malaria eradication

programme implementers, control efforts in these areas would be on reducing transmission

through preventive interventions such as mass bed-net distribution and/or indoor residual

spraying campaigns. Thus, in the identified high transmission areas, control efforts would

need to be more targeted and tailor-made as opposed to universal coverage effort, in order to

cut transmission as much as possible. On the other hand, a number of localities in southern

part of the country have prevalence below 20% which require less resource to eradicate malaria

s compared with the northern part of the country. The following regions: Tete, Gaza, Maputo

and Maputo city have locations where predicted malaria prevalence in children under 5 years

is less than 20%.

Malaria risk maps generated by [4, 25] relied on historical survey data and do not reflect

current malaria prevalence situation for under-five year children in Mozambique. Further, the

analyses done by [5, 7, 22, 23] focus on mapping the prevalence of malaria in a certain specific

province which does not represent national burden of malaria risk in children under-five years

of age. The study conducted by [42] does not represent the contemporary situation of malaria

in Mozambique.

As presented in other similar studies conducted to analyze malaria indicator survey datasets

[14, 15, 18, 19] the likelihood of having malaria increased as a child gets older. This positive

relationship between malaria and child age showed that, the older the child the higher chance

to be infected by malaria. This may be due to declining breast feeding which exposes a child to

maternal antibodies.

The 95% CI for estimated adjusted odds-ratio obtained using the geostatistical model (3)

was narrow compared to results obtained from weighted multilevel model (see Table 3, S1

Table in S1 File). Furthermore, educational level of the mother, sleeping under bednet, and

place of residence were found significant in the geostatistical model but not in the non-spatial

multilevel analysis (S1 File).

We observed that prevalence estimates vary across different socio-demographic groups as

well as different regions of the country. The highest prevalence was observed in Cabo Delgado

(57.3% with 95% CI: 51.9-62.5%), Niassa (48.3% with 95% CI: 42.7-53.9%), and Nampula

(47.8% with 95% CI: 42.8-52.9%) provinces of the country. This may be due to the fact that,

the most populous provinces Zambezia and Nampula have the worst education and health out-

comes; and in general northern provinces have worse infrastructure; higher levels of environ-

mental degradation and less economic activity than the south [43]. Further, a secondary

school access is unevenly distributed among the provinces and lowers in Cabo Delgado and

Niassa province.

The lowest prevalence was observed in Maputo province and Maputo city (Table 1). Chil-

dren living in urban areas had significantly lower risk of having malaria compared with chil-

dren in rural areas. Children who live in rural areas were 2.9 times more likely to have malaria

than those who live in urban areas (adjusted odds ratio (AOR) = 2.902). Similar results were

also found in other studies [13, 18, 44]. Among many other factors, malaria plays a major caus-

ative role of anaemia globally [11, 45–48]. In previous studies, the overall prevalence of anae-

mia in under-five children in Mozambique was above 70% [42]. In this study, we found that

anaemic children were found 3.5 times higher to be parasitaemia than non-anemic children.

The positive relationship with age indicated that the older the child the higher the risk of

contacting malaria. This findings agrees with results reported from analyses of MIS data in

PLOS ONE Geostatistical modeling of malaria in children of Mozambique

PLOS ONE | https://doi.org/10.1371/journal.pone.0241680 November 9, 2020 10 / 14

https://doi.org/10.1371/journal.pone.0241680


Nigeria [11], Angola [12], Tanzania([13], Burkina Faso [15], The Gambia [35], Cote d’Ivoire

[44], Malawi [20] and Uganda [18].

Recently, Amoah and his colleagues [49] studied the impact of malaria on child growth

using 20 Demographic and Health Surveys conducted in 13 African countries. Their result

reveals’ that malaria had a significant negative effect on child growth.

In line with other similar studies [11–13, 17, 18, 35], this study findings showed that malaria

prevalence is strongly associated with mothers’ education level, child age, wealth index, cluster

level malaria incidence rate, and place of residence. Household wealth index and mothers’ edu-

cational level were negatively associated with the prevalence of malaria, suggesting that the

higher the wealth index and the higher mothers’ educational level the lower the risk of acquir-

ing malaria. Supporting this study findings, [12, 13] and [18] found a decreased risk for

malaria among children living with better household wealth index, and higher mothers

education.

The results presented in this study should be considered in light of some limitations. Since

the analysis result in this study derived from a nationwide cross-sectional malaria indicator

survey, sub-national variations in risk and epidemiological transitions could be triangulated

with additional routine data from health information systems and malaria hospitalization. Fur-

ther, employing model-based geostatistical methods to interpolate information on malaria

prevalence at province/locality levels is less perfect when compared to complete, reliable rou-

tine data on the monthly presentation of parasitologically diagnosed fevers to health facilities.

Since malaria is environmentally mediated infectious disease, in future studies, considering

environmental factors [21, 50] in the covariance structure of the model will yield better predic-

tion map.

