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Abstract

Other-race faces are discriminated and recognized less accurately than own-race faces. Despite a wealth of research character-
izing this other-race effect (ORE), little is known about the nature of the representations of own-race versus other-race faces. This
is because traditional measures of this ORE provide a binary measure of discrimination or recognition (correct/incorrect), failing
to capture potential variation in the quality of face representations. We applied a novel continuous-response paradigm to
independently measure the number of own-race and other-race face representations stored in visual working memory (VWM)
and the precision with which they are stored. Participants reported target own-race or other-race faces on a circular face space that
smoothly varied along the dimension of identity. Using probabilistic mixture modeling, we found that following ample encoding
time, the ORE is attributable to differences in the probability of a face being maintained in VWM. Reducing encoding time, a
manipulation that is more sensitive to encoding limitations, caused a loss of precision or an increase in variability of VWM for
other-race but not own-race faces. These results suggest that the ORE is driven by the inefficiency with which other-race faces are
rapidly encoded in VWM and provide novel insights about how perceptual experience influences the representation of own-race

and other-race faces in VWM.
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Across a broad range of research paradigms investigating face
recognition, there is a robust other-race effect (ORE), defined
here as inferior performance when identifying faces of a dif-
ferent race than faces of the same race as the perceiver (see
Bothwell, Brigham, & Malpass, 1989; Meissner & Brigham,
2001, for reviews).

In numerous studies examining the ORE, participants have
been presented with own-race and other-race faces during a
study phase and then asked to recognize those faces when they
are intermixed with novel identities (the old/new face recogni-
tion task). A ubiquitous finding is that participants make more
false alarms (incorrectly identifying an unseen face as familiar)
and fewer hits (correctly identifying a previously seen face as
familiar) for other-race compared to own-race faces, reflecting
impairments in the encoding, storage and/or retrieval of other-
race face representations from memory (Meissner & Brigham,
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2001; Young, Hugenberg, Bernstein, & Sacco, 2012). A similar
own-race advantage is found when learning is more extensive
(e.g., Cambridge Face Memory Test, in which faces were
learned from multiple angles; McKone et al., 2012), and when
memory demands are minimized by asking participants to
make same/different judgments for pairs of faces that differ
only in feature shape or spacing (e.g., Hayward, Rhodes, &
Schwaninger, 2008; Mondloch et al., 2010).

Although impaired memory for other-race relative to own-
race faces is robust, traditional measures only provide a single
binary measure of perceivers’ memory performance; each re-
sponse is scored as either correct or incorrect. Such measures
fail to capture potential variability in the quality of the repre-
sentation, and so little is known about differences in the pre-
cision with which own-race and other-race faces are stored.
The assumption that the representation of any given face
stored in memory is a perfect representation is theoretically
untenable and has recently been challenged by studies exam-
ining the precision with which basic visual features (colors,
orientations) are stored in both visual working memory
(VWM; Bays, Catalao, & Husain, 2009; Wilken & Ma,
2004; Zhang & Luck, 2008) and long-term memory (LTM;
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Brady, Konkle, Gill, Oliva, & Alvarez, 2013; also see Luck &
Vogel, 2013, for a review).

A recent and more refined approach, the continuous re-
sponse paradigm, provides a more sensitive index of the struc-
ture of memory (and perceptual) representations (Bays et al.,
2009; Bays & Husain, 2008; Brady, Konkle, & Alvarez, 2011;
Heyes, Zokaei, & Husain, 2016; Sarigiannidis, Crickmore, &
Astle, 2016). In the continuous response paradigm, participants
are asked to recall and report the remembered target, which is
presented in an array of stimuli that vary along a continuous
feature dimension (e.g., color, orientation). Response error is
evaluated by calculating the angular deviation between the tar-
get item and the item reported by the participant. Probabilistic
mixture modeling allows one to measure many sources of over-
all error (Bays et al., 2009; Bays & Husain, 2008; Brady et al.,
2013), including (a) failure in encoding or retrieving the target
item, leading to a random response (i.e., guessing); (b) noisiness
of the stored representation, leading to decreased precision
when the target is recalled; (c) trial-by-trial variability in the
mean precision of those responses (i.e., how consistently the
stored representation is recalled); and (d) representation of the
target item being interrupted by a nontarget item, which leads to
recalling the nontarget instead of the target (i.e., a swap error).
Here, we used this methodological combination of continuous
recall and mixture modeling to provide a more refined exami-
nation of the nature of own-race and other-race face represen-
tations, and the types of errors that lead to recognition impair-
ments for other-race faces.

