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Summary

Coronaviruses are constantly circulating in humans, causing common colds and mild

respiratory infections. In contrast, infection with the novel severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease-2019

(COVID-19), can cause additional severe complications, particularly in patients with

obesity and associated metabolic disturbances. Obesity is a principal causative factor

in the development of the metabolic syndrome; a series of physiological, biochemical,

clinical, and metabolic factors that increase the risk of obesity-associated diseases.

“Metabolically unhealthy” obesity is, in addition to metabolic disturbances, also asso-

ciated with immunological disturbances. As such, patients with obesity are more

prone to develop serious complications from infections, including those from SARS-

CoV-2. In this review, we first describe how obesity and related metabolic distur-

bances increase the risk of SARS-CoV-2 infection. Then, mechanisms contributing to

COVID-19 complications and poor prognosis in these patients are discussed. Finally,

we discuss how obesity potentially reduces long-term COVID-19 vaccination effi-

cacy. Despite encouraging COVID-19 vaccination results in patients with obesity and

related metabolic disturbances in the short-term, it is becoming increasingly evident

that long-term COVID-19 vaccination efficacy should be closely monitored in this

vulnerable group.
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1 | INTRODUCTION

Coronavirus disease-2019 (COVID-19) caused by the novel severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has taken

the world by storm. Detected in more than 200 countries, with the

number of confirmed cases already exceeding 114 million and deaths

tallying at 2,5 million worldwide, it is one of the worst disasters of

modern times.1

Viruses are grouped based on the type of genetic material they

carry. DNA viruses have integrated large host DNA sequences in their

genome throughout their evolution, which consequently allows for

exploitation of host cell metabolism in order to promote viral replica-

tion. In contrast, RNA viruses such as respiratory syncytial virus, (para)

influenza virus, metapneumovirus, rhinovirus, and coronavirus have

smaller genomes consisting of RNA sequences encoding only a few

proteins which are unfamiliar to the host. Despite this, RNA viruses

can still manipulate host cells through other mechanisms to induce

viral replication.2 Coronaviruses are responsible for 10%–30% of the

common colds in humans.3 For example, the HCoV-229E and HCoV-

OC43 viruses, regularly flaring up in temperate climate countries

during winter or early spring, cause respiratory infections with mild

clinical symptoms such as nasal obstruction, rhinorrhea, sneezing, sore

throat, and cough.4,5 In contrast, other coronaviruses such as severe

acute respiratory syndrome coronavirus (SARS-CoV) and Middle East

respiratory syndrome coronavirus (MERS-CoV) frequently cause seri-

ous respiratory illness.6,7 The clinical course of SARS and MERS is

remarkably similar, although subtle differences do exist such as the

incidence of acute respiratory distress syndrome and the percentage

of patients with comorbidities being higher in MERS then in SARS. In

line, the mortality rate of MERS (36%) is higher compared with SARS

(10%).8 Both, SARS-CoV and MERS-CoV are zoonotic coronaviruses

that cross from animals to humans. Similarly, the novel highly

pathogenic coronavirus, named SARS-CoV-2, is also zoonotic.9,10

Sequencing data show a high resemblance between SARS-CoV and

SARS-CoV-2.11 Yet the higher reproductive (R) number of SARS-

CoV-2 (2.87–3.44)12 compared with SARS-CoV (1.7–1.9)13 indicates

the higher pandemic potential of SARS-CoV-2, as also reflected in the

rapid global spread of SARS-CoV-2 numbering in millions, whereas

the absolute number of SARS-CoV cases was only 8096.1,12–14 Alarm-

ingly, more contagions mutated SARS-CoV-2 variants have been

detected in several countries. For example, the novel SARS-CoV-2 lin-

eage designated as Variant of Concern 202012/01 (VOC), originally

detected in England, has a substantial transmission advantage com-

pared with the non-VOC lineage with an estimated difference in

R-number ranging between 0.4 and 0.7 in a period of high levels of

social distancing.15 In the earliest stages of the current COVID-19

pandemic, it was thought that mostly the elderly, aged >60, were at

risk of poor prognosis upon SARS-CoV-2 infection. However, it has

become apparent that also patients aged <60 years are at risk of

developing severe illness, particularly when they suffer from

obesity.16

Notably, 10%–25% of the individuals with obesity are not

affected by metabolic disturbances,17–19 whereas in the other

individuals the abnormal or excessive fat accumulation presents a risk

to health. Obesity is a principal causative factor in the development of

the metabolic syndrome (MetS). MetS is defined as a series of physio-

logical, biochemical, clinical, and metabolic factors that increase the

risk of obesity-associated diseases. These risk factors include central

obesity with a focus on waist circumference, insulin resistance, hyper-

tension, increased plasma triglycerides and reduced plasma high-

density lipoproteins (HDL).20 Though other abnormalities have also

been associated with MetS, the presence of three of the five previ-

ously mentioned components is considered sufficient for a diagnosis

of this syndrome, especially when associated with visceral obesity.21

Obesity, accompanied by the characteristics of MetS, constitutes the

greatest threat to global health, affecting 20%–25% of the adult popu-

lation.21 These patients are at increased risk of developing cardiovas-

cular diseases, type 2 diabetes, and non-alcoholic steatohepatitis

(NASH).22 “Metabolically unhealthy” obesity is, in addition to meta-

bolic disturbances, also associated with immunological disturbances,

such as increased systemic leukocyte numbers and increased pro-

inflammatory plasma cytokine levels. This chronic low-grade inflam-

matory state disrupts the immune response in patients with obesity.

