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Abstract

The human T-cell leukemia virus type 1 (HTLV-1) transactivator protein Tax has pleiotropic

functions in the host cell affecting cell-cycle regulation, DNA damage response pathways

and apoptosis. These actions of Tax have been implicated in the persistence and pathogen-

esis of HTLV-1-infected cells. It is now known that tax expression occurs in transcriptional

bursts of the proviral plus-strand, but the effects of the burst on host transcription are not

fully understood. We carried out RNA sequencing of two naturally-infected T-cell clones

transduced with a Tax-responsive Timer protein, which undergoes a time-dependent shift in

fluorescence emission, to study transcriptional changes during successive phases of the

HTLV-1 plus-strand burst. We found that the transcriptional regulation of genes involved in

the NF-κB pathway, cell-cycle regulation, DNA damage response and apoptosis inhibition

were immediate effects accompanying the plus-strand burst, and are limited to the duration

of the burst. The results distinguish between the immediate and delayed effects of HTLV-1

reactivation on host transcription, and between clone-specific effects and those observed in

both clones. The major transcriptional changes in the infected host T-cells observed here,

including NF-κB, are transient, suggesting that these pathways are not persistently activated

at high levels in HTLV-1-infected cells. The two clones diverged strongly in their expression

of genes regulating the cell cycle. Up-regulation of senescence markers was a delayed

effect of the proviral plus-strand burst and the up-regulation of some pro-apoptotic genes

outlasted the burst. We found that activation of the aryl hydrocarbon receptor (AhR) pathway

enhanced and prolonged the proviral burst, but did not increase the rate of reactivation. Our

results also suggest that sustained plus-strand expression is detrimental to the survival of

infected cells.

Author summary

Human T-cell leukemia virus type 1 (HTLV-1) causes a lifelong infection that results in

disease in ~10% of cases. The HTLV-1 transactivator protein Tax is involved in both the
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persistence of infected host cells, and the pathogenesis of HTLV-1 infection. tax is tran-

scribed from the plus-strand of the provirus, and tax expression is not constitutive, but

limited to transcriptional bursts. How these bursts affect host cell transcription is not

completely understood. Here, we studied the temporal changes in host transcription dur-

ing successive phases of the plus-strand burst in two naturally-infected T-cell clones. We

found that the deregulation of genes involved in Tax-associated processes, including NF-

κB activation, cell-cycle regulation, DNA damage response and suppression of apoptosis,

coincided with the early phase of the plus-strand burst: these transcriptional effects appear

to be limited to the duration of the proviral plus-strand expression. Regulation of cell-

cycle genes diverged between the clones, demonstrating the heterogeneity of naturally-

infected cells. We observed a pro-apoptotic response, which outlasted the burst and may

indicate increased risk of apoptosis following the burst. Finally, we observed that AhR

activity regulated the intensity and duration of the burst, but not the dynamics of

reactivation.

Introduction

Human T-cell leukemia virus type I (HTLV-1) is a pathogenic retrovirus that mainly infects

CD4+ T-cells, causing a lifelong infection in the host. An estimated 10 million people in the

world are living with the virus; between 5% and 10% of infected hosts develop one of the asso-

ciated diseases Adult T-cell leukemia (ATL) or HTLV-1-associated myelopathy/tropical spas-

tic paraparesis (HAM/TSP) [1,2].

In addition to the canonical retroviral genes, the provirus expresses several regulatory pro-

teins. The sense and antisense strands of the provirus encode the viral transactivator Tax pro-

tein and HBZ (HTLV-1 bZIP protein), respectively: these two proteins promote the

proliferation and survival of HTLV-1-infected cells, and both have been implicated in the

development of ATL [3,4]; however other regulatory proteins may also be involved.

Tax potently modulates proviral and cellular transcription, which has contrasting conse-

quences in stimulating cell cycle progression and proliferation [5–10], or causing temporary

cell cycle arrest and senescence [11–14]. HTLV-1-infected or Tax-transduced cells are also

protected from apoptosis [15,16]. Transcriptional down-regulation of pro-apoptotic factors

[17,18], and up-regulation of anti-apoptotic factors [19–22] are likely to contribute to the pro-

tective activity of Tax. By contrast, there is evidence that Tax promotes apoptosis [23–25], and

Tax-expressing cells are more susceptible to cell death following exogenous DNA damage

[26,27]. Tax expression impairs the functions of p53 [28], causes genome instability, induces

double-strand DNA breaks, and inhibits DNA damage response pathways [5,29–32].

HBZ opposes many functions of Tax including proviral transcription, likely mediated by its

interactions with the transcription factors CREB, c-JUN and CBP/p300, and by suppression of

NF-κB [33–37].

The mechanisms of the pleiotropic effects of HTLV-1 proviral expression remain unclear,

and while many important findings have been made with tax-transfected cell lines or long-

term in vitro transformed cell lines, it is a long-standing question how these observations apply

to untransformed, naturally-infected T-cells. It is now clear that the tax and HBZ genes are not

constitutively transcribed at the single-cell level in naturally-infected cells in vivo, but rather in

intermittent bursts [20,38,39], and it is not understood how the diverse observations on cell

proliferation and apoptosis are related to these bursts. We studied two naturally-infected

CD4+ T-cell clones competent in Tax expression (3.60 and TBX4B), isolated by limiting
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dilution from peripheral blood mononuclear cells (PBMCs) of HTLV-1-infected subjects [40],

to quantify host and viral transcription during proviral reactivation. Each clone was stably

transduced with a reporter construct, under the control of a Tax-responsive promoter that

expresses a fluorescent protein–the Timer Protein–which undergoes a time-dependent change

in emission frequency. This approach made it possible to separate the plus-strand transcrip-

tional burst into successive phases. Here we report the changes in transcription in the host

CD4+ T cell accompanying the onset and the progression through the HTLV-1 plus-strand

burst.

Results

I. The Tax-responsive Timer separates temporal phases of spontaneous

HTLV-1 proviral reactivation

The Fluorescent Timer protein [41], which changes its emission of blue fluorescence to red

fluorescence during chromophore maturation, allows temporal analysis of cellular processes.

It has been applied to study the in vivo dynamics of both regulatory T-cell differentiation in

mice [42], and Foxp3 expression in inflammation [43].

Two naturally HTLV-1-infected T-cell clones designated TBX4B and 3.60 were stably trans-

duced with a Tax reporter system containing 5 tandem repeats of the Tax-responsive element

(TRE) type 2 linked to a truncated HTLV-1 50LTR (long terminal repeat) and the Timer Pro-

tein gene (Fig 1A) [41]. The purified Timer protein initially fluoresces blue, reaching maxi-

mum intensity in 0.25 h, and then matures to the red-emitting form with a half-time of 7.1 h,

reaching a plateau between 20–25 h (Fig 1B) [41]. The half-life of the blue fluorescence in

mouse lymphocytes is ~4 h [42,43].