Conclusion

Among other health problems, malaria remains one of the biggest public health problems in

Mozambique. Thus, evidence-based interventions are needed to reduce the economic burden

[51–53], and malaria related diseases in the country. In this respect, the results of the present

study are useful to make geographically targeted interventions.

The results of study showed that high spatial variation in malaria risk were observed across

provinces with higher prevalence in the northern part and lower in the southern part of the

country. Children living in urban areas had the lowest risk of infection compared with chil-

dren living in rural areas indicating that more efforts is needed in those areas. Furthermore,

the analysis result revealed that malaria risk is linked with child age, household wealth index,

mother’s educational level, place of residence and child’s anaemia level. Moreover, household

level determinants of malaria infection that are identified by malaria prevalence maps at cluster

and province level could be used in malaria control implementing programs to identify prior-

ity intervention areas.
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dhsprogram.com/pubs/pdf/FR266/FR266.pdf.

29. Carle AC. Fitting multilevel models in complex survey data with design weights: recommendations.

BMC Medical Research Methodology. 2009; 9:49–62. https://doi.org/10.1186/1471-2288-9-49 PMID:

19602263

30. Agresti A, Coull BA. Approximate is better than’exact’ for interval estimation of binomial proportions.

The American Statistician. 1998; 52:119–126. https://doi.org/10.2307/2685469

31. Wilson E. Probable inference, the law of succession, and statistical inference. Journal of the American

Statistical Association. 1927; 22:209–212. https://doi.org/10.1080/01621459.1927.10502953

32. Kott PS, Carr DA. Developing an Estimation Strategy for a Pesticide Data Program. Journal of Official

Statistics. 1997; 13(4):367–383.

33. Franco C, Little RA, Louis TA, Slud EV. Comparative Study of Confidence Intervals for Proportions in

Complex Sample surveys. Journal of Survey Statistics and Methodology. 2019; 7:334–364. https://doi.

org/10.1093/jssam/smy019 PMID: 31428658

34. Diggle P, Tawn J, Moyeed R. Model-based geostatistics. Journal of the Royal Statistical Society Series

C (Applied Statistics). 1998; 47:299–350. https://doi.org/10.1111/1467-9876.00113

35. Diggle P, R M, Rowlingson B, Thomson M. Childhood Malaria in the Gambia: A Case-Study in Model-

Based Geostatistics. Journal of the Royal Statistical Society Series C (Applied Statistics). 2002; 51

(4):493–506. https://doi.org/10.1111/1467-9876.00283

36. Stein M. Interpolation of Spatial Data: Some Theory for Kriging. New York: Springer; 1999.

37. Matern B. Spatial Variation. Berlin: Springer-Verlag; 1986.

38. Geyer CJ, Thompson EA. Constrained Monte Carlo Maximum Likelihood for Dependent Data. Journal

of the Royal Statistical Society B. 1992; 54(3):657–699.

39. Geyer CJ. On the Convergence of Monte Carlo Maximum Likelihood Calculations. Journal of the Royal

Statistical Society B. 1994; 56(1):261–274.

40. Giorgi E, Diggle PJ. PrevMap: an R package for prevalence mapping. Journal of Statistical Software.

2017; 78(8):1–29. https://doi.org/10.18637/jss.v078.i08

41. R Core Team. R: A Language and Environment for Statistical Computing; 2018. Available from: https://

www.R-project.org/.

42. Mabunda S, Casimiro S, Quinto L, Alonso P. A country-wide malaria survey in Mozambique. I. Plasmo-

dium falciparum infection in children in different epidemiological settings. Malaria Journal. 2008; 7(216).

https://doi.org/10.1186/1475-2875-7-216 PMID: 18950486

43. SIDA. Mozambique Multidimensional Poverty Analysis status and Trends; 2019. 44. WBFox L, Santiba-

nez L, Nguyen N, Andre P. Education Reform in Mozambique: Lessons and Challenges; 2012.