In that context, substantial evidence indicates a link between obesity

and reduced host defense. For example, obesity increases the suscep-

tibility for postoperative and nosocomial infections, and individuals

with obesity are more prone to develop serious complications from

common infections.23,24 Moreover, during influenza pandemics

(e.g., H1N1), individuals with obesity were overrepresented at the

intensive care unit (ICU) and needed longer duration of mechanical

ventilation compared with individuals with a healthy weight.25,26 Dia-

betes, a frequently occurring obesity-related metabolic comorbidity,

actually tripled the risk of hospitalization after H1N1 infection and

even quadrupled the risk of ICU admission once hospitalized.27 Addi-

tionally, obesity is associated with a reduced immunogenicity in

response to vaccination for hepatitis B, tetanus, and influenza.28,29

In line with these data, it is not surprising that patients suffering from

obesity and related metabolic disturbances have poorer prognoses

upon infection with the highly pathogenic coronaviruses SARS-CoV,30

MERS-CoV,30 and SARS-COV-2.31

In the current COVID-19 pandemic, individuals with obesity have

an increased risk of testing positive for SARS-CoV-2.32 Additionally, a

substantial amount of patients hospitalized with COVID-19 suffer

from comorbidities closely associated with obesity, such as diabetes

and cardiovascular disorders,31 presumably leading to the higher ICU

admission rate and mortality rate of these patients with COVID-19.

Because most COVID-19 cohort studies do not report whether

patients with obesity also have metabolic disturbances related to

MetS, although very likely, it is currently difficult to argue if and

how MetS exacerbates the severity of COVID-19 beyond the

role of obesity. Proposed explanations for the strong association

between obesity and severe COVID-19 include pulmonary

dysfunction,33 hypertension,34 upregulated angiotensin-converting

enzyme 2 (ACE2) expression,35,36 hyperglycemia,37 dyslipidemia,38

insulin resistance,39,40 chronic low-grade inflammation,33 a pre-

existing pro-thrombotic environment,41 and impairment of endothelial
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and gut barrier function.42,43 Although in-depth analysis of these

mechanisms is beyond the scope of the current review, we refer to

previously published mechanistic insights and other specific reviews

when applicable. In this review, we aim to explain the molecular link

between obesity and related metabolic disturbances and increased

SARS-CoV-2 infection risk. We will focus specifically on upregulated

TMPRSS2 and ACE2 expression (cell membrane proteins facilitating

SARS-CoV-2 viral entry into host cells), hyperglycemia, and weakened

immune surveillance. We then describe how several of the above-

mentioned mechanisms contribute to the poorer prognosis of

COVID-19 in this patient population. Lastly, the risk of reduced long-

term COVID-19 vaccination efficacy in patients with obesity is dis-

cussed by focusing on potentially reduced memory T cell and memory

B cell responses upon re-infection.

2 | OBESITY AND RELATED METABOLIC
DISTURBANCES INCREASE THE RISK OF
SARS-COV-2 INFECTION

Due to the variety of clinical symptoms associated with obesity, rang-

ing from overexpression of proteins that facilitate viral entry into cells

to hyperglycemia and hyperinsulinemia, these patients are at

increased risk of acquiring infections, including SARS-CoV-2. In line,

meta-analysis data showed an association between individuals with

obesity and the risk of testing positive for COVID-19.32 Here, several

factors that contribute to the increased susceptibility of patients with

obesity and related metabolic disturbances to get infected with SARS-

CoV-2 are described.

2.1 | ACE2 and TMPRSS2 overexpression

After binding to host receptors, viruses can use the endosomal or the

non-endosomal pathway to enter host cells. Viral cell entry through

the endocytic route is usually by transport in clathrin-coated vesicles

or pits, whereas the non-endocytic route of entry involves directly

crossing the plasma membrane at neutral pH.44 Generally, the

endosomal pathway is advantageous for viruses: the endocytic vesicle

supports intracellular transport of the virus, the endocytic vesicle con-

tains specific proteases that provide necessary proteolytic activation

of certain viruses, and upon endocytosis, no viral antigens remain on

the cell membrane resulting in delayed detection by the immune sys-

tem.45 Depending on the host cell type, SARS-CoV-2 can use the

endosomal and non-endosomal pathways to establish viral cell

entry.46 In the non-endosomal pathway of SARS-CoV-2, the spike

protein (S) of virus binds to host receptor, angiotensin-converting

enzyme 2 (ACE2), a membrane bound aminopeptidase highly, but not

exclusively, expressed in the lungs and cardiovascular system.47 Upon

binding, the host protease, transmembrane protease serine

2 (TMPRSS2), expressed on the cell membrane, cleaves S into the S1

and S2 subunits to activate S to facilitate virus-host cell fusion.48 In

the endosomal pathway, SARS-CoV-2 also binds ACE2, but instead of

activating TMPRSS2, SARS-CoV-2 is internalized via clathrin-

mediated endocytosis.49 Thus, in both pathways, ACE2 plays an

essential role to induce viral cell invasion. In normal physiological situ-

ation, ACE2 functions as key regulatory enzyme in the renin-

angiotensin aldosterone system (RAAS), a hormonal system regulating

blood pressure and water balance. In the RAAS system, angiotensin II

(Ang II) binds to the angiotensin 1 or 2 receptor (AT1R or AT2R). Bind-

ing of Ang II to AT1R induces a proinflammatory vasoconstrictive

effect, whereas binding of Ang II to AT2R counteracts this effect by

promoting vasodilatation and inhibiting inflammatory events.50 ACE2

converts Ang II into its metabolite angiotensin-(1-7) (Ang (1-7)). Fol-

lowing its conversion from Ang II, Ang (1-7) then acts on the MAS1

proto-oncogene G protein-coupled receptor (MGRA) pathway,

resulting in an anti-inflammatory vasodilative response.51,52 In the

context of obesity and its related metabolic disturbances, elevated

insulin levels, as observed in patient with insulin resistance and MetS,

have been speculated to upregulate TMPRSS2 expression via pho-

sphoinositide 3-kinase/protein kinase B/androgen receptor signal-

ing.53 In addition to TMPRSS2 overexpression, two ex vivo studies

comparing heart samples from patients with (n = 23 and n = 40,

respectively) and without (n = 9 and n = 15, respectively) heart failure

found that ACE2 was upregulated in the heart failure samples.54,55

Moreover, a large genome-wide association study (74,124 type 2 dia-

betes cases and 824,006 controls) reported a causal link between type

2 diabetes and elevated ACE2 expression in the lung.56 A comprehen-

sive description of altered ACE2 expression in comorbidities associ-

ated with severe COVID-19 has recently been published.57 Strikingly,

in patients with obesity and related metabolic disturbances, ACE2

expression can be upregulated not only due to the disease physiology

but also due to the use of medication to control disease. For example,

angiotensin receptor blockers, used to reduce blood pressure, can

increase ACE2 expression35,36,58 and starting insulin therapy within

1 year of a diabetes diagnosis has been reported to be causally associ-

ated with increased ACE2 expression.56 Taken together, due to

upregulated ACE254–56,59 and TMPRSS253 expression in patients with

obesity and related metabolic disturbances, SARS-CoV-2 cell invasion

is facilitated, contributing to an increased risk to get infected with

SARS-CoV-2 (Figure 1).