Although the continuous response paradigm has been wide-
ly used in studies examining VWM for basic features (e.g., hue,
line orientation), its use with more complex stimuli is limited.
Lorenc, Pratte, Angeloni, and Tong (2014) investigated the role
of perceptual experience in encoding and storing face represen-
tations in VWM by contrasting VWM for upright versus
inverted faces. It is widely established that inverted faces are
discriminated and recognized less accurately than own-race
faces; like the ORE, this inversion effect has been attributed
to differential experience (Maurer, Le Grand, & Mondloch,
2002). Lorenc et al. reported a significant loss of precision for
inverted faces relative to upright faces with no difference in the
guess rate. The fidelity of representations in LTM is constrained
by those in VWM (Brady et al., 2013). Thus, the difference in
recognition performance between upright and inverted faces is
partially attributable to the effect of visual experience on the
fidelity of face representations encoded in VWM. Whether a
similar difference in fidelity characterizes own-race compared
to other-race faces remains unknown.

Here, we provide the first examination of the extent to
which the ORE is attributable to a failure to encode and re-
trieve other-race faces from memory versus a loss of precision
in their representations. To examine this question, we used a
continuous response paradigm in which participants were
asked to maintain own-race or other-race faces in VWM,

and to report a target face on a unique circular face space that
smoothly varied along the dimension of identity. The angular
deviation between the target face and the face selected by the
participant provides a more sensitive measure of face memory
than can be obtained through traditional face recognition par-
adigms, as it captures continuous variability in face
representations.

In two experiments, we examined the nature of the repre-
sentations of own-race and other-race faces that are stored in
VWM. In Experiment 1, we presented two faces on each trial,
one of which was then cued for recall. By applying two dif-
ferent mixture models to the raw error, we differentiated po-
tential sources of error that contribute to the ORE: random
guesses, swap errors, and lack of precision and/or trial-by-
trial variability in precision for a remembered face. In
Experiment 2, we presented only one face but varied presen-
tation time. Applying mixture modeling here allowed us to
examine whether reducing presentation time especially im-
paired VWM for other-race faces.

Experiment 1: Storing two faces with ample
encoding time

Method

Participants Fifteen Caucasian adults (one male, ages 19-30
years, SE = 0.68) from Brock University participated in the
study and were included in the final analysis, a sample size
comparable to that in other studies using the continuous re-
sponse paradigm (Brady et al., 2013; Lorenc et al., 2014). All
participants reported minimal contact with other-race identi-
ties and verbally confirmed normal or corrected-to-normal
vision. An additional seven participants were excluded from
the final analysis because they reported extensive contact with
Asian identities (n = 1) or had extremely poor performance
(i.e., guess rate exceeded 2.5 standard deviations of the mean;
n = 6). All participants provided written informed consent and
received either research credit or a small honorarium for their
participation. This study received clearance from the Research
Ethics Board at Brock University.

Stimuli Four Caucasian and four East Asian faces were ac-
quired from the Let’s Face It database at Brock University.
All faces were female, physically similar, displayed in full-
front view and unfamiliar to the participants. Each identity
was paired with each of the other same-race identities to create
six pairings. We then used a linear morphing procedure to
create 19 morphed faces for each pairing by blending the
two faces in 5% steps (e.g., 95/5, 90/10, . . ., 5/95).
Nineteen morphs across six face pairs for each of the two race
categories resulted in a total of 236 faces (228 morphs; eight
originals) that were used in the experiment.
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A unique circular face space comprised of Caucasian or
East Asian faces, analogous to a color wheel, was created on
each trial by randomly placing the four original (anchor) faces
with equal distances between them. Based on their relative
location, morphed faces were then placed among the anchor
faces such that identity varied continuously around the wheel.
Because all faces used to create the face wheel were wholly
unfamiliar to our participants, no face on the wheel had special
status (i.e., categorical perception was precluded). Thus, in the
360° circular face space, 80 faces (four anchors; 76 morphs)
were evenly distributed, making the difference between any
two neighboring faces equivalent to 4.5°. All faces were stan-
dardized at 395 x 510 pixels and were presented on a 19-inch
computer monitor with the viewing distance approximately 60
cm. Stimuli were presented, and participants’ response were
collected using PsychoPy1.8 (Peirce, 2007, 2009).

Procedure Each participant completed a 1-hour session, com-
prising eight practice trials (four/race) followed by 240 test
trials. The race of face was blocked such that half of the par-
ticipants were presented with Caucasian faces first and the
other half with East Asian faces first.

Each trial began with a sequential presentation of two
faces (e.g., 90%A—-10%B; 55%C-45%D) that were chosen
randomly from the face space (could be anchor or morphed
faces), followed by a delay period of 900 ms, and then a face
wheel (see Fig. 1). The two faces were cued by different
colors (red or green) and were presented sequentially for
1,500 ms each, with a 150-ms interstimulus interval. A
1,500 ms presentation time ensures full encoding of each face
in VWM (Lorenc et al., 2014). One of the two faces was
randomly assigned as the target face and the other as the
nontarget face. Participants were unaware of which face
was the target and were instructed to memorize both of them.
After the 900-ms delay, a red or green rectangle appeared in
the center of the screen indicating which face was the target.