The HTLV-1 plus-strand burst begins with transcription of tax, resulting in a positive-feed-

back loop of potent activation of plus-strand transcription by Tax protein [44]. Expression of

Tax protein is a surrogate for the proviral plus-strand transcriptional burst, and in this study

the subsequent induction of the Timer protein by Tax was used to distinguish successive

phases of the plus-strand burst. The clones were flow sorted into four populations based on

the fluorescence of the Timer protein during spontaneous proviral expression, representing

respectively silent proviruses (non-fluorescent) and the early phase (blue), mid-phase (blue-

red) and late phase (red) of the plus-strand burst (Fig 1). Following termination of the burst

and decay of remaining red fluorescence of the Timer protein, the cells re-enter the silent

(non-fluorescent) double-negative (DN) state.

PolyA-selected RNA samples from each clone were sequenced. Clone 3.60 has a 202 bp

deletion that lies in the coding region of env on the plus-strand and the 30UTR of hbz on the

minus-strand (S1 Fig). The deletion did not impair the expression of Tax protein, as shown by

the expression of the Timer protein, the up-regulation of both the Timer and the plus-strand

transcripts of the provirus in the RNA-seq data (Fig 2A). The expression trajectories of both

the HTLV-1 plus-strand and the Tax-responsive Timer transcripts were closely similar in both

clones (Fig 2A).

Principal component analysis of the respective Timer phases (Fig 2B) indicated distinct

profiles of gene expression during the successive phases of proviral reactivation. Time-series

differential expression analysis of the phases of proviral expression identified 10048 signifi-

cantly differentially expressed (DE) genes in clone 3.60, and 4798 DE genes in clone TBX4B,

respectively representing 57% and 29% of expressed host genes (Likelihood-ratio test (LRT);

FDR adjusted p-value < 0.01) (S1 and S2 Data). HTLV-1 plus-strand and the Tax-responsive

Timer were among the top most significantly DE genes in each clone (S1 and S2 Data) and

HTLV-1 plus-strand was the most significantly up-regulated gene in the early burst (Blue)
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population in each clone, with a log2 fold change (LFC) of 9.60 in clone 3.60 and a LFC of 9.13

in clone TBX4B (Wald test; FDR adjusted p-value < 0.01) (S1 and S2 Data). The Timer had a

LFC of 6.34 and 5.72 in clones 3.60 and TBX4B, respectively. The second most significantly

up-regulated gene during onset of proviral expression in TBX4B was PNPLA3 (S2 and S3

Figs); the integration site of HTLV-1 in TBX4B lies between exons 2 and 3 of PNPLA3.

The trajectory of proviral minus-strand expression had no consistent relationship with

plus-strand expression and differed between the two clones (Fig 2A). However, the expression

of minus-strand expression in each clone closely resembled that of SP1, a known regulator of

its transcription [45] (S3 Fig).

Further validating the Timer Protein reporter system used, NF-κB transcription factor

genes REL, RELB, NFKB1, NFKB2 were up-regulated in both clones (Fig 2A). The up-regula-

tion of genes known to be expressed in response to Tax including IL2RA, IL13 and JUND [46–

49] was confirmed in both clones, and the Tax-repressed target LCK [50] was down-regulated

(Fig 2A). The expression of KAT2B (P/CAF), which interacts with Tax to increase expression

from the viral LTR [51], was unexpectedly down-regulated in both clones (S3 Fig).

To examine in detail the transcriptional effects shared by the two clones, the overlap of

3851 genes differentially expressed in both clones was analyzed through K-means clustering.

Using k = 5 produced five clusters depicting respectively genes up-regulated during the early

burst in each clone, genes up-regulated with a delayed peak (in mid-burst) in each clone, genes

down-regulated in each clone, and two clusters showing genes with opposite trajectories

(Fig 3A).

Fig 1. The principle behind Tax-induced Timer protein expression. (A) Tax-responsive reporter construct

containing the Timer protein gene Fast-FT. (B) Schematic of Timer protein expression during progression of the

HTLV-1 plus-strand burst. (C) Representative gating strategy used to flow-sort four cell populations for RNA-seq

analysis. (D) Tax expression in each respective Timer population, quantified by intracellular staining.

https://doi.org/10.1371/journal.ppat.1010387.g001
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To infer functional characteristics of these clusters, an over-representation analysis (ORA)

of the MSigDB Hallmark gene set [52] was performed. This analysis identified “TNFα signal-

ling via NF-κB” as the most significant term in two clusters: immediately up-regulated genes

Fig 2. RNA-seq validates the experimental setup. (A) Expression of HTLV-1 plus- and minus-strands quantified by RNA-seq in each Timer population. Statistical

significance was determined by the likelihood-ratio test (LRT). FDR-corrected p-value< 0.01; ns—not significant. (B) Principal component analysis (PCA) bi-plot of the

RNA-seq data in each clone.

https://doi.org/10.1371/journal.ppat.1010387.g002
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Fig 3. Genes deregulated in both clones separate into clone-independent and clone-specific clusters. (A) K-means clustering of 3851 shared significantly DE genes.

Statistical significance was determined by LRT. FDR-corrected p-value< 0.01. The top 10 genes in each cluster, based on mean rank of sorted p-values, are listed on the

right of the panel. The mean expression trajectory is coloured as a yellow or blue line representing upregulation and downregulation, respectively. (B) ORA of K-means

clusters with the Hallmarks gene set from The Molecular Signatures Database (MSigDB). Statistical significance was determined by Fisher’s exact test in g:Profiler. FDR-

corrected p-value< 0.05.

https://doi.org/10.1371/journal.ppat.1010387.g003
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during plus-strand expression (Fig 3 cluster 1) and genes with a delayed peak of expression

during mid-burst (Fig 3 cluster 2). TNF itself was downregulated (S1 and S2 Data). “Hypoxia”

was similarly an enriched term in the up-regulated cluster 1; HIF1A itself was upregulated (S3

Fig). Other enriched terms in cluster 1 were “IL2-STAT5 signaling” and “Inflammatory

response”, the latter was enriched in cluster 2 as well. “TNFα signalling via NF-κB” and “Hyp-

oxia” were also enriched when all differentially expressed genes in each clone were clustered

and analyzed separately (S4B Fig cluster 1 and S4D Fig cluster 1).

Cluster 3 consisted of genes down-regulated in both clones and was enriched for “Allograft

rejection”, “IL6/JAK/STAT3 signaling” and “Interferon gamma signaling” (Fig 3). “Interferon-

γ response” was significant in both the delayed up-regulated gene cluster 2 and the down-regu-

lated gene cluster 3 (Fig 3).

The fourth cluster contained genes that were differentially expressed in both clones, but

these genes were down-regulated in clone 3.60 and up-regulated in TBX4B. This cluster

included cell-cycle-related genes with Hallmark terms “G2M checkpoint, E2F targets”,

“Mitotic spindle”. Cell-cycle-related genes are analysed in more detail below.

Cluster 5, which represented genes up-regulated in clone 3.60 and down-regulated in clone

TBX4B, did not result in any significantly enriched Hallmark terms (Fig 3).

II. Clone-specific association between proviral expression and cell cycle

genes

We investigated how the contrasting observations of Tax induced cell proliferation or cell

cycle arrest and senescence relate to the transcriptional control of host genes in naturally

infected T-cells during successive phases of proviral reactivation.