2.2 | Hyperglycemia

Hyperglycemia, a hallmark of MetS and type 2 diabetes (both strongly

associated with obesity), increases the rate of infections. Despite

strict glycemic control, patients with diabetes still have a 1.7-fold

probability of developing an ICU-acquired bloodstream infection com-

pared with subjects without diabetes.60 Hyperglycemia potentially

also contributes to an increased risk of SARS-CoV-2 infection.

Upon SARS-CoV-2 infection, lung epithelial cells start producing

chemokines to recruit macrophages into the lung.61 When these mac-

rophages also become virally infected with SARS-CoV-2, mitochon-

drial reactive oxygen species (mtROS) production is increased

inducing stabilization of hypoxia-inducible factor-1α (HIF-1α).
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Following, HIF-1α promotes metabolic reprogramming of these mac-

rophages driving them toward glycolysis. The metabolically rep-

rogrammed glycolytic SARS-CoV-2 infected macrophages acquire a

pro-inflammatory phenotype resulting in an augmented secretion of

interferons (IFN), leading to enhanced ACE2 expression in those lung

macrophages.62 It is possible that due to elevated glucose levels, as

frequently observed in obesity and MetS, the glycolysis-mediated

ACE2 upregulation in the lung macrophages of these patients subse-

quently increases SARS-CoV-2 cell invasion, contributing to an

increased risk to get infected with SARS-CoV-2 (Figure 1).

In physiological conditions, glucose is not present in airway secre-

tion. However, in a cohort study of patients admitted to a general ICU

and expected to require intubation for more than 24 h (n = 60), a rela-

tionship appeared to be present between a high blood glucose con-

centration and the appearance of glucose in airway secretion.

However, no correction was performed for confounding factors such

as waist circumference or BMI.63 It has been suggested that glucose

in airway surface liquid possibly contributes to airway inflammation

by impairing host immunity through glycosylation of innate or

acquired immune proteins.63 In the context of SARS-CoV-2 infection,

it has also been proposed that hyperglycemia potentially changes the

glycosylation of ACE2 and the viral spike protein S, altering binding of

S to ACE2 and the degree of the immune response to the virus,64

thereby contributing to increased susceptibility of patients with MetS

and type 2 diabetes (both strongly associated with obesity) to get

infected with SARS-CoV-2 (Figure 1).

2.3 | Weakened immune surveillance

Immunological surveillance, a monitoring process of the immune sys-

tem to detect and destroy virally infected and neoplastically

F IGURE 1 Obesity increases the risk of SARS-CoV-2 infection and leads to poorer prognosis. Blue arrows: Mechanisms contributing to
increased SARS-CoV-2 infection risk in patients with obesity. Red arrows: Mechanisms contributing to poorer prognosis of COVID-19 patients
with obesity. In patients with obesity, elevated insulin levels upregulates TMPRSS2 expression, which in combination with overexpression of
ACE2 increases SARS-CoV-2 cell invasion. Hyperglycemia increases ACE2 expression and potentially changes the glycosylation of ACE2 and the
viral spike protein S, altering binding of S to ACE2. Together, these factors contribute to an increased risk of SARS-CoV-2 infection in patients
with obesity. Hyperglycemia compromises the immune response in the lungs and may contribute to lung inflammation. Overexpression of ACE2
increases SARS-CoV-2 viral cell entry. Intracellularly, the virus induces cellular damage in adipose, heart, pancreas, and liver cells. In obesity, the
organ function of the adipose tissue, heart, pancreas and liver is already affected due to (ectopic) fat deposition. SARS-CoV-2 can aggravate organ
damage and thus contribute to multi-organ failure. Chronic low-grade inflammation, as observed in obesity, potentially facilitates the cytokine

storm induced by SARS-CoV-2 consequently, extremely high levels of pro-inflammatory cytokines, enhance cellular damage and eventually
induce multi-organ failure. Obesity is associated by a pro-thrombotic environment. SARS-CoV-2 induces endothelial cell damage. In combination
with the cytokine storm induced by SARS-CoV-2 this increases the risk of thrombosis in COVID-19 patients with obesity. SARS-CoV-2 might
block autophagy, resulting in decreased viral clearance. The disrupted autophagy process in obesity potentially further reduces SARS-CoV-2
clearance and by extension increases viral load. Together, these mechanisms lead to poorer prognosis of patients with obesity infected with
SARS-CoV-2. ACE2, Angiotensin-converting enzyme 2; TMPRSS2, transmembrane protease serine 2
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transformed cells in the body, is severely weakened in patients with

obesity and related metabolic disturbances (see Andersen et al. for

more mechanistic details).28 Obesity has been shown to be linked to a

compromised B cell functioning, directly contributing to a weakened

immune surveillance. For example, diet induced obesity (DIO) in mice

lowers bone marrow B cell frequency, and in a murine infection study

with influenza A viral infection, mice fed a western diet had

suppressed antibody titers compared with mice receiving a control

diet.65 In line, a (small) human cohort study comparing four groups

(young lean n = 8; young obese n = 6; elderly lean n = 8; and elderly

obese n = 4) indicated that obesity is associated with reduced anti-

body titers after influenza vaccination, in both young and elderly

patients.66 In addition to a reduced humoral immune response, avail-

able evidence also indicates that impaired cellular immunity contrib-

utes to weakened immune surveillance in obesity. In that context,

progressive obesity in mice is linked to inhibition of thymopoiesis,

consequently restricting T cell repertoire diversity. This observation

correlates with data in middle-aged humans, which also indicated that

obesity compromises thymic output.23 Moreover, a human cohort

study (comparing individuals with healthy weight n = 137, overweight

n = 154, and obesity n = 164) demonstrated that individuals with

obesity have decreased effector memory T (Tem) cell activation after

ex vivo vaccine strain virus challenge compared with healthy weight

individuals.67 Remarkably, initial clinical trials show that COVID-19

vaccines are effectively protecting patients with obesity and patients

with obesity-related metabolic disturbances (e.g., chronic pulmonary

diseases, diabetes, hypertension, liver disease, and cardiovascular dis-

ease) in the short-term.68–71 These most recent data indicate that

SARS-CoV-2 is well detected by immune surveillance mechanisms in

patients with obesity and related metabolic disturbances. As such,

these findings are suggesting that a potentially reduced long-term

COVID-19 vaccination efficacy in obesity (cfr. infra) would not be due

to defects in immune surveillance mechanisms in these vulnerable

patients.