Fig. 1 Continuous response task used in the first experiment. a Two study
faces, each of which was paired with a cue color b Response phase. Target
face was cued by a color (e.g., red), and when participants moved the
mouse along the face wheel, the face in the center changed
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Eight randomly chosen and equidistant faces from the face
wheel were presented around the central target item at equal
intervals. Participants were instructed to locate the target face
by using a computer mouse to select a point on the face
wheel. While they moved the mouse along the face wheel,
the face in the center changed simultaneously to indicate the
face they were selecting. Like the composition of the face
wheel, both the color (red/green) and the position (first/sec-
ond) of the target were randomized across trials. Participants
proceeded at their own pace and were asked to be as accurate
as possible in their decision.

Data analysis

Overall response error Response error was calculated for each
trial as the angular deviation (in degrees; —180° to 180°) be-
tween the correct orientation of the target face and the orien-
tation of the face reported by the participant. To obtain a ge-
neric measure of the overall precision of response, we calcu-
lated the reciprocals of the standard deviation (1/SD) of re-
sponse error across trials separately for own-race and other-
race faces.

To further identity the sources of increased response error
for other-race faces, we fit the raw error using two models: a
variable-precision model, in which precision of face represen-
tations varies across items and trials (Fougnie, Suchow, &
Alvarez, 2012; van den Berg, Shin, Chou, George, & Ma,
2014) and an equal-precision model, in which each face rep-
resentation is assumed to have equal precision (Bays &
Husain, 2008; Zhang & Luck, 2008). The general method
for both model types involves finding the maximum likeli-
hood of a mixture of distributions, which are fit to the raw
error.

Variable-precision model In the case of the variable-precision
model, the precision of responses is assumed to vary according
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simultaneously to indicate the face that they were reporting. Note.
Permissions preclude showing faces used in the actual study; faces in
here are for demonstration only. (Color figure online)
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to a higher order, truncated normal distribution (Fougnie et al.,
2012). The model therefore takes the following form:

p(é) = (1—7)1/)(5—9) + 7%

where ~ represents the proportion of trials on which the partic-
ipant is randomly guessing (i.e., a flat distribution). The error
term on the remaining trials is defined as the difference between

the target face (f) and the face selected by the participant %
these responses fall under a wrapped Student’s ¢ distribution
(1)). The model, therefore, returns three parameters of interest:
the proportion of trials on which the participant is assumed to
be guessing (7), the mean standard deviation of responses on
remaining trials (trials on which they did report the target; in-
verse of precision), and the standard deviation of response error
on these remaining trials (reflecting intertrial variability in pre-
cision). A larger standard deviation of response error indicates
more variability in the quality of the face representation stored
across items and trials.

Equal-precision model We also fit an equal-precision model to
each participant data set for own-race and other-race faces. We
used the three-component model (Bays et al., 2009; Bayes,
Gorgoraptis, Wee, Marshall, & Husain, 2011), described by
the following equation:

p(0) = a6, (8-0) + 5o $0.(0-0) +5-

where «, (3, and ~y represent the probability of reporting the
correct target face, the probability of mistakenly reporting the
nontarget face, and the probability of responding randomly, re-
spectively. Here, a + 3+ = 1. In addition, 6 represents the cor-
rect location of the target face, and 0 represents the location of
the face reported by the participant. The von Mises (circular
normal) distribution is ¢,,with the mean zero and the concen-
tration parameter «. Greater x indicates a more concentrated von
Mises distribution. The number of nontarget faces is m, in this
case, m=1, and {1, ©,, ...} are the locations of the m non-
target faces. Thus, according to this model, the overall response
distribution comprises a mixture of three components (Bays
etal., 2009): (1) the proportion of trials on which the participant
is assumed to be guessing; (2) target (correct) responses, from a
von Mises distribution centered on the target face, indicating the
probability that perceivers correctly remembered the target face;
and (3) nontarget responses, drawn from the same von Mises
distribution but centered on the nontarget face (i.e., the distractor
face), indicating the probability of a swap error.

The proportion of correct responses can also be trans-
formed into an estimate of the number of successfully main-
tained faces by multiplying the probability of correct re-
sponses by the set size (e.g., n = 2 in Experiment 1) for both
own-race and other-race faces.

For all model fits, maximum likelihood estimates of the
mixture parameters for each participant and face race were
obtained using an expectation-maximization algorithm imple-
mented with the MemToolBox 1.0 (Myung, 2003; Suchow,
Brady, Fougnie, & Alvarez, 2013).