For a systematic analysis of genes associated with different cell cycle stages, cyclically

expressed genes were obtained from the online database Cyclebase 3.0 (https://cyclebase.org/

CyclebaseSearch). All differentially expressed genes from each clone were separated into dis-

tinct groups of genes, based on the Cyclebase classification, each group with peak expression

in different cell cycle phases (G1, G1/S, G2, G2/M, M). The results (Fig 4A) show that genes

associated with peak expression during different phases of cell-cycle progression were down-

regulated in clone 3.60 during plus-strand expression, but were up-regulated in TBX4B. These

groups contained genes with established roles in DNA replication including GINS2, CHAF1B,

as well as phosphatases CDC25A, CDC25C, kinases PLK1, AURKB, NEK2, mitotic-spindle-

related genes PRC1, BIRC5, CDCA8, and the known marker of cell proliferation MKI67. In

clone TBX4B, expression of G1-S phase-related genes peaked during the early burst and G2-M

phase genes peaked during the mid-burst (Fig 4A).

The trajectories of G1 phase cyclin-dependent kinase CDK6 and cyclins CCND1, CCND2,

CCND3, which mediate entry into the cell cycle, were similar in the two clones (Fig 4B).

CDK6, but not CDK4, was significantly up-regulated in both clones and highest during the

early burst (Blue) of proviral plus-strand expression (Figs 4B and S3). Both CCND1 and

CCND2 were significantly up-regulated in clone 3.60, whereas the expression of CCND1 was

much lower in TBX4B; CCND2 showed a trend of up-regulation, which was not significant.

CCND3 was significantly down-regulated during the early burst in both clones.

CDK2 (active in G1/S and S phase) was up-regulated in both clones during early and mid-

burst (Fig 4B). By contrast, the G1/S phase cyclins CCNE1 and CCNE2 differed between the

clones. CCNE1 was expressed at a low level, and its subsequent up-regulation was delayed until

mid-burst in 3.60; its trajectory was inconclusive in TBX4B. By contrast, CCNE2 was signifi-

cantly up-regulated only in TBX4B. More importantly, the G1/S phase transcription factor

E2F1 was significantly up-regulated in TBX4B and down-regulated in 3.60.
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The pattern of cyclin expression progressively diverged between the clones as the cell cycle

advanced (Fig 4B). The S-phase genes CCNA1 and CCNA2 were down-regulated in clone 3.60,

whereas CCNA2 was up-regulated in TBX4B. Similar contrasts in expression were observed in

Fig 4. Divergent association between proviral plus-strand expression and genes related to the cell cycle. (A) Trajectories in each

infected clone of differentially expressed Cyclebase 3.0 genes associated with G1, G1/S, S, G2, G2/M and M phases of the cell cycle. (B)

Trajectories of cyclins, CDKs and transcription factors. Y-axis: normalized counts on log10-scale. Statistical significance was determined

by LRT. FDR-corrected p-value< 0.01; ns—non-significant.

https://doi.org/10.1371/journal.ppat.1010387.g004
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mitotic cyclins CCNB1, CCNB2, CDK1 kinase, and the mitotic phase transcription factor

FOXM1. The expression level of many of these genes returned to the value seen in the silent

phase by late burst, when proviral expression is terminating. This divergent gene expression of

cell cycle regulators between the two clones demonstrates that two naturally infected T-cell

clones can fundamentally differ in their response to proviral plus-strand expression.

III. Immediate up-regulation of genes involved in the DNA damage

response is followed by senescence markers

Several functions of Tax are associated with genomic instability, repression of DNA damage

response and induction of senescence [53]. Our results indicated significant deregulation of

TP53, which differed between two infected clones (Fig 5). This trajectory resembled that of the

divergent cell-cycle mediators in Fig 4B. By contrast, we observed up-regulation of another

p53 family member (TP63) and many known p53 targets: GADD45B, GADD45A, GADD45G,

CDKN1A (p21), and the main DNA-damage sensor of global genome nucleotide excision

repair (GG-NER) XPC. We also observed up-regulation of CETN2 and RAD23B, which

together with XPC form the recognition complex of GG-NER [54]. Previously it has been

reported that NER is suppressed by the direct up-regulation of PCNA induced by Tax [55,56].

PCNA was deregulated in both clones; however, the expression trajectories differed between

the clones. The trajectories of two kinases activated by double-strand DNA breaks, ATM and

ATR, differed in their response to plus-strand expression. ATM was significantly down-regu-

lated in both clones, whereas ATR was up-regulated in clone 3.60 with a similar trend in

TBX4B.

CDKN1A, which displayed a delayed up-regulation (Fig 5), belongs to the CIP/KIP family

of CDK inhibitors. The CIP/KIP family gene CDKN1C (p57) was significantly up-regulated

during the early transcriptional burst, with a higher level of expression in 3.60. The INK4 fam-

ily of CDK inhibitor members, CDKN2A (p16) and CDKN2B (p15) were significantly down-

regulated in both clones during proviral expression. In addition to CDKN1A, another senes-

cence marker GLB1 was up-regulated, peaking during mid-burst. These results indicate that

DNA damage response pathways were activated during the burst, and the initial mitogenic sig-

nalling in G1 (Fig 4) was accompanied by the parallel down-regulation of G1-phase CDK

inhibitors.

IV. Proviral expression coincides with up-regulation of anti-apoptotic

mediators and down-regulation of apoptotic effectors

Previous results have shown that Tax expression can promote cell death [23–27]. However,

Tax has also been described to suppress apoptosis and this protection is transferable to cells

not actively expressing Tax [15,16,20]. We observed a strong deregulation of key genes

involved in the intrinsic and extrinsic apoptosis pathways during the plus-strand burst [57].

At the onset of the plus-strand burst, there was immediate downregulation of at least one of

the pore-forming apoptotic factor genes in each clone (Fig 6). BAX was significantly down-reg-

ulated during the early-burst in clone 3.60, whereas a similar (yet non-significant) trend was

seen in TBX4B. However, BAK1 expression was sharply down-regulated only in clone TBX4B.

The expression level of BAK1 in clone 3.60 remained low during both the silent and early burst

phases, but rebounded in the mid-burst and late burst.

Both clones showed strong up-regulation of the anti-apoptotic genes BCL2, BCL2L1 and

BCL2L2, which encode inhibitors of the pore-forming BCL2 family proteins (Fig 6). However,

the pro-apoptotic genes PMAIP1 (NOXA), BCL2L11 (BIM) and BMF were also immediately

up-regulated. The pro-apoptotic gene BID was significantly up-regulated during the early-
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burst in clone 3.60. Curiously, both PMAIP1 and BCL2L11 sustained a high expression

throughout proviral reactivation and remained high in the termination phase.