3 | COVID-19 LEADS TO POORER
PROGNOSIS IN PATIENTS WITH OBESITY
AND RELATED METABOLIC DISTURBANCES

In the current COVID-19 pandemic, patients suffering from diabetes,

hypertension, and cardiovascular disorders are overly represented in

the hospital.31,72 This observation is indicative of these patients being

a vulnerable population with increased risk of complications and

poorer prognosis upon SARS-CoV-2 infection.

3.1 | Pneumonia

The most frequent serious complication of COVID-19 is pneumonia.

Upon hospital admission (almost) all patients suffer from unilateral or

bilateral pneumonia.9,73 Upon SARS-CoV-2 infection, lung macro-

phages undergo a HIF-1α mediated metabolic reprogramming toward

glycolysis, inducing a pro-inflammatory phenotype.62 These glycolytic

macrophages secrete pro-inflammatory cytokines, such as TNFα and

IL-6, which have been suggested to contribute to epithelial cell death

in the lungs of patients with COVID-19.62 It is possible that due to

elevated glucose levels, as observed in obesity, MetS, and type 2 dia-

betes, the glycolytic macrophages secrete enhanced levels of pro-

inflammatory cytokines. As such, high blood glucose levels, may

increase lung inflammation, predisposing patients with obesity-related

metabolic disturbances to become more susceptible to develop severe

pneumonia upon SARS-CoV-2 infection, which potentially partially

explains the poorer prognosis of these patients upon SARS-CoV-2

infection (Figure 1).

3.2 | Multi-organ failure

Apart from the lungs, SARS-CoV-2 also affects other organs.

COVID-19 has been shown to be associated with gastrointestinal

injury, reduced kidney function, and liver injury (see Renu et al. for

more details).74 Here, we focus specifically on adipose tissue, heart,

liver, and pancreas dysfunction in COVID-19 patients with obesity

and related metabolic disturbances.

3.2.1 | Multi-organ failure (adipose tissue)

Central or visceral obesity is defined as increased adipose tissue sur-

rounding the intra-abdominal organs. Ironically, despite the increased

health risk associated with visceral obesity (e.g., development of car-

diovascular diseases, insulin resistance and diabetes), patients with

obesity may have prognostic benefits in some diseases such as heart

failure,75 chronic obstructive pulmonary disease (COPD),76 and

pneumonia,77 being expressed as the “obesity paradox.” However,

recent meta-analysis data reveal no evidence for an “obesity paradox”
in the context of COVID-19.78 As extensively reviewed by Kruglikov

et al.79 and Goossens et al.,80 one of the main reasons for poor prog-

nosis of COVID-19 patients with visceral obesity is an increased num-

ber of adipocytes in combination with upregulated ACE2 expression.

This turns the visceral adipose tissue into a viral reservoir for SARS-

CoV-2, eventually leading to visceral adipose tissue dysfunction and

systemic inflammation,79,81 presumably contributing to the poorer

prognosis COVID-19 patients with obesity (Figure 1).

3.2.2 | Multi-organ failure (heart)

ACE2, the receptor through which SARS-CoV-2 enters host cells, is

upregulated in the heart of patients with cardiovascular disorders54,55

(frequently observed in patients with obesity). This makes the heart a

potential target organ for SARS-CoV-2 infection. Tissue distribution

analysis of ACE2 in human donor hearts through single-cell RNA

sequencing revealed that ACE2 is highly expressed in pericytes,

whereas cardiomyocytes only have a low expression. Furthermore,
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cell–cell interaction analysis between pericytes and other cell types

indicated that neuron-like cells and endothelium cells (ECs) have the

closest crosstalk interaction with pericytes. Therefore, it is suggested

that SARS-CoV-2 attacks pericytes and causes capillary ECs dysfunc-

tion, leading to micro-circulation disorders.55 Moreover, cardiac

pericyte dysfunction may increase the propensity for atrial fibrillation

via increased myocardial inflammation, fibrosis, increased tissue

edema, and interstitial hydrostatic pressure.82

Because in visceral adipocytes of patients with central obesity

ACE2 is upregulated79,81 and meta-analysis data showed a strong pos-

itive correlation between epicardial adipose tissue thickness and

MetS,83 ACE2 expression in epicardial fat cells from patients with

MetS has also been explored. Data are limited, but one study analyz-

ing epicardial biopsies from patients who underwent open-heart sur-

gery demonstrated that, similar to visceral adipocytes, epicardial fat

cells highly express ACE2. Relevantly, highest ACE2 expression was

found in biopsies from patient suffering from obesity and diabetes.84

Therefore, the thickened epicardial adipose tissue, observed in

patients with obesity-related insulin resistance,85 diabetes,84 and

MetS83 might be considered another viral reservoir for SARS-CoV-2.

Moreover, SARS-CoV-2 internalizes ACE2 upon binding, resulting in

loss of cell surface ACE2.43 Because loss of ACE2 expression in epi-

cardial adipose tissue has been associated with increased epicardial

adipose tissue inflammation,86 a mechanistic link with COVID-19

related myocarditis87 might be present. Furthermore, it is tempting to

speculate that fat deposition, presence of perivascular adipocytes in

the heart, and adipocyte infiltration into the myocardium contribute

to COVID-19-related heart damage in patient with obesity or related

metabolic disturbances by inducing pro-inflammatory responses; how-

ever, there are currently no solid data available to support this.