Results

Overall response error The distribution of errors for own-race
and other-race faces is shown in Fig. 2. A paired-samples 7 test
revealed a significant main effect of face race, #(14) = 3.69, p
= .002, Cohen’s d = 0.95; overall, participants had smaller
response errors for own-race faces (Mgp = 56.61°) than for
other-race faces (Msp = 69.66°).

Variable-precision model In order to examine the trial-to-trial
variability in precision, as well as the proportion of trials in
which participants guessed, a variable-precision model was fit
to the raw error (see Table 1 for parameter means). Paired-
samples 7 tests revealed a significantly higher guess rate for
other-race faces than for own-race faces, #(14) = 3.57, p =
.003, Cohen’s d = 0.92, with no difference in precision of
VWM for own-race versus other-race faces, #(14) = 0.67, p
= .514, Cohen’s d = 0.17, and no difference in variability in
the precision of VWM for own-race versus other-race faces,
#(14) = 0.634, p = .537, Cohen’s d = 0.16.

Equal-precision model This pattern was confirmed using the
equal-precision model. The result of the model fit is plotted in
Fig. 2. Paired-samples ¢ tests revealed a lower correct response
rate for other-race faces (M = .58) than for own-race faces (M
=.78), #(14) = 3.57, p = .003, Cohen’s d = 0.95. The signif-
icant difference in the proportion of correct responses was
attributable to a significant difference in guess rate (M = .24
vs .03 for other-race vs. own-race faces), #(14) = 3.36, p =
.005, Cohen’s d = 0.88, with no difference in swap errors (M =
.18 vs .19 for other-race vs. own-race faces), #(14)=0.17, p =
.865, Cohen’s d = 0.04. The change in guess rate reflects a
diminished number of stored faces for other-race (k = 1.16)
relative to own-race (k = 1.56) faces. Notably, we did not
detect any difference between the precision of VWM for
own-race and other-race faces, #(14) = 0.74, p = 472,
Cohen’s d = 0.19, as indicated by comparable standard devi-
ations of von Mises distributions for own-race faces (35.26°)
and other-race faces (32.34°).

Discussion

When holding two potential target faces in VWM and given
ample encoding time, participants made significantly larger
errors in their recall of other-race compared to own-race faces,
as indicated by the greater angular deviations (SD) between
the target face and the face that was reported by the
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Fig. 2 Distribution of response errors for own-race (left) and other-race
(right) faces. Histogram displays the proportion of binned response errors
relative to the target face. Black lines display the three-component mix-
ture model, fit to the raw error. Blue lines indicate the width of the von
Mises (circular normal) distribution at 1 standard deviation and are
flanked by corresponding own-race and other-race identities (£1 SD of

participant. Results of both variable-precision and equal-
precision modeling further informed us that the increase in
overall errors for other-race faces was attributable to an in-
creased guess rate but not to reduced precision or an increase
in swap errors. Under these task conditions, differences in
performance between own-race and other-race faces can be
attributed to impairments in the encoding, consolidation,
and/or retrieval of other-race face representations, rather than
a change in either the precision with which remembered faces
are stored or an increase in identity confusion.

Experiment 2: Storing one face with limited
encoding time

In Experiment 1, participants were given ample time (1,500
ms) to encode each of two faces; one face was then cued for

Table 1 Mean (and SD) of variable precision model

parameters (Experiment 1)

Parameter Face condition Mean (SD)

Guess rate Own 0.160 (0.150)
Other 0.336 (0.220)

Mean SD (degrees) Own 42.947 (24.323)
Other 38.179 (27.729)

SD variance (degrees) Own 23.207 (29.106)
Other 30.773 (37.023)
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error). P, indicates proportion of correctly reported targets, and SD indi-
cates 1 standard deviation of the circular error for these responses. The
additional peakiness surrounding the zero-target value is better accounted
for by the variable precision model (not pictured). Note. Permissions
preclude showing faces used in the actual study; faces here are for dem-
onstration only. (Color figure online)

recall. This protocol is maximally sensitive to storage limita-
tions (Bays et al., 2011) and also enabled us to examine the
contribution of interference by other faces to the ORE.
Encoding limitations are best captured by very brief presenta-
tions (Bays et al., 2011). To examine whether any observed
differences in Experiment 1 were attributable to differences in
encoding, in Experiment 2 we examined whether reducing
presentation time (from 1,500 to 200 ms) especially impairs
the probability and/or precision of correct responses for other-
race faces. To isolate limitations in encoding, we further re-
duced the set size to one, thus working well below the capacity
of VWM observed in Experiment 1.