The death receptors FAS and TNFRSF10B were up-regulated in both clones and

TNFRSF10A was up-regulated during the mid-burst in 3.60 yet down-regulated in clone

Fig 5. Up-regulation of DNA damage response and senescence markers. Gene expression trajectories of cell cycle inhibitors, DNA damage response genes

and senescence markers. Y-axis: normalized counts on log10-scale. Statistical significance was determined by LRT. FDR-corrected p-value< 0.01; ns—not

significant.

https://doi.org/10.1371/journal.ppat.1010387.g005
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TBX4B (Figs 6 and S3). Their cognate ligands FASLG and TNFSF10 were strongly down-

regulated.

Although the intrinsic pathway initiator CASP9 was up-regulated only in clone 3.60, the

death-inducing signaling complex (DISC) member genes CASP8 and CASP10, which are initi-

ators of the extrinsic pathway, were down-regulated during the early burst. The primary

Fig 6. Temporal patterns of pro- and anti-apoptotic factors. Gene expression trajectories of anti- and pro-apoptotic

BCL2 family members, extrinsic apoptosis factors, anti-apoptotic and caspase genes. Y-axis: normalized counts on

log10-scale. Statistical significance was determined by LRT. FDR-corrected p-value< 0.01; ns—not significant.

https://doi.org/10.1371/journal.ppat.1010387.g006
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effector CASP3 was significantly downregulated over the course of proviral expression in clone

3.60, with a similar (albeit non-significant) trajectory in clone TBX4B. The inhibitors of apo-

ptosis proteins capable of impairing caspase-mediated apoptosis—BIRC2, BIRC3 and CFLAR
(c-FLIP)—were strongly up-regulated in both clones.

A significant down-regulation of the granzyme genes GZMA and GZMB was also observed

(S3 Fig). These genes are associated with cytotoxic activity of CD8+ T-cells and NK cells; their

function in CD4+ T cells is incompletely understood.

These results showed that during the plus-strand burst the principal apoptotic effectors

were down-regulated, and the apoptosis inhibitors up-regulated, in both extrinsic and intrinsic

pathways. By contrast, a sustained expression of pro-apoptotic factor genes PMAIP1 and

BCL2L11 outlasted the proviral burst.

V. Increased expression of non-canonical polycomb repressive complex 1

members coincides with the plus-strand burst

The factors that regulate the spontaneous onset of expression of the provirus are not fully

understood, but include the proviral integration site [58], cell stress [20,59], AhR signaling

[60], and ubiquitinylation of histone 2A lysine 119 by polycomb repressive complex 1 (PRC1)

[61].

RING1, RYBP and KDM2B are members of the non-canonical PRC1 (ncPRC1) [62] and

their expression was up-regulated during the burst (Fig 7). BMI1 (PCGF4), which is a core

member of the canonical PRC1, was down-regulated in both clones (Fig 7).

VI. Aryl hydrocarbon receptor (AhR) signaling augments HTLV-1 plus-

strand expression, but not reactivation

We observed a consistent and robust differential expression of cytochrome P450 1A1

(CYP1A1), a product of the AhR pathway, between the early burst and late burst populations

in both clones (S2 and S3 Figs). AhR is a transcription factor that regulates many biological

processes through its activation in response to metabolic and environmental signals [63,64].

Following recent reports indicating enhanced HIV-1 proviral expression in response to AhR

ligands in PBMCs isolated from patients on antiretroviral therapy [65] and HTLV-1 plus-

strand expression in HTLV-1 infected transformed cell lines [60], we investigated the effect of

AhR signalling on HTLV-1 expression in T-cell clones isolated from HTLV-1-infected

individuals.

Endogenous AhR ligands such as tryptophan metabolites are present in the culture

medium. We evaluated the effects of treatment with supplemental AhR ligands or AhR

Fig 7. Up-regulation of ncPRC1 members. Gene expression trajectories of ncPRC1 and canonical PRC1 complex members. Y-axis: normalized counts on

log10-scale. Statistical significance was determined by LRT. FDR-corrected p-value< 0.01.

https://doi.org/10.1371/journal.ppat.1010387.g007
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antagonists on HTLV-1 proviral expression using two patient-derived T-cell clones (3.60 and

11.50). Treatment with an endogenous AhR ligand, ITE [66], or a tryptophan-derived AhR

ligand, FICZ [67] significantly increased Tax protein expression above background levels (Fig

8A). A purine-derived AhR antagonist StemRegenin 1 (SR1) [68] and a ligand-selective antag-

onist CH223191 [69] each substantially decreased Tax protein expression (Fig 8A). Transcrip-

tion of the HTLV-1 plus-strand (tax) (Fig 8B) and AhR target genes (CYP1A1 and CYP1B1)

(Fig 8D and 8E) was significantly induced by AhR agonists and suppressed by AhR antago-

nists. Neither AhR agonists nor antagonists altered the expression of the HTLV-1 minus-

strand (sHBZ) (Fig 8C).

The significant upregulation of CYP1A1 expression observed during the late burst raised

the question whether CYP1A1 itself contributes to the termination of HTLV-1 plus-strand

expression (S1 and S2 Data, S2 and S3 Figs). However, treatment of the cells with Khellinofla-

vanone 4l (IIIM-517), an inhibitor of CYP1A1 enzymatic activity [70], did not affect HTLV-1

plus-strand expression (Fig 8A and 8B). We conclude that the observed up-regulation of

CYP1A1 indicated activation of the AhR pathway, but CYP1A1 itself is not directly involved in

the termination of the HTLV-1 plus-strand burst.

We then investigated the effect of additional AhR ligands or inhibitors on HTLV-1 plus-

strand reactivation and silencing dynamics using a patient-derived HTLV-1 infected T-cell

clone (11.50) stably transduced with a Tax reporter construct that expresses a modified

EGFP with a half-life of ~2h (d2EGFP). In these cells, the presence of d2EGFP is a surrogate

for Tax protein expression. Live-cell imaging revealed that, compared with untreated cells, a

greater portion of provirus-expressing cells terminated Tax expression in response to treat-

ment with AhR antagonists (Fig 8F). Treatment with AhR agonists or a CYP1A1 inhibitor

did not substantially affect proviral silencing or reactivation kinetics (Fig 8F and 8G). Spon-

taneous proviral reactivation was evident at early stages despite the presence of AhR inhibi-

tors (Fig 8G).

These results indicate that enhanced AhR signalling augments and prolongs HTLV-1 plus-

strand expression but is not the sole determinant of reactivation from latency in patient-

derived T-cell clones.

Discussion

It is well established that the HTLV-1 viral transactivator Tax deregulates the transcription of

many host genes. Both Tax and the minus-strand-encoded HTLV-1 bZIP factor HBZ have

been frequently implicated in leukemogenesis. Tax expression occurs in intermittent tran-

scriptional bursts [20,38], likely in order to limit exposure to the immune system and the cyto-

toxic effects of Tax protein. It remains unclear whether the impact of HTLV-1 on host

transcription, including genes involved in proliferation and apoptosis are immediate and

direct, or late and indirect consequences of proviral reactivation and plus-strand expression.

In this study, a Tax-responsive Timer Protein construct was used to distinguish successive

temporal phases of the spontaneous proviral transcriptional burst, to investigate the precise

trajectory of expression of host genes involved in cell cycle regulation and apoptosis during the

proviral plus-strand burst.