Overall, because patients with obesity or related metabolic distur-

bances often already have a reduced heart function, accumulative

heart damage induced by cardiac pericyte dysfunction and increased

myocardial inflammation may well contribute to poorer prognosis of

these patients upon SARS-CoV-2 infection (Figure 1).

3.2.3 | Multi-organ failure (liver)

Results from a recent (relatively small) cohort study comparing

patients with obesity (n = 20) and patients with obesity and NASH

(n = 17) demonstrated that ACE2 and TMPRSS2 are upregulated in

the liver of patients with NASH,88 making the liver another potential

target organ for SARS-CoV-2 infection. In line with these observa-

tions, single-cell RNA sequencing of healthy liver tissue to investigate

the tissue distribution of hepatic ACE2 demonstrated high ACE2

expression specifically in the cholangiocytes, whereas low or no

ACE2 expression is observed in the hepatocytes, immune cells, and

stromal cells. Therefore, it can be speculated that SARS-CoV-2 uses

ACE2 as host receptor to induce direct damage of the bile ducts, lead-

ing to liver damage and reduced liver function.89 For example, a

cohort study with patients hospitalized with COVID-19 (n = 1099)

demonstrated that around 20% of the patients has elevated serum

aspartate aminotransferase (AST) and alanine aminotransferase (ALT),

and around 10% has elevated serum total bilirubin upon hospital

admission.90 Similarly, another cohort study (n = 148) reported that

37.2% of the patients hospitalized with COVID-19 have an abnormal

liver function, indicated by elevated ALT, AST, g-glutamyltransferase,

alkaline phosphatase (ALP), and total bilirubin.91 Elevated serum ALP

levels are indicative for bile duct damage, supporting the suggestion

that SARS-CoV-2 uses ACE2 on the cholangiocytes to induce direct

damage of the bile ducts, leading to reduced liver function. Yet, in

both these cohort studies, it is not clear whether the COVID-19

patients with liver damage upon hospital admission were obese or

had obesity-related metabolic disturbances. Also, in two most recent

meta-analysis, which confirm that COVID-19 affects liver function, a

split group analysis of patients with and without obesity is miss-

ing.92,93 Moreover, these meta-analysis do not distinguish between

direct damage of the hepatocytes consequently reducing liver func-

tion or SARS-CoV-2 induced cholangiocytes damage eventually

affecting liver function.

Given that COVID-19 negatively affects liver function, and

obesity-associated NASH is also characterized by reduced liver func-

tion, the latter group potentially forms a high-risk group with poor

prognosis upon SARS Cov-2 infection. In line, preliminary data from a

multicenter cohort study (n = 153) reported that pre-existing chronic

liver disease (22.4% non-alcoholic fatty liver disease [NAFLD], 19.7%

alcohol, 11.8% hepatitis B, 10.5% hepatitis C, 35.6% other/combina-

tion) appears to be an independent risk factor for poor outcome in

COVID-19 patients, also after correction for BMI in multiple logistic

regression analysis.94 One of the universal mechanisms affecting liver

function in patients with obesity is excessive ectopic fat accumulation

in the liver. Excessive lipid deposition in the liver exacerbates hepatic

insulin resistance and promotes inflammation. Relevantly, an ongoing

prospective COVID-19 cohort study (currently n = 201, 18% hospital-

ized) reported that ectopic fat in the liver was higher in individuals

hospitalized with COVID-19 compared with non-hospitalized

individuals,95 indicating a potential link between hepatic steatosis and

severe COVID-19. Presumably, the low-grade chronic inflammatory

state in patients with obesity-associated NAFLD or NASH aggravates

the immunogenic response induced upon SARS-CoV-2 infection.

Overall, elevated ACE2 levels in the liver of patients with obesity and

related metabolic disturbances, together with exacerbated pro-

inflammatory responses as a consequence of hepatic steatosis, may

well explain the poorer prognosis of these patients upon SARS-CoV-2

infection (Figure 1).

3.2.4 | Multi-organ failure (pancreas)

ACE2 is expressed in the pancreas, particularly in the exocrine glands

and the islets of the pancreas, as demonstrated by a tissue distribution

study utilizing single-cell RNA sequencing.96 In line, SARS-CoV-2

exposure to ex vivo cultured human pancreatic islets isolated from

human donors, resulted in viral SARS-CoV-2 replication, and affected

glucose-dependent insulin secretion in the pancreatic islets.97
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Although clinical data are limited, case reports of new-onset type

1 diabetes after SARS-CoV-2 infection have been described,98,99 and

results from an early cohort study with severely ill COVID-19 patients

(n = 121) demonstrated that 17% (13 out of 121) of those patients

has pancreatic injury, although four of these patients had been treated

with glucocorticoids during hospitalization, which may be associated

with drug-induced pancreatitis.96 In addition, two COVID-19 cohort

studies (n = 218 and n = 50, respectively) indicated that a selection

of patients with type 2 diabetes, who presented with diabetic

ketoacidosis upon hospital admission, showed high mortality

rates.100,101 Together, these data suggest that SARS-CoV-2 indeed

potentially induces pancreatic damage, which might have detrimental

consequences in patients with pre-existing pancreatic diseases.

Obesity is characterized by excessive lipid deposition in the pan-

creas, which is associated with impaired insulin secretion102 and

inflammation.103 Crucially, the same prospective cohort study (cur-

rently n = 201, 18% hospitalized) comparing ectopic fat in the liver

between hospitalized and non-hospitalized COVID-19 patients also

reported that ectopic fat in the pancreas was higher in individuals

hospitalized with COVID-19 compared with non-hospitalized

individuals,95 indicating a potential link between excessive ectopic fat

deposition in the pancreas and severe COVID-19. The chronic low-

grade inflammatory state in patients with obesity or related metabolic

disturbances may exacerbate the immunogenic response induced

upon SARS-CoV-2, consequently aggravating pre-existing pancreatic

inflammation, thereby also contributing to the poorer prognosis of

patients with obesity upon SARS-CoV-2 infection (Figure 1).