Method

Participants Twenty Caucasian adults (four males, ages 18-25
years, SE = 0.45) from Brock University participated in the
study.

Stimuli and procedure The stimuli and procedure were iden-
tical to Experiment 1, with three exceptions: There were 420
test trials, only one face was presented on each test trial, and
the presentation time of the target face varied across trials. On
half of the trials faces were presented for 200 ms, and on the
other half for 1,500 ms (as in Experiment 1).

Data analysis All analyses were performed identically to those
in Experiment 1, with one exception: Given the absence of a
nontarget face in Experiment 2, a two-component mixture
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model proposed by Zhang and Luck (2008) was used. The
components in this model are comparable to those in the
three-component model, but swap errors are removed. The
components are described by the following equation
(here,a+y=1):

p(@) = agp, (@—9) + Vﬁ
Results

Overall response error The distribution of errors from
Experiment 2 is displayed in Fig. 3. A 2 (face race: own-
race vs. other-race faces) x 2 (presentation time: 200 ms vs.
1,500 ms) repeated-measures ANOVA revealed significant
main effects of face race, F(1, 19) = 7.68, p = .012, npz =
.29, and presentation time, F(1, 19) = 40.26, p < .001, T]p2 =
.68. Overall response error was lower for own-race faces (Msp
= 59.57°) than for other-race faces (Mg = 65.89°) and when
faces were presented for longer time (Mgp = 58.69°) than
when faces were presented for shorter time (Mgp = 66.77°).
The Face Race x Presentation Time interaction did not reach
significance, F(1, 19) = 1.85, p =.190, np2 =.09. Thus, inde-
pendent of the length of encoding time, participants demon-
strated greater error in their recall of other-race compared to
own-race faces, consistent with the ORE.
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- Other-race Short

| Own-Race Target

Variable-precision model A 2 (face race: own-race vs. other-
race faces) x 2 (presentation time: short vs. long) repeated-
measures ANOVA, with guess rate as the dependent variable,
revealed a significant main effect of presentation time, F(1,
19) = 10.72, p = .004, npz = (.36, but no main effect of face
race, F(1,19)=0.837,p =.372, np2 =0.04, and no Face Race
x Presentation Time interaction, F(1, 19) =0.18, p = .674, np2
= 0.01. Participants had a higher guess rate for the shorter
presentation time than for the longer presentation, but reduc-
ing presentation time did not particularly impair the probabil-
ity of other-race faces being recalled from VWM (see Table 2
for parameter means).

A 2 (face race) x 2 (presentation time) repeated-measures
ANOVA, with mean precision of responses as the dependent
variable revealed, significant main effects of face race, F(1,
19) =5.29, p = .033, np2 = 0.22, and presentation time, F(1,
19)=6.70, p = .018, p> = 0.26. The fidelity of own-race faces
stored in VWM was greater than that of other-race faces and,
overall, the fidelity of faces was greater for longer than for
shorter presentation times. Notably, we found a significant
interaction between face race and presentation time, F(1, 19)
=12.06, p = .003, np” = 0.39. For own-race faces, the preci-
sion of VWM was comparable for short (M = 38.8°) and long
(M = 41.1°) presentation time, #(19) = 0.557, p = .584,
Cohen’s d = 0.125; however, reducing presentation time par-
ticularly impaired the fidelity of representations of other-race
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Fig. 3 Distribution of response error for own-race (top) and other-race
(bottom) faces when the faces were presented for 200 ms (left) and
1,500 ms (right). Histograms display proportion of binned responses rel-
ative to the target face. Black lines display the two-component mixture
model, fit to the raw response error. Red solid lines indicate the width of
the von Mises (circular normal) distribution at 1 standard deviation and
are flanked by corresponding own-race and other-race identities (+1 SD
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of error). P, indicates the proportion of correctly reported targets, and SD
indicates 1 standard deviation of the circular error for these responses.
The additional peakiness surrounding the zero-target value is better
accounted for by the variable precision model (not pictured). Note.
Permissions preclude showing the faces used in the actual study; faces
here are for demonstration only. (Color figure online)
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Table 2 Mean (and SD) of variable precision model parameters
(Experiment 2)
Parameter Encoding Face Mean (SD)
duration condition
Guess rate Short Own 0.248 (0.228)
Other 0.273 (0.189)
Long Own 0.155 (0.206)
Other 0.195 (0.184)
Mean SD Short Own 38.792 (9.992)
(degrees)
Other 60.703 (25.718)
Long Own 41.072 (17.413)
Other 40.008 (15.544)
SD variance Short Own 10.788 (10.582)
(degrees)
Other 35.393 (30.432)
Long Own 19.007 (16.934)
Other 25.674 (22.080)

faces stored in VWM (M = 60.7° and 40.0°, respectively),
#(19) =3.751, p = .001, Cohen’s d = .839.