Two naturally-infected T-cell clones competent in the expression of Tax allowed us to iden-

tify both clone-independent and clone-dependent correlates of proviral plus-strand expres-

sion. Clone 3.60 has a deletion in the coding sequence of env on the plus-strand and in the

30UTR of the minus-strand-encoded gene HBZ (S1 Fig). This deletion does not change the

predicted protein sequence of HBZ, and the deleted sequence was absent from the HBZ

expression construct used to investigate the protein-dependent and mRNA-dependent actions
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Fig 8. AhR signalling enhances HTLV-1 plus-strand expression. (A) Two patient-derived HTLV-1 infected T -cell clones

were treated with AhR agonists or antagonists or CYP1A1 inhibitor for 48 hours at the indicated concentrations. DMSO was

used as the vehicle control. The percentage of plus-strand expressing cells among viable cells was quantified by Tax protein

expression using flow cytometry. The bar plot depicts the mean and SEM from two independent experiments. Unpaired two-

tailed t-tests were used to determine the significance of the difference between the vehicle control and the treatment conditions.
� P< 0.05, �� P< 0.01, ��� P< 0.001. Expression levels of (B) tax (plus-strand), (C) sHBZ (minus-strand), AhR target genes

(D) CYP1A1 and (E) CYP1B1 quantified by RT-qPCR after 24-hour treatment with DMSO, AhR activators or inhibitors or

CYP1A1 inhibitor. Bar plots represent the mean and SEM from two independent experiments using two T-cell clones. �

P< 0.05, �� P< 0.01, ��� P< 0.001, ���� P< 0.0001 (unpaired two-tailed t-test). Proviral (F) silencing and (G) reactivation

kinetics in response to treatment with AhR agonists and antagonists. The data depict mean ± SEM from two independent

experiments using a single clone. Individual trajectories are shown in S5 Fig.

https://doi.org/10.1371/journal.ppat.1010387.g008
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of HBZ [71]. However, it remains possible that this deletion influences the half-life or the phys-

iological actions of HBZ mRNA.

Proviral expression deregulated a large number of host genes in each clone: 3851 genes

were deregulated in both clones, which could be grouped into clusters defined by the trajectory

of expression during the proviral plus-strand burst (Fig 3A). Some of these observed effects

may be due to other plus-strand encoded products; however, the cells were sorted on the

expression of the Timer protein, which is directly induced by Tax. Tax activates both the

canonical and non-canonical NF-κB pathways [72]. NF-κB pathway is persistently activated at

the population level in transformed cell lines and primary ATL cells [73,74]. The present

results confirm immediate, clone-independent NF-κB activation during proviral plus-strand

expression (Figs 2A and 3 cluster 1), which is followed by the likely secondary effects of NF-κB

activation (Fig 3 cluster 2); both the immediate and later effects decreased during the termina-

tion of proviral expression (Fig 3 clusters 1–2). TNF itself was downregulated (S1 and S2 Data

and Fig 6): the observed up-regulation of genes in this enrichment term are likely to be the

consequences of NF-κB activation by Tax. These observations suggest that high levels of

NF-κB activation are confined to the active expression of Tax protein accompanying the plus-

strand burst; constitutive activation of NF-κB may not be required for persistence in non-

malignant HTLV-1-infected clones. We also confirmed the immediate up-regulation of IL2RA
(Fig 2A), a known target of Tax, and genes in the “IL2-STAT5 signaling” enrichment term (Fig

3 cluster 1).

There was no consistent relationship between plus-strand and minus-strand expression of

the provirus within each clone or between the clones (Fig 2A). The expression trajectory of the

minus-strand resembled that of SP1 (S3 Fig), a known regulator of HBZ expression [45]. These

results suggest that it is unlikely that Tax directly regulates the expression of HBZ or vice versa,

and imply that the clone-independent responses to HTLV-1 proviral reactivation observed in

this study are not regulated by HBZ during the plus-strand burst.

Tax is known to up-regulate the expression of several genes involved in cell cycle progres-

sion including CCND1, CCND2, CDK4, CDK6, CDK2 and E2F1 [75–80]. The present results

demonstrate a clone-specific association between proviral plus-strand expression and the

expression of genes involved in cell cycle regulation (Fig 3 cluster 4). There was a strong differ-

ence between the two clones in the expression of genes that peak in different cell cycle phases

obtained from Cyclebase 3.0 database (Fig 4A). Increased expression of G1-phase cyclins

CCND1, CCND2 and kinase CDK6 suggests that the cells are stimulated to enter the cell cycle

in each clone. In line with this, G1-phase CDK inhibitors CDKN2A and CDKN2B were down-

regulated (Fig 6). However, subsequent expression of G1/S, S and M phase genes CCNE2,

CCNA1, CCNA2, CCNB1, CCNB2 and CDK1, and key transcription factors that regulate the

cell cycle, E2F1 and FOXM1, diverged between the clones progressively throughout the cell

cycle (Fig 4B). These findings are consistent with previous observations on the same clones

reported by [38]. Billman et al. showed that Tax-expressing cells were more abundant in G1

phase in clone 3.60 and in G2/M phase in clone TBX4B. We note that clone 3.60 also grows

more slowly in cell culture. Although E2F1 is up-regulated in response to Tax [76,77], the

diverging trajectories of E2F1 and its downstream targets indicate that the transcription of

E2F1 is unlikely to be directly activated by Tax (Fig 4B). These observations emphasize the nat-

ural heterogeneity of HTLV-1 infected T-cells and help to reconcile previously published

diverging results on cell-cycle progression in HTLV-1-infected cells.

It has been proposed that the interplay between the effects of Tax in proliferation and the

DNA damage response regulates the fate of Tax-expressing cells [53]. Tax expression causes

double-strand breaks and activation of the DNA damage response [5,29]; however, in the

presence of additional genotoxic agents these pathways are impaired [53]. The activity of p53
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is also repressed in HTLV-1-infected cells, through mechanisms that do not involve its DNA-

binding activity and intracellular localization [81]. Our results show that TP53 itself is deregu-

lated during the plus-strand burst: the trajectory differed between the clones, but expression

returned to baseline in each clone after termination of the burst (Fig 5). There was consistent

up-regulation of another p53 family gene, TP63, and p53 targets including the GADD45 family

members, CDKN1A and XPC (Fig 5). There was immediate up-regulation of genes involved in

DNA damage response during the early burst of proviral expression, including GADD45B,

ATR and global genome nucleotide excision repair (GG-NER) genes RAD23B, XPC and

CETN2 (Fig 5). However, ATM was down-regulated. ATR is known to respond to a wide

range of DNA damage; the observed differences in expression between ATR and ATM in these

clones indicates the presence of DNA damage other than double-stranded breaks. The up-reg-

ulation of DNA damage response genes was followed by the up-regulation of senescence mark-

ers CDKN1A and GLB1, which peaked during the mid-burst phase (Fig 5). Up-regulation of

CDKN1A (p21) associated with hyperactivation of NF-κB by Tax has been shown to cause cell

senescence [14]; however, the present results indicate that the up-regulation of CDKN1A and

GLB1 occurs in the mid-burst phase of persistent Tax expression, yet reduces during the late

phase of the burst. The results demonstrate temporal separation of the DNA damage response

and up-regulation of senescence-related genes during the plus-strand burst, and that sustained

proviral expression may result in reduced proliferative capacity of HTLV-1 infected cells.