3.3 | Cytokine storm syndrome

Chronic low-grade inflammation is a well-established characteristic in

patients with “metabolically unhealthy” obesity. Mechanisms contrib-

uting to this chronic low-grade inflammatory state include increased

activation of the RAAS system,80 in which specifically Ang II has been

shown to induce metabolic inflammation104 and altered adipose tissue

functioning results in an amplified release of pro-inflammatory

adipocytokines.105 In that context, elevated leptin levels (which might

reduce long-term COVID-19 vaccination efficacy [cfr. infra]), the driv-

ing force for obesity-related metabolic disorders,106 can contribute to

chronic low-grade inflammation.107 Moreover, lipid metabolism is

severely dysregulated in obesity. This dysregulated lipid metabolism,

in combination with elevated oxidative stress levels (which potentially

also affects long-term COVID-19 vaccination efficacy in patients with

obesity [cfr. Infra]), leads to an increased production of oxidized low-

density lipoproteins (oxLDL). Subsequently, increased oxLDL contrib-

utes to chronic low-grade inflammation by interacting with immune

cells and disturbing cholesterol trafficking.108 As such, increased

oxLDL levels strongly correlate with obesity-related metabolic distur-

bances.108,109 Similarly to obesity, COVID-19 is also associated with

an excess production of pro-inflammatory cytokines.110 SARS-CoV-2

infection of epithelial cells mediates mitochondrial ROS production,

consequently stimulating NLR family pyrin domain containing

3 (NLRP3) and nuclear factor kappa-light-chain-enhancer of activated

B cells (NF-kB) synthesis, which triggers excessive cytokine release by

immune cells.111 Moreover, SARS-CoV-2 enhances this cytokine

secretion by internalizing ACE2 upon binding, due to which

Ang II cannot be converted anymore, leading to more cytokine

production.43,80 Crucially, there seems to be a direct link between

obesity-mediated chronic low-grade inflammation and the cytokine

storm development upon SARS-CoV-2 infection observed in these

patients: upon SARS-CoV-2 infection, macrophages chronically

exposed to oxLDL are suggested to potentiate pre-existing chronic

low-grade inflammation through apoptosis-associated speck-like pro-

tein containing a CARD (ASC) mediated caspase-1 activation, leading

to hyper-inflammation and excessive cytokine secretion.112 In

addition, SARS-CoV-2 can interact with protein kinase R (PKR) and

PKR-like endoplasmic reticulum kinase (PERK),113 potentially down-

regulating the insulin signaling pathway through serine phosphoryla-

tion of insulin receptor substrates, eventually enhancing insulin

resistance.39 Insulin resistance in adipocytes results in production of

monocyte chemoattractant protein 1 (MCP1), which recruits pro-

inflammatory macrophages, creating a pro-inflammatory environ-

ment.114 Because insulin resistance is associated with obesity, and

creates a pro-inflammatory environment, it might be possible that the

cytokine storm observed in COVID-19 patients with obesity is aggra-

vated via SARS-CoV-2-induced insulin resistance.39 Overall, chronic

low-grade inflammation and insulin resistance potentially facilitate the

cytokine storm induced by SARS-CoV-2. Consequently, extremely

high levels of pro-inflammatory cytokines enhance cellular damage

and eventually induce multi-organ failure, thereby contributing to

poorer prognosis of this COVID-19 infected patient population

(Figure 1).

3.4 | Thromboembolism

Upon entry of SARS-CoV-2 into endothelial cells, inflammatory

responses are induced thereby generating a pro-thrombotic environ-

ment.115 Extensive meta-analysis has demonstrated that COVID-19

patients with thromboembolism have a higher ICU admission rate and

mortality rate compared with patients without thromboembolism.116

In the context of obesity and related metabolic disturbances, several

correlates exist between increased fibrinogen, factor VIII, von

Willebrand factor, plasminogen activator inhibitor-1 (PAI-1), and

decreased antithrombin III with metabolic features such as waist cir-

cumference, BMI, liver tests, and parameters of lipid and glucose

metabolism as reported in a cohort of patients with NAFLD (n = 273).

After multiple regression analysis, hepatic steatosis remained an inde-

pendent predictor of PAI-1 levels in this cohort.117 Also, other cohort

studies (n = 49 and n = 60) are clearly pointing toward an increased

risk of thrombosis in COVID-19 patients with obesity. For instance,

anti-thrombin levels were reported to be significantly lower in

COVID-19 patients with central obesity compared with patients with-

out obesity,118 whereas D-dimer levels were significantly higher. Ele-

vated D-dimer was independently associated with ALT elevation,119
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indicating that microvascular thrombosis might be induced by liver

inflammation in these patients. In line, another cohort of COVID-19

patients with (n = 75) and without (n = 125) NALFD reported that

NAFLD was associated with elevated D-dimer levels at the time of

ICU admission, and crucially, within this cohort, the incidence of deep

vein thrombosis was higher in COVID-19 patients with NAFLD.120

Previously described pro-inflammatory mechanisms (e.g., excessive

ectopic fat deposition in the liver and the cytokine storm syndrome)

contribute to extremely high levels of pro-inflammatory cytokines,

which consequently, can activate the coagulation system.115,121 Pre-

sumably, this response enhances the generation of the pro-thrombotic

environment induced upon SARS-CoV-2 entry into endothelial cells,

subsequently increasing the risk of thrombosis in COVID-19 patients

with MetS and potentially contributing to the higher ICU treatment

rate and mortality rate of these patients upon SARS-CoV-2 infection

(Figure 1).