PLOS ONE Geostatistical modeling of malaria in children of Mozambique

PLOS ONE | https://doi.org/10.1371/journal.pone.0241680 November 9, 2020 13 / 14

https://doi.org/10.1186/s12936-019-2709-y
https://doi.org/10.1186/s12936-019-2709-y
http://www.ncbi.nlm.nih.gov/pubmed/30871551
https://doi.org/10.12688/wellcomeopenres.15193.1
https://doi.org/10.12688/wellcomeopenres.15193.1
http://www.ncbi.nlm.nih.gov/pubmed/31372502
https://doi.org/10.1186/1475-2875-10-93
http://www.ncbi.nlm.nih.gov/pubmed/21496332
http://www.ncbi.nlm.nih.gov/pubmed/26618310
https://doi.org/10.1371/journal.pmed.0030473
http://www.ncbi.nlm.nih.gov/pubmed/17147467
https://doi.org/10.1186/1475-2875-10-378
https://doi.org/10.1186/1475-2875-10-378
http://www.ncbi.nlm.nih.gov/pubmed/22185615
http://dhsprogram.com/pubs/pdf/FR266/FR266.pdf
http://dhsprogram.com/pubs/pdf/FR266/FR266.pdf
https://doi.org/10.1186/1471-2288-9-49
http://www.ncbi.nlm.nih.gov/pubmed/19602263
https://doi.org/10.2307/2685469
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1093/jssam/smy019
https://doi.org/10.1093/jssam/smy019
http://www.ncbi.nlm.nih.gov/pubmed/31428658
https://doi.org/10.1111/1467-9876.00113
https://doi.org/10.1111/1467-9876.00283
https://doi.org/10.18637/jss.v078.i08
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1186/1475-2875-7-216
http://www.ncbi.nlm.nih.gov/pubmed/18950486
https://doi.org/10.1371/journal.pone.0241680


44. Raso G, Schur N, Utzinger J, Koudou BG, Tchicaya ES, Rohner Fea. Mapping malaria risk among chil-

dren in Cote d’Ivoire using Bayesian geo-statistical models. Malaria Journal. 2012; 11(160). https://doi.

org/10.1186/1475-2875-11-160 PMID: 22571469

45. Korenromp EL, Armstrong-Schellenberg JR, Williams BG, Nahlen BL, Snow RW. Impact of malaria

control on childhood anaemia in Africa: a quantitative review. Trop Med Int Health. 2004; 9(10):1050–

1065. https://doi.org/10.1111/j.1365-3156.2004.01317.x PMID: 15482397

46. Naing C, Sandhu NK, Wai VN. The Effect of Malaria and HIV Co-Infection on Anemia: A Meta-Analysis.

Medicine. 2016; 95(14). https://doi.org/10.1097/MD.0000000000003205 PMID: 27057848

47. Kassebaum NJ, Jasrasaria R, M N, Wulf SK, Johns N. A systematic analysis of global anemia burden

from 1990 to 2010. Blood. 2014; 123(5):615–624. https://doi.org/10.1182/blood-2013-06-508325

PMID: 24297872

48. Ejigu B, Wencheko E, Berhane K. Spatial pattern and determinants of anaemia in Ethiopia. PLoS ONE.

2018; 13(5):e0197171. https://doi.org/10.1371/journal.pone.0197171 PMID: 29775472

49. Amoah B, Giorgi E, Heyes DJ, Burren S, Diggle P. Geostatistical modelling of the association between

malaria and child growth in Africa. International Journal of Health Geographics. 2017; 17(7).

50. Ejigu B, Wencheko E. Introducing Covariate Dependent Weighting Matrices in Fitting Autoregressive

Models and Measuring Environmental Autocorrelation. Spatial Statistics. 2020; 38(100454).

51. Aryeetey GC, Agyemang SA, Aubyn VN, Aikins M, Bart-Plange CN, Malm KL, et al. Economic burden

of malaria on businesses in Ghana: a case for private sector investment in malaria control. Malaria Jour-

nal. 2016; 15(454).

52. Gallup JL, Sachs JD. The economic burden of malaria. Am J Trop Med Hyg. 2001; 64(Suppl 1):85–96.

https://doi.org/10.4269/ajtmh.2001.64.85 PMID: 11425181

53. Sicuri E, Vieta A, Lindner L, Constenla D, Sauboin C. The economic costs of malaria in children in three

sub -Saharan countries: Ghana, Tanzania and Kenya. Malaria Journal. 2013; 12(307). https://doi.org/

10.1186/1475-2875-12-307 PMID: 24004482

PLOS ONE Geostatistical modeling of malaria in children of Mozambique

PLOS ONE | https://doi.org/10.1371/journal.pone.0241680 November 9, 2020 14 / 14

https://doi.org/10.1186/1475-2875-11-160
https://doi.org/10.1186/1475-2875-11-160
http://www.ncbi.nlm.nih.gov/pubmed/22571469
https://doi.org/10.1111/j.1365-3156.2004.01317.x
http://www.ncbi.nlm.nih.gov/pubmed/15482397
https://doi.org/10.1097/MD.0000000000003205
http://www.ncbi.nlm.nih.gov/pubmed/27057848
https://doi.org/10.1182/blood-2013-06-508325
http://www.ncbi.nlm.nih.gov/pubmed/24297872
https://doi.org/10.1371/journal.pone.0197171
http://www.ncbi.nlm.nih.gov/pubmed/29775472
https://doi.org/10.4269/ajtmh.2001.64.85
http://www.ncbi.nlm.nih.gov/pubmed/11425181
https://doi.org/10.1186/1475-2875-12-307
https://doi.org/10.1186/1475-2875-12-307
http://www.ncbi.nlm.nih.gov/pubmed/24004482
https://doi.org/10.1371/journal.pone.0241680