Tax has been shown to deregulate both pro-apoptotic and anti-apoptotic genes [17–22].

Consistent with this, both clones strongly up-regulated anti-apoptotic genes BCL2, BCL2L1,

BCL2L2, BIRC2, BIRC3, CFLAR and TNFAIP3; and down-regulated key effectors of both the

extrinsic and intrinsic apoptosis pathways: either BAX or BAK1, and CASP3, and down-regu-

lated death receptor ligands FASLG, TNFSF10, TNF (Fig 6). Although the death receptor

ligands were down-regulated, the death receptors FAS and TNFRSF10B were up-regulated in

both clones (Fig 6). These observations suggest that the deregulation of genes involved in the

extrinsic and intrinsic pathways is an immediate–perhaps direct—effect of Tax. Sustained

expression of Tax is toxic to cells, and the up-regulation of pro-apoptotic factors can partly

explain this; however, the results presented here suggest that the strong up-regulation of anti-

apoptotic factors can counteract the pro-apoptotic effect during proviral plus-strand expres-

sion. Curiously, we observed an up-regulation of pro-apoptotic factors PMAIP1 and BCL2L11
that was sustained throughout the transcriptional burst and termination phases, which may

pose an increased risk of apoptosis after termination of the plus-strand burst.

HTLV-1 proviral latency is associated with the PRC1-mediated ubiquitylation of histone

2A lysine 119 (H2AK119ub1); inhibition of deubiquitylation represses proviral plus-strand

reactivation [61]. Here, we observed the up-regulation of ncPRC1 members RING1, RYBP and

KDM2B through the early and mid-burst phases of proviral expression (Fig 7). Conversely, a

core component of the canonical PRC1, BMI1 (PCGF4), was down-regulated. Targeted

recruitment of PRC1 to non-methylated CpG islands is mediated by KDM2B [82], and RYBP

elevates the enzymatic ability of the PRC1 complex resulting in enhanced deposition of the

H2AK119ub1 mark [83]. The up-regulation of these key PRC1 genes during proviral reactiva-

tion could be involved in the post-burst repression of proviral expression.

Up-regulation of genes involved in the inflammatory response and hypoxia (Fig 3, cluster

1) is consistent with the observation that cellular stress, including hypoxia, enhances proviral

expression [20,59]. Although the hypoxia response observed by Kulkarni et al. was HIF-

1-independent, we found that HIF1A was significantly up-regulated (S3 Fig).

Constitutive high expression of AhR, which is up-regulated in response to Tax, has been

observed in ATL cells [84]. Recently, it was shown that persistent activation of NF-κB is

important for the observed AHR expression: AhR signaling sustains and drives HTLV-1 plus-
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strand expression and can potentiate HTLV-1 reactivation from latency [60]. Consistent with

a previous report [84], we saw expression of AHR, ARNT and direct targets of AhR activation

(CYP1B1, NQO1) in the silent population of cells in both clones. By contrast, proviral plus-

strand expression was not associated with increased expression of AHR, but instead was

accompanied by the down-regulation of AHR, ARNT and down-stream genes (S3 Fig). The

effects observed here of treatment with agonists or antagonists of AhR (Fig 8) and the down-

regulation of genes involved in the AhR pathway during spontaneous HTLV-1 proviral reacti-

vation (S3 Fig), suggest that AhR activation enhances and prolongs proviral plus-strand

expression, but AHR is transcriptionally inhibited during spontaneous HTLV-1 plus-strand

expression. The transcriptional inhibition of the AhR pathway during the proviral burst may

limit the extent and duration of Tax expression.

HTLV-1 expression, and in particular the Tax protein, have been associated with many

transcriptional changes in the infected host T cell. The results presented here make it possible

to distinguish between the immediate effects of the HTLV-1 plus-strand burst on host tran-

scription, and the delayed or secondary effects. These results also demonstrate both clone-

dependent and clone-independent transcriptional responses of the host cell accompanying the

proviral plus-strand transcription. NF-κB was activated in response to HTLV-1 reactivation

and this activation was contained to the duration of the proviral burst, which suggests NF-κB-

mediated effects are not persistently active in clonal populations of naturally-infected T-cells.

The regulation of genes responsible for progression through the cell cycle was clone-specific,

emphasising the heterogeneity of naturally HTLV-1-infected T-cells. However, the up-regula-

tion of genes involved in DNA damage recognition (GG-NER) and senescence were clone-

independent, and associated with active expression of the provirus. Similarly, the transcrip-

tional control of pro- and anti-apoptotic genes was consistent in the two clones and suggested

a strong anti-apoptotic response that is limited to the duration of the burst; upregulation of

certain pro-apoptotic genes outlasted the burst. We also observed the up-regulation of non-

canonical PRC1 members, which are associated with the epigenetic regulation of the provirus

[61]. In the context of these results, it will be important to verify the effects of this transcrip-

tional regulation of host genes, on the dynamics of infected cells during and following the

burst. Finally, we tested the involvement of the AhR pathway in proviral reactivation and

found that while activation of the AhR pathway increased the intensity of the plus-strand

burst, it did not increase the frequency of reactivation.

Materials and methods

Cell culture

The HTLV-1-infected clones used in this study were CD4+CD25+CCR4+ T cells, each carrying

a single copy of the HTLV-1 provirus, derived from peripheral blood cells isolated from

HTLV-1-infected individuals as described previously [40]. The clones were cultured in RPMI-

1640 (Sigma-Aldrich) supplemented with 20% fetal bovine serum (FBS), 2 mM L-Glutamine,

50 IU/ml Penicillin, 50 μg/ml Streptomycin (all from ThermoFisher Scientific) and 100 IU/ml

human interleukin 2 (IL-2, Miltenyi Biotec). Ten micromolar integrase inhibitor, Raltegravir

(Selleck Chemicals) was added to the cultures to prevent secondary HTLV-1 infections. The

cells were supplemented with IL-2 and Raltegravir twice-weekly intervals and cultured at

37˚C, 5% CO2.