3.5 | Viral load

In normal physiological conditions, autophagy contributes to the

defense against viral infections. Double membrane vesicles con-

taining viral particles fuse with lysosomes where the virus is

degraded. The innoxious viral antigens are used for antigen presen-

tation to T cells to coordinate a powerful adaptive immune response

against the virus. Additionally, autophagy initiates an innate immune

response by activating pattern recognition receptor signaling

resulting in IFN production.122 However, in patients with obesity,

MetS, cardiovascular disease, or NASH, the autophagy process

shows apparent abnormalities.123,124 For instance, in MetS,

autophagy is attenuated in the liver, whereas in adipose tissue, the

autophagic activity is induced.124 One of the factors contributing to

attenuation of the autophagy activity in NASH is an elevation of

plasma cholesterol. Cholesterol accumulation inside lysosomes leads

to lysosomal dysfunction and inhibition of autophagy. A possible

explanation for the blocked autophagy is that lipid accumulation

alters the membrane structure, consequently leading to improper

fusion between lysosomes and autophagosomes.125,126 In the con-

text of host defense against SARS-CoV-2, this blocked autophagy

process potentially contributes to decreased SARS-CoV-2 clearance,

consequently leading to increased viral load. Additionally, many

viruses have acquired properties to manipulate autophagy for their

own benefit.122,127 In line, SARS-CoV-2 has been shown to repro-

gram host cell metabolism to limit AMP-activated protein kinase/

mammalian target of rapamycin complex 1 (AMPK/mTORC1) activa-

tion and autophagy.128 Mechanistical details on how disturbed

autophagy potentially contribute to the close correlation between

obesity, and the severe clinical manifestations of COVID-19 have

recently been reviewed elsewhere.129 Overall, in patients with MetS

and NASH the disrupted autophagy process potentially reduces

SARS-CoV-2 clearance further and by extension increases viral load,

leading to more severe COVID-19 symptoms and poor prognosis

upon SARS-CoV-2 infection (Figure 1).

4 | OBESITY POTENTIALLY REDUCES
LONG-TERM COVID-19 VACCINATION
EFFICACY

Although clinical care for patients with COVID-19 has significantly

improved last few months, there are currently no therapies proven to

be effective to cure COVID-19. Thus, there remains an urgent need

for vaccines to protect vulnerable populations, including patients with

obesity and associated metabolic comorbidities. The European Medi-

cine Agency (EMA) and The US Food and Drug Administration (FDA)

have both authorized two mRNA-based COVID-19 vaccines for all

adult individuals.68,69,130 In addition to these two mRNA-based

COVID-19 vaccines, the FDA130 and EMA70 have recently authorized

other adenovirus based COVID-19 vaccines, although these vaccines

are currently on hold in several countries due to thrombosis related

complications in some patients. Moreover, other potential COVID-19

vaccine candidates are currently in development.131 Obesity is associ-

ated with a reduced immunogenicity in response to vaccination for

hepatitis B, tetanus, and influenza.23,24,28,29 These vaccination studies

hardly report whether patients with obesity also have MetS-related

metabolic disturbance. Therefore, although very likely, we cannot

argue how MetS reduces immunogenicity after vaccination beyond

the role of obesity. Here, we discuss how patients with obesity poten-

tially develop a reduced immunogenicity in response to COVID-19

vaccination by focusing on memory T cell and memory B cell

responses in these patients.

4.1 | Memory T cells

The cytotoxic T cell response is essential for the viral infection clear-

ance, and effector memory T (Tem) cells play a crucial role in providing

long-term immunity.132 A recent cohort study (n = 36) indicated that

after 17 years, blood collected from individuals recovered from SARS

still contains long-lived Tem cells reactive against SARS-CoV peptides.

Remarkably, these long-lived Tem cells also cross-react to proteins of

SARS-CoV-2.133 Other cohort studies have found SARS-CoV-2 spe-

cific T cells,134,135 and recently, SARS-CoV-2-specific Tem cells136

could be isolated from blood of patients recovered from COVID-19

(n = 20, n = 25, and n = 235, respectively). These SARS-CoV-2 spe-

cific Tem cells, which are generated upon primary infection, or upon

injection with a COVID-19 vaccine,137,138 are needed for long-term

protection against SARS-CoV-2. Unfortunately, several animal studies

indicate that Tem cell responsiveness is severely hampered in obesity.

For instance, after primary influenza infection, both lean and DIO mice

have a population of influenza specific Tem cells in the lung, but obese

mice show a greater percent loss of Tem cells over time, resulting in

significantly decreased Tem cell numbers in the lung of obese mice

post infection.139 It has also been shown that after a secondary influ-

enza virus challenge, although DIO mice had similar absolute percent-

ages of Tem cells in the lung compared with lean mice, the percentage

of influenza specific Tem cells responding to the challenge by produc-

ing IFNy was significantly reduced.140 Also, after secondary influenza
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infection, Tem cells from DIO mice have an altered cellular metabolism,

largely characterized by increased oxygen consumption, which was

not reversed with weight loss.141 However, because other mice stud-

ies did not find an effect of obesity on Tem cell development and func-

tion after influenza infection or vaccination,142,143 controversy exists

about the impact of obesity on Tem cell responsiveness after infection

or vaccination. Yet a human cohort study comparing individuals with

normal weight (n = 137) and obesity (n = 164) vaccinated against

influenza demonstrated that individuals with obesity have decreased

Tem cell activation after ex vivo vaccine strain virus challenge.67

Overall, these data seem to suggest that patients with obesity

potentially have a reduced Tem cell responsiveness, even after weight

loss. The underlying mechanisms of the observed reduced Tem cell

responsiveness after infection or vaccination is still unknown, but

shorter telomere length of T cells might offer a possible explana-

tion.144 In a cohort of 22 elderly (>70 years) vaccinated against

influenza, patients with long T cell telomeres had a slight increase in

the percentage of influenza-specific T cells in their blood compared

with elderly with a shorter T cell telomere length, 84 days post

vaccination.145 Because obesity is associated with shorter telomeres

due to chronic low-grade inflammation and oxidative stress,146,147 it is

tempting to speculate that this affects Tem cell proliferation and

development upon infection and vaccination. Another explanation

might be, similar as in cancer, that obesity increases the expression of

programmed cell death protein 1 (PD-1) and programmed death-

ligand 1 (PD-L1) on Tem cells inducing T cell exhaustion and thus

reducing Tem cell responsiveness,148 which by extension potentially

diminishes long-term protection against re-infections. In the context

of COVID-19, initial clinical trials show that both mRNA-based

COVID-19 vaccines and the adenovirus based COVID-19 vaccines

are effectively protecting humans in short-term, also when suffering

from obesity or associated metabolic disturbances.68,69,71 Nonethe-

less, for all vaccines, it is currently not known yet how long this

protection will last. Because obesity is associated with reduced Tem

cell responsiveness, long-term protection against re-infections is

also diminished. Therefore, despite COVID-19 vaccination, patients

with obesity may still be more vulnerable for re-infection with

SARS-CoV-2 (Figure 2).