A 2 (face race) x 2 (presentation time) ANOVA, with var-
iability in precision as the dependent variable, revealed a main
effect of face race, F(1, 19) = 8.52, p = .009, np2 =0.31;
variability in precision was higher for other-race than for
own-race faces. Although the main effect of presentation time
was not significant, F(1, 19) = 0.02, p = .888, np2 = 0.001,
there was a significant interaction, F(1, 19) = 4.70, p = .043,
np® = 0.20. Although the variability in other-race faces was
not significantly greater for short compared to long presenta-
tion times, #(19) = 1.113, p = .279, d = 0.249, variability was
significantly greater for other race faces compared to own race
faces when encoding time was reduced, #(19) = 3.369, p =
.003, d = .753, but not when given ample encoding time,
t(19) = 1.078, p = .295, d = .241.Thus, consistent with the
effects on mean standard deviation, reducing encoding time
selectively impaired the recall of other-race faces.

Equal-precision model Similar results were obtained using an
equal-precision model. A 2 (face race: own-race vs. other-race
faces) x 2 (presentation time: short vs. long) repeated-
measures ANOVA, with proportion of correct responses as
the dependent variable, revealed significant main effects of
facerace, F(1,19)=7.87, p=.011, np2 =.29, and presentation
time, F(1,19)=17.90, p <.001, np” = .49. As shown in Fig. 3,
participants made significantly fewer correct responses for
other-race faces (M = .66) than for own-race faces (M = .74)
and for the shorter presentation time (M = .66) than for the
longer presentation time (M = .74). Consequently, the number
of recalled faces was lower for other-race (k = .66) than for
own-race (k =.74) faces and for shorter presentation time (k =
.66) than for longer presentation time (k = .74). Notably, the
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Face Race x Presentation Time interaction did not approach
significance, F(1, 19) = 1.27, p = .274, np2 = .06, indicating
that reducing presentation time did not especially impair the
probability of an other-race face being recalled.

Consistent with the variable-precision model, results of the
equal-precision model suggested that the precision of VWM
(1/8D of the von Mises distribution) was greater for the longer
presentation time (Mg, = 34.17°) than the shorter presentation
time (Msp = 38.53°), as revealed by the significant main effect
of presentation time, F(1, 19)=7.51, p =.013, np> = .28. The
main effect of face race was not significant, F(1, 19)=.67,p =
424, np? =.03, but the interaction between face race and pre-
sentation time approached significance, F(1, 19) = 3.31, p
=.085, np” =.15. Based on a priori hypotheses and the results
of the variable precision model, we conducted paired-samples
t tests; these confirmed that reducing presentation time signif-
icantly reduced precision for other-race faces (Mgp = 40.97°
vs. 33.59° for 200 vs. 1,500 ms), #19) = 2.82, p = .011,
Cohen’s d = 0.63. In contrast, precision was comparable for
shorter (Mgp = 36.09°) and longer presentation times (Mg =
34.74°) for own-race faces, #14) =0.70, p = .494, Cohen’s d =
0.16.

Discussion

Overall, participants’ precision of recall was impaired when
encoding time was reduced to 200 ms and when encoding
other-race compared to own-race faces. Under conditions that
were maximally sensitive to encoding limitations, mixture
modeling revealed that the increase in response error was
driven by a decrease in the probability of a correct response
for both own-race and other-race faces. For other-race faces
only, we also observed a reduction in the fidelity of represen-
tation and in increase in the trial-by-trial variability in fidelity
when encoding time were reduced.

General discussion

In summary, using a novel continuous response paradigm, we
provided the first evidence that the ORE is attributable to
increased error in the representation of other-race faces in
VWM. We then used mixture modeling to examine how dif-
ferent sources of error contribute to the ORE: a failure to
encode and retrieve other-race face representations (guess
rate), increased interruption from nontarget faces (identity
confusion), reduced precision for other-race faces, and/or in-
creased variability in the precision with which faces are rep-
resented. Based on this analysis, we revealed three novel find-
ings. First, following ample exposure to multiple own-race
and other-race faces, the ORE was evident in an increased
guess rate but not in reduced precision or an increase in iden-
tity confusion. Second, limiting encoding time impaired
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precision for a single other-race but not own-race face. Third,
limiting encoding time increased variability in the precision
with which other-race faces were represented in VWM.
Collectively, these results suggest that the ORE is caused by
a failure to rapidly consolidate other-race faces into coherent
and stable representations in VWM.