Plasmid generation

To create pLJM1-LTR-FT, pLJM1-EGFP (Addgene 19319) was digested with Ndel and EcoRl

to create the vector backbone. A forward primer (5’-ATGGTGAGCAAGGGCGAG-3’) and a
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reverse primer (5’-TCGAGGTCGAGAATTCTTACTTGTACAGCTCGTCCATGC-3’) with a

15 base pair overlap with vector backbone were used in a polymerase chain reaction (PCR) to

generate fast Timer protein timer fragment from plasmid pFast-FT-N1 (Addgene 31910). Five

tandem repeats of Tax responsive element (TRE) type 2 and an HTLV-1 promoter was ampli-

fied from WT-Luc plasmid [85] by PCR using forward (5’-AAATGGACTATCATATGGGG

AGGTACCGAGCTCTTACGC-3’) and reverse (5’-GCCCTTGCTCACCATGGTGGCGGGC

CAAGCCGGCAGTCA-3’) primers with 15 base pair overlap with vector backbone and fast

timer protein PCR product, respectively. Two PCR products were inserted into the vector

backbone using In-Fusion HD Cloning Kit (Takara Bio) to generate pLJM1-LTR-FT. The

sequence of the inserts was verified by Sanger sequencing (GATC Biotech).

pLJM1-LTR-d2EGFP was generated by digesting pLJM1-EGFP with Ndel and EcoRl to

produce the vector backbone. A PCR incorporating a forward primer (5’-GCCACCATGGT

GAGCAAGG-3’) and a reverse primer (5’-TCGAGGTCGAGAATTCCTACACATTGATCC

TAGCAGAAGC-3’) with a 15 base pair overlap with vector backbone were used to amplify

destabilised enhanced green fluorescent (d2EGFP) fragment from pcDNA3.3_d2eGFP plas-

mid (Addgene 26821). A fragment containing 9 copies of TRE type 1 and TRE type 3 and an

HTLV-1 promoter was amplified from SMPU-18x21-EGFP plasmid [86] by PCR using for-

ward (5’-AAATGGACTATCATATGCGGGTTTATTACAGGGACAGCG-3’) and reverse (5’-

GCTCACCATGGTGGCATCTCGCCAAGCTTGGATCTGT-3’) primers with 15 base pair

overlap with vector backbone and d2EGFP PCR product, respectively. pLJM1-LTR-d2EGFP

was formed by inserting the two PCR products into the vector backbone using In-Fusion HD

Cloning Kit. Sanger sequencing was used to verify the sequence of the inserts in the transfer

plasmid.

Lentiviral transduction

HEK 293T cells were seeded into 150 mm Corning TC-treated Culture Dishes (Corning) the

day before transfection to reach an approximately 95% confluence on the day of transfection.

HEK 293 T cells were co-transfected with either pLJM1-LTR-FT or pLJM1-LTR-d2EGFP,

psPAX2 (Addgene 12260) and pCMV-VSV-G (Addgene 8454) plasmids using Lipofectamine

3000 (Invitrogen) following the manufacturer’s protocol. Viral supernatants were harvested 24

and 52 hours post-transfection. Supernatants were centrifuged at 2000 rpm for 10 minutes and

passed through a 0.45 μm syringe filter (Sartorius) to remove debris prior to concentration by

ultracentrifugation at 25000 rpm for 2 hours at 4˚C. One hundred thousand cells were spino-

culated with 100 μl of concentrated viral supernatant in the presence of 8 μg/ml polybrene and

10 mM HEPES (Sigma-Aldrich) at 800 g, 32˚C for 2 hours. Transduced cells were washed

once and cultured in complete medium supplemented with IL-2. Three days post-transduc-

tion, the cultures were supplemented with Raltegravir and Puromycin Dihydrochloride (Ther-

moFisher Scientific) was added at 2 μg/ml twice a week for 14 days to select transduced cells.

Timer protein or d2EGFP-positive cells were sorted by flow cytometry to obtain Timer protein

or d2EGFP-expressing populations. Flow-sorted cultures returned to their steady state within

two weeks of flow sorting. Replicates were grown in parallel. The cultures were maintained in

1 μg/ml Puromycin Dihydrochloride during the regular feeding cycle to prevent the emer-

gence of resistance gene silent populations. The transduced clones expressing two different

Tax reporter systems are given in Table 1.

Flow cytometry analysis

Cells were washed once with PBS and stained with 1 μg/ml viability marker, LIVE/DEAD fix-

able near-IR (ThermoFisher Scientific) for 5 minutes and washed once in FACS buffer (PBS
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+ 5% FCS), and fixed for 30 minutes with fixation/permeabilization buffer of eBioscience

FOXP3/Transcription Factor Staining Buffer Set (ThermoFisher Scientific). The cells were

then washed with permeabilization buffer, stained with 1 μg/ml anti-Tax mAb (Clone LT-4) in

permeabilization buffer for 30 minutes, washed twice in permeabilization buffer, and resus-

pended in FACS buffer. A slightly modified staining protocol was used to co-detect Tax pro-

tein with timer protein. Following the staining with viability marker and subsequent wash, the

cells were fixed with 4% formaldehyde (ThermoFisher Scientific) for 15 minutes, washed once

in FACS buffer, permeabilized with 0.1% Triton X-100 (ThermoFisher Scientific) for 15 min-

utes, washed once with FACS buffer and stained with 1 μg/ml anti-Tax mAb (Clone LT-4) in

FACS buffer for 30 minutes. Finally, the cells were washed twice and resuspended in FACS

buffer. All washes and incubations were performed at room temperature for flow cytometry

analysis and sorting. The cells were acquired on a BD LSRFortessa (BD Biosciences) flow

cytometer. FlowJo software (BD Biosciences) was used to analyse flow cytometry data.

Flow sorting

Live cell flow cytometry sorting under containment level 3 (CL3) conditions was performed in

the CL3 Cell Sorting Facility at Chelsea and Westminster Hospital in London. Cells were

washed once with PBS and stained with 1 μg/ml LIVE/DEAD fixable near-IR viability dye for

5 minutes, washed once and resuspended in RPMI 1640 without phenol red (ThermoFisher

Scientific) supplemented with 2% FCS. Viable Blue−Red− (double negative, DN), Blue+Red−,

Blue+Red+ (double positive, DP), Blue−Red+ or viable d2EGFP+ and d2EGFP− cells were

sorted under sterile conditions using a BD FACSAria lll cell sorter. Duplicate parallel cultures

from each timer protein Tax reporter clone were flow-sorted on the same day. RNeasy Plus

Micro Kit (Qiagen) was used to extract RNA from the flow-sorted timer protein sub-popula-

tions following the manufacturer’s protocol. RNA integrity was quantified using RNA 6000

Pico Kit (Agilent) on a 2100 Bioanalyzer (Agilent).

Live-cell imaging

Flow-sorted proviral-expressing (d2EGFP+) and non-expressing (d2EGFP−) cells were seeded

into a 96 well plate pre-coated with 1 mg/ml Poly-D-Lysine (PDL, Merck). Aryl hydrocarbon

receptor (AhR) agonists and antagonists were added at concentrations indicated in Fig 8. One

hundred nanomolar YOYO-3 Iodide (ThermoFisher Scientific) was added to label dead cells.

Live-cell imaging was performed using Incucyte S3 (Sartorius) live-cell imaging system captur-

ing 9 Phase contrast, green and red fluorescent images per well every 6 hours using a 20x

objective. Image analysis was performed with the “Non-adherent Cell-by-Cell” image analysis

module on the Incucyte, using the parameters listed in Table 2. The percentage of viable cells

that were d2EGFP positive was calculated.

Quantitative real-time PCR

RNeasy Plus Mini kit (Qiagen) was used to extract RNA from cells cultured with vehicle con-

trol (DMSO), or AhR agonists or antagonists. RNA was reverse-transcribed using Transcriptor

Table 1. Patient-derived T-cell clones expressing fluorescent protein-based Tax reporter systems.