4.2 | Memory B cells

The humoral B cell immune response is crucial for clearance of viral

infections and long-term immunity.149 The SARS-CoV-2 virus elicits a

robust humoral B cell response as evidenced by a high production of

virus specific antibodies found in blood of several COVID-19 cohorts

(n = 518 and n = 607).150,151 A recent study showed that most indi-

viduals reach a neutralizing antibody peak after an average of

23.1 days post onset of symptoms. In the follow-up period of this

study, it was found that IgM and IgA antibodies decline rapidly after

20–30 days post onset of symptoms, whereas IgG antibodies lasted

longer (max study follow-up of 95 days).152 Relevantly, a longitudinal

cohort study (n = 254) showed that during the early phase, SARS-

CoV-2 specific class-switched IgG and IgM memory B (Bm) cells are

similarly present in high amounts in the blood of patients recovered

from COVID-19, whereas the population of class-switched IgA Bm

cells was low. Over time, the class-switched IgM Bm cell population

declines and the class-switched IgG Bm cells become the dominant

population.153 Notably, these SARS-CoV-2 specific class-switched Bm

cells, either induced by primary infection or upon vaccination,154,155

are involved in regulating the immune response against SARS-CoV-2

F IGURE 2 Obesity potentially reduces long-term COVID-19
vaccination efficacy. Obesity alters PD1 and PD-L1 expression on Tem
cells, weakening stem cell responsiveness. Also, obesity is associated
with elevated systemic ROS causing shorter telomere length of
immune cells, leading to decreased Tem and Bm proliferation.
Moreover, high serum leptin levels, as observed in obesity, reduces
AID and E47 expression in B cells, inducing B cell class-switching
defects, potentially leading to decreased SARS-CoV-2-specific-IgG
production. These factors together reduce long-term protection
against re-infections. Therefore, despite COVID-19 vaccination,
patients with obesity may still be vulnerable for re-infection with
SARS-CoV-2. AID, activation-in induced cytidine deaminase; Bm, B
memory cells; IgG, immunoglobulin G; PD1, programmed cell death
protein 1; PD-L1, programmed death-ligand 1; ROS, reactive oxygen
species; Tem effector memory T cells
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upon re-infection. However, similar as Tem cell responsiveness, several

studies indicate that humoral Bm cell responsiveness is also reduced in

obesity. For example, compared with lean mice, DIO mice revealed

lower hemagglutination inhibition (HAI) titers (standard assay used to

determine antibody levels to influenza virus) after influenza infec-

tion65,143 or adjuvant influenza vaccination.156 A similar result was

found in a human cohort study (consisting of four groups, young lean

n = 8; young obese n = 6; elderly lean n = 8 and elderly obese n = 4)

comparing individuals with normal weight and obesity vaccinated

against influenza, in which both the young and elderly individuals with

obesity had a decreased percentage of class-switched Bm cells and an

increased percentage of exhausted Bm cells in their blood, compared

with respective healthy weight individuals of the same age.66 These

observations potentially partially explain, the increased risk of acquir-

ing influenza infection, despite vaccination, of individuals with obesity

compared with individuals with a healthy weight. The data may be

explained by increased leptin levels (a pro-inflammatory adipokine)

observed in individuals with obesity.157 In the presence of leptin,

ex vivo cultured human B cells showed class-switching defects, poten-

tially regulated via leptin-induced downregulation of activation-

induced cytidine deaminase (AID) (the enzyme necessary for class

switch recombination, somatic hypermutation and IgG production)

and its transcriptional regulator E47. Therefore, leptin might decrease

influenza-vaccine-specific-IgG production in individuals with obe-

sity.158 In contrast, other cohort studies comparing individuals with a

normal weight and obesity vaccinated against seasonal influenza

(n = 34, 50% obese)67 or tick-borne encephalitis (n = 73, 50%

obese),159 indicated that individuals with obesity at first develop

stronger antibody responses but have a steeper decline over time. In

addition, individuals with obesity vaccinated against tick-borne

encephalitis had more naïve B cells in their blood and less expansion

to Bm cells upon booster vaccination.159 Similarly, as discussed above,

this decreased Bm cell expansion might also be explained by the

shorter telomere length in obesity.145–147 In the context of

COVID-19, initial clinical trials show that al authorized COVID-19 vac-

cines are effectively protecting patients with obesity and related met-

abolic disturbances in the short-term.68–71 Nonetheless, for these

vaccines, it is currently not known yet how long this protection lasts

in healthy individuals as well as in patients with obesity. Because obe-

sity is associated with reduced humoral Bm cell responsiveness, long-

term protection against re-infections is also diminished. Therefore,

despite COVID-19 vaccination, patients with obesity may still be vul-

nerable for re-infection with SARS-CoV-2 (Figure 2).

5 | CONCLUSION AND FUTURE
DIRECTIONS

Overall, due to increased expression of proteins facilitating viral

entry into cells and hyper-glycosylation of those proteins, patients

with obesity and related metabolic disturbances have an increased

risk of becoming infected with SARS-CoV-2. In addition, due to a

compromised immune response in the lungs, hyper-inflammatory

systemic responses, increased risk of thrombosis and increased viral

load, patients with obesity and related metabolic disturbances also

develop severe complications upon SARS-CoV-2 infection, leading

to higher morbidity and mortality risks upon COVID-19. Although

clinical care for patients with COVID-19 has significantly improved

last few months, there are currently no therapies proven to be

effective to cure COVID-19. Therefore, there remains an urgent

need for vaccines to protect vulnerable populations such as

patients with obesity and related metabolic disturbances. Initial

clinical trials show that currently authorized COVID-19 vaccines

are effectively protecting these patients, nonetheless, it is currently

not known yet how long this protection lasts.68,69 Obesity is asso-

ciated with reduced memory immune responses leading to dimin-

ished long-term protection against re-infections. Therefore, despite

encouraging COVID-19 vaccination results, patients with obesity

may still be vulnerable for re-infection with SARS-CoV-2 in the

long run. This may affect herd immunity and impact SARS-CoV-2

elimination. In conclusion, to limit further impact of COVID-19 on

patients with obesity and related metabolic disturbances, and soci-

ety, long-term COVID-19 vaccine efficacy should be closely moni-

tored in these patients.
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