Our findings build on two previous studies showing that
perceptual experience affects how faces are stored in VWM
(Humphreys, Hodsoll, & Campbell, 2005; Lorenc et al.,
2014). To the best of our knowledge, the only previous study
to explicitly contrast VWM for own-race and other-race faces
used the change blindness paradigm (Humphreys et al., 2005).
These authors reported faster change detection for own-race
than for other-race faces, but the change blindness paradigm
precludes examining the separate contributions of a failure to
encode and retrieve other-race faces versus reduced fidelity in
their representation.

Lorenc et al. (2014) used the continuous response para-
digm to compare VWM for upright and inverted faces (two
face categories with which adults have differential experi-
ence). Precision, but not capacity, of VWM was greater for
upright faces. Here, for the first time, we applied the continu-
ous response paradigm to examine the ORE. Like Lorenc
et al., we found that perceptual experience influences the pre-
cision of VWM for faces; reducing presentation time to
200 ms impaired precision for other-race, but not for own-
race, faces. Unlike Lorenc et al., we also found that experience
influences the number of faces that can be maintained in
VWM. These differential patterns might reflect a difference
between the two studies in the dimensions along which faces
continuously varied rather than differential effects for orienta-
tion versus face race: Whereas the faces in Lorenc et al.’s
study varied in both age and sex, ours differed only in identity.
Encoding and maintaining sex and age in VWM might be
easier than encoding and maintaining identity, as suggested
by both fewer correct responses and greater variability of face
representations reported for participants in our study.
Nonetheless all of these studies provide strong evidence that
VWM for faces is impacted by experience.

The inefficiency with which other-race faces are rapidly
encoded and consolidated into stable representations is con-
sistent with a large body of electrophysiological studies exam-
ining the neural mechanisms of the ORE. These studies re-
ported smaller amplitudes of N170 and P200 for other-race
than own-race faces (Ito & Urland, 2005; Senholzi & Ito,
2012; Vizioli, Foreman, Rousselet, & Caldara, 2009; Vizioli,
Rousselet, Foreman, & Caldara, 2009; but see Balas &
Nelson, 2010; Herrmann et al., 2007; Stahl, Wiese, &
Schweinberger, 2008)—ERP components that peak over
temporo-occipital brain regions about 170 ms and 200 ms
after stimulus onset. N170 and P200 are thought to reflect
structural encoding of faces (i.e., processing physiognomic
information to form a sensory representation) and configural

processing (i.e., integrating facial features into a whole).
These electrophysiological studies suggest reduced efficiency
in structural encoding and configural processing for other-race
faces, consistent with behavioral evidence (see Michel,
Rossion, Han, Chung, & Caldara, 2006; Mondloch et al.,
2010; Rhodes, Hayward, & Winkler, 2006; Tanaka, Kiefer,
& Bukach, 2004).

The other-race effect was revealed in two different
measures across Experiments 1 and 2, a pattern we at-
tribute to details in task parameters. In Experiment 1,
we used task parameters that maximize sensitivity to
storage limitations (Bays et al., 2011); we provided am-
ple encoding time (based on Lorenc et al., 2014) and
presented two faces on each trial. Under these task con-
ditions, we found differences in the probability of a face
being recalled (correct response rate), with no difference
in precision or in swap errors (i.e., confusing one iden-
tify for another). In other words, when participants had
ample time to encode multiple faces, they reported few-
er other-race faces, an effect that suggests fewer other
race faces were stored in VWM-—although it is not
clear whether this effect was driven by differences in
encoding, consolidation, or storage capacity differences.
Experiment 2 was designed to be especially sensitive to
any differences with which own-race versus other-race
faces are encoded. We presented only one face per trial
(working well below the capacity of VWM observed in
Experiment 1, thus isolating the effect of face race on
encoding limitations) and included very brief presenta-
tions (Bays et al., 2011). Under these task conditions,
we found reduced precision for other-race faces but not
for own-race faces when encoding time was limited.
Thus, whether the other-race effect is reflected in the
probability or precision of correct responses depends
on task parameters. When multiple faces were present-
ed, participants were able to store fewer representations
of other-race faces; if only a single face was presented,
however, participants were not limited by storage differ-
ences but instead were affected by manipulations that
targeted encoding limitations, revealing differences in
the fidelity of the encoded representations. This finding
is consistent with previous findings that familiar exem-
plars of a perceptual category are encoded more quickly
than unfamiliar exemplars (Xie & Zhang, 2017b).

The differences in encoding of representations of
own-race and other-race faces from VWM likely reflect
asymmetric perceptual experience faces from these two
categories. Complex objects (e.g., Chinese characters,
random polygons) place greater demands on VWM than
do simple objects, leading to a reduced VWM capacity
(Alvarez & Cavanagh, 2004; also see Brady et al.,
2011, for a review). Although own-race and other-race
faces do not differ in stimulus complexity, as evident in
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the ORE being independent of race of face and race of
participants (e.g., Ng & Lindsay, 1994; Sporer, 2001),
limited perceptual experience with other-race faces like-
ly increases the demands on VWM, one consequence of
which appears to be a reduction in the precision with
which other-race faces are stored in VWM.