Clone Integration site (GRCh38) Tax reporter system

TBX4B Chr 22:43927318 pLJM1-LTR-FT

TBJ 3.60 Chr 4:69701567 pLJM1-LTR-FT

TBW 11.50 Chr 19:27791679 pLJM1-LTR-d2EGFP

https://doi.org/10.1371/journal.ppat.1010387.t001
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First Strand cDNA Synthesis Kit (Roche) with random hexamer primers following manufac-

turer’s instructions. A no-reverse transcriptase (RT) control was included for each sample to

verify the elimination of genomic DNA from RNA samples. RNA transcripts were amplified

with a master mix containing gene-specific primers listed in Table 3 and Fast SYBR Green

Master Mix (ThermoFisher Scientific) on a Viia 7 Real-Time PCR System (ThermoFisher Sci-

entific). The relative quantification of target mRNAs was performed using the LinRegPCR

method [87], and the data were normalised against the internal PCR control, 18S rRNA.

Statistical analysis

Statistical analysis was performed using GraphPad Prism (GraphPad Software) and in R [90].

RNA-seq Alignment and quantification

Paired-end 150 bp poly-A enriched stranded RNA libraries were prepared with NEBNext

Ultra II Directional RNA Library Prep Kit for Illumina. Reads were sequenced on the Illumi-

na’s HiSeq 4000 Sequencing System by Oxford Genomics Centre. Samples were sequenced in

two lanes and the resulting FASTQ files aggregated for each sample. FastQC (RRID:

SCR_014583, version 0.11.8) and MultiQC (RRID:SCR_014982, version 1.8) were used for

quality assessment before and after adapter and quality trimming with Trim Galore (RRID:

SCR_011847, version 0.6.4_dev). The STAR aligner (RRID:SCR_004463, version 2.7.3a) was

used to align reads against a custom merged reference of the human (Ensembl100 GRCh38)

genome [91], HTLV-1 (GenBank: AB513134) genome and the reference sequence of the

Timer protein. A custom gene transfer format (GTF) including coordinates for the Timer pro-

tein and HTLV-1 was also supplied for STAR to transform the alignments into transcript coor-

dinates (—quantMode TranscriptomeSAM). RSEM (RRID:SCR_013027, version 1.3.1) was

then used for transcript quantification of stranded aligned reads (—forward-prob 0) [92].

Table 2. Imaging and mask parameters used for image capturing and analysis on Incucyte S3.

Channel Target Exposure

time

Background fluorescence

correction method

Segmentation parameters

Phase All cells Not available Not applicable Sensitivity (Threshold = 9, Background = 10, Edge = 10, Particle area

(minimum = 30 μm2, maximum =1 μm2)

Green d2EGFP

+ Cells

300 ms Top-Hat (50 μm radius) Not applicable

Red Dead cells 400 ms Top-Hat (50 μm radius) Not applicable

https://doi.org/10.1371/journal.ppat.1010387.t002

Table 3. Gene-specific primers used for RT-qPCR.

Target gene Orientation Sequence Reference

tax Forward 5’-CCGGCGCTGCTCTCATCCCGGT-3’ [88]

Reverse 5’-GGCCGAACATAGTCCCCCAGAG-3’

sHBZ Forward 5’-GGACGCAGTTCAGGAGGCAC-3’

Reverse 5’-CCTCCAAGGATAATAGCCCG-3’

18S Forward 5’-GTAACCCGTTGAACCCCATT-3’

Reverse 5’-CCATCCAATCGGTAGTAGCG-3’

CYP1A1 Forward 5’-CACCATCCCCCACAGCAC-3’ [89]

Reverse 5’-ACAAAGACACAACGCCCCTT-3’

CYP1B1 Forward 5’-GCTGCAGTGGCTGCTCCT-3’

Reverse 5’-CCCACGACCTGATCCAATTCT-3’

https://doi.org/10.1371/journal.ppat.1010387.t003
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Differential expression analysis

Tximport (RRID:SCR_016752, version 1.14.2) was used to import gene level transcript abun-

dance estimates for differential expression analysis using DESeq2 (RRID:SCR_015687, version

1.32.0) in R (version 4.1.2) [90,93,94]. Each clone was analysed separately, and genes were

included for analysis if detected at a minimum of 3 reads in 2 or more of the samples. The LRT

was used to identify significantly DE genes across all Timer protein populations; for pairwise

comparisons the default Wald test was used. FDR adjusted p-value < 0.01 cut-off was used for

both approaches [95].

K-means clustering

K-means clustering (using MacQueen algorithm) with k = 5 was carried out in R on the subset

of DE genes that overlapped in the two clones [90]. A joined matrix of the scaled variance-sta-

bilizing transformation (VST) transformed counts was used as input [96].

Over-representation analysis

Over-representation analysis (ORA) was performed with g:Profiler (RRID:SCR_006809, ver-

sion 0.2.0) against the MSigDB’s Hallmark gene set collection [97,52]. A custom background

of all genes that were subjected to differential expression testing in both clones was used.

Supporting information

S1 Fig. Schematic of provirus in 3.60. Schematic of the provirus in clone 3.60 with the 202 bp

deletion (GenBank: AB513134; coordinates 6420–6621) and coding-regions of Env, Tax and

sHBZ marked.

(PDF)

S2 Fig. Volcano plots of genes deregulated between early burst and silent and late burst

phases. Significantly up-regulated genes are in yellow and down-regulated genes in blue.

HTLV-1 plus, Timer and top 10 most significantly up- and down-regulated genes are labelled;

ns—not significant.

(PDF)

S3 Fig. Gene trajectories of genes mentioned in main text. Y-axis: normalized counts on

log10-scale. Significance is determined with LRT. FDR-corrected p-value< 0.01.

(PDF)

S4 Fig. NF-κB pathway is significantly up-regulated in each clone. (A) K-means clustering

of 10048 significantly DE genes with k = 2 in clone 3.60 and 4798 DE genes in clone TBX4B.

The top 10 genes based on mean rank of sorted p-values are listed on the right in each panel.

The mean expression trajectory is coloured yellow or blue. Significance is determined with

LRT. FDR-corrected p-value < 0.01. (B) Over-representation analysis of K-means clusters

with the Hallmarks gene set from The Molecular Signatures Database (MSigDB). Statistical

significance was determined by Fisher’s exact test in g:Profiler. FDR-corrected p-value < 0.05.

(PDF)

S5 Fig. (A) Tax expression analysis by flow cytometry. NT–non-transduced. (B) tax expres-

sion analysis RT-qPCR. (C) sHBZ expression analysis RT-qPCR. (D) CYP1A1 expression anal-

ysis RT-qPCR. (E) CYP1B1 expression analysis RT-qPCR.

(PDF)
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S1 Data. Differential expression results for clone 3.60.

(XLSX)

S2 Data. Differential expression results for clone TBX4B.

(XLSX)

S3 Data. AhR measurements.

(ZIP)
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