The observed differences in VWM for own-race versus
other-race faces are consistent with other evidence of an own-
race advantage. Indeed, differences in VWM likely originate in,
and contribute to, differences in perception and mental repre-
sentation. According to Valentine’s influential norm-coding
model (Valentine, 1991), faces are represented in a multidimen-
sional face space and are encoded with reference to their devi-
ation from a face prototype/norm that represents the average of
all faces previously encountered. Individual differences in
norm-based coding correlate with individual differences in rec-
ognition accuracy (Dennett, McKone, Edwards, & Susilo,
2012; Rhodes, Jeftfery, Taylor, Hayward, & Ewing, 2014), sug-
gesting that representing individual faces relative to a prototype
enhances sensitivity to subtle differences among them. One
explanation for the ORE is that other-race faces are more dense-
ly clustered in psychological space (Byatt & Rhodes, 1998,
Papesh & Goldinger, 2010; Zhou, Short, Chan, & Mondloch,
2016), making them harder to discriminate (e.g., Mondloch
et al., 2010). Impaired VWM for other-race faces likely con-
tributes to the mental representation of other-race faces being
less refined; this, in turn, likely impacts how other-race faces are
represented in VWM. Likewise, the representation of other-race
faces in VWM likely impacts, and is impacted by, the accuracy
with which faces are stored in LTM. The number of stimuli
maintained in VWM is influenced by familiarity within LTM
(Xie & Zhang, 2017a), and the fidelity of LTM representations
is constrained by those encoded and maintained in VWM
(Brady et al., 2013).

Limitations and future directions

Of necessity we presented identical images of unfamiliar iden-
tities at study and test. The function of face perception in daily
life, however, is to recognize familiar identities despite within-
person variability in appearance (e.g., in lighting, hairstyle,
expression, viewpoint; Burton, 2013). Impairments in VWM
for other-race faces might contribute to increased errors in rec-
ognizing that two different images of an unfamiliar other-race
face belong to the same identity (Laurence, Zhou, & Mondloch,
2016) and likely impact processes by which a newly encoun-
tered face becomes familiar (e.g., ensemble encoding—the rap-
id and automatic formation of an average; Kramer, Ritchie, &
Burton, 2015). Directly examining how VWM impacts face
learning would be a fruitful line of research.

Ideally, studies investigating the ORE in face perception
include a complete cross-over design (i.e., test both
Caucasian and Eastern Asian participants) to avoid any
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possibility of a stimulus effect. We controlled for stimulus
effects by using the same faces under two different task con-
ditions; nonetheless, future studies should incorporate testing
East Asian participants.

Moreover, note that the maximum number of faces to be
remembered in VWM in the current study was two; future
studies should examine how the precision of VWM for own-
race and other-race faces changes across a larger range of set
sizes, and examine whether VWM for more complicated vi-
sual stimuli such as own-race and other-race faces is limited
by a discrete or continuous resource (van den Berg, Awh, &
Ma, 2014). Future studies might provide a more refined mea-
sure of the precision of VWM for own-race versus other-race
faces by reducing the physical difference between adjacent
faces in the wheel (i.e., by using 1-degree steps and adding
more faces to the wheel).

Finally, it is important to note that although we observed
similar effects employing two different mixture models—
namely, the variable-precision and equal-precision
models—it remains possible that other models might better
explain memory for faces. Indeed, in the VWM field, nu-
merous factors have been examined in an attempt to best
explain memory performance, including the presence or
absence of capacity limits, variability, nontarget errors, cat-
egorical perception, and interference (Hardman, Vergauwe,
& Ricker, 2017; Oberauer & Lin, 2017; van den Berg
et al., 2014). Moreover, although variable precision models
have typically best accounted VWM performance (Fougnie
et al., 2012; van den Berg et al., 2014; van den Berg et al.,
2012), performance can still be affected by additional fac-
tors, such as the allocation of attention during encoding
(Emrich, Lockhart, & Al-Aidroos, 2017). It is also impor-
tant to note that all faces used to create the wheel were
unfamiliar to our observers, precluding categorical encoding
of identity. Future studies using familiar faces (for which
categorical encoding is inevitable) will benefit from a re-
cent model proposed by Hardman et al. (2017) that in-
cludes a categorical component in the model. While future
studies may examine different models, the fact remains that
employing the methods used here and in Lorenc et al.
(2014) provide a much finer tool for examining the nature
of face representations in memory and perception than do
traditional measures, such as the old/new recognition task.
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