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Abstract

Uranium (U) measurements in water, soil, and food related to gold mining activities in popu-

lated areas in Gauteng Province, South Africa, suggest the possibility of exposure levels

that may lead to adverse health consequences, including cancer. Theoretical considerations

on pathways of human uptake of significant exposures are plausible, but few data on directly

measured human exposure are available. A cross-sectional study was conducted using

human measurements to compare U levels with other settings around the globe (based on

literature review), to explore potential exposure variability within the province, and to test the

feasibility of recruiting subjects partially coming from vulnerable and difficult-to-reach popu-

lations. Wards of potentially high (HE) and low exposure (LE) were identified. Composite

hair samples representing the respective local populations were collected from regular cus-

tomers of selected barber shops over a period of 1–2 months. A total of 70 U concentrations

were determined in 27 composite samples from 1332 individuals. U concentrations ranged

from 31 μg/kg to 2524 μg/kg, with an arithmetic mean of 192 μg/kg (standard deviation,

310 μg/kg) and a median of 122 μg/kg. Although HE wards collectively showed higher U lev-

els than LE wards (184 vs 134 μg/kg), differences were smaller than expected. In conclu-

sion, detected U levels were higher than those from most other surveys of the general

public. The barber-based approach was an efficient hair collection approach. Composite

hair samples are not recommended, due to technical challenges in measuring U, and indi-

vidual hair samples are needed in follow-up studies to determine predictors of exposure.

Introduction

At many South African gold mines, the ore extracted contains not only gold but also consider-

able amounts of uranium (U), which is brought to the surface inadvertently. Mine waste in

hydraulically generated deposits (locally called “tailings dams”) cover about 400 km2, mostly

in regions that, through mining, developed into densely populated urban agglomerations, like
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(2019) Human exposure to uranium in South

African gold mining areas using barber-based hair

sampling. PLoS ONE 14(6): e0219059. https://doi.

org/10.1371/journal.pone.0219059

Editor: Elizabeth S. Mayne, University of

Witwatersrand/NHLS, SOUTH AFRICA

Received: November 8, 2018

Accepted: June 14, 2019

Published: June 27, 2019

Copyright: © 2019 Winde et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All original data are

published as Table 1.

Funding: This work was supported by the Ministry

of Health, Labour and Welfare of Japan (Grant

agreement number 2012-02-21-01 to JS at IARC)

and UNESCO Sida Programme on Environmental

and health effects of abandoned mines in Sub-

Saharan Africa to CE at IARC. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

http://orcid.org/0000-0002-8537-3126
http://orcid.org/0000-0001-9687-2134
https://doi.org/10.1371/journal.pone.0219059
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219059&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219059&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219059&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219059&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219059&domain=pdf&date_stamp=2019-06-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0219059&domain=pdf&date_stamp=2019-06-27
https://doi.org/10.1371/journal.pone.0219059
https://doi.org/10.1371/journal.pone.0219059
http://creativecommons.org/licenses/by/4.0/


Johannesburg. The gold tailings of the Witwatersrand basin have an average U concentration

of about 100 mg/kg U3O8 (ranging from about 10 mg/kg to several hundreds of mg/kg); these

gold tailings thus contain as much U as, or more U than, tailings from dedicated U mines, for

example those in Germany or Namibia [1]. It has been estimated that in Gauteng Province

alone, approximately 1.6 million people live in close proximity to tailings dams [2], and grow-

ing informal settlements are moving closer and closer to them [3]. The pathways through

which local residents are exposed include inhalation of windblown tailings dust and radon;

consumption of polluted river water and groundwater; ingestion of food produced with con-

taminated water, including home-grown vegetables, meat and milk from domestic livestock,

and fish from polluted water; and intentional (geophagia) and unintentional (hand-to-mouth)

consumption of contaminated soil, sediment, and tailings material [1, 4–6]. From a review of

environmental U measurement surveys in the area and predictions of people’s exposure, per-

formed during an expert workshop held in Johannesburg in 2013, it was concluded that direct

measurements in human populations living around the tailings were needed to assess exposure

distributions and conditions [7]. The aim of such measurements would be to confirm that the-

oretical considerations on the multiple exposure pathways and high environmental levels were

indeed resulting in an increased exposure in humans.

Health effects reported for U are attributed to the heavy metal chemotoxicity and, to a lesser

extent, to its radioactive properties (e.g. [8]), which are of growing concern if U is inhaled or

ingested. Alpha-emitters in general have been classified as carcinogenic to humans by the

IARC Monographs programme [9]. The classification was based on mechanistic consider-

ations insofar as alpha-emitters for which there was less convincing direct human evidence

were not expected to differ in their carcinogenic potential at the same doses compared with

alpha-emitters for which there was established direct human evidence, such as radium (-224,

-226, -228) or plutonium-239. From the epidemiological studies on the carcinogenicity of mix-

tures of U isotopes, the conclusion was that there was only limited evidence in humans, in line

with the previous IARC assessment [10]. Although in some studies the mortality rates from

lung cancer and other site-specific cancers were found to increase, clear interpretation was

hampered by lack of consistency, the difficulty in measuring the dose of radiation, potential

concomitant exposure to chemicals, and possible healthy worker effects [10]. However, given

the chemotoxicity and radioactive properties, the concerns about the carcinogenicity of U

remain.

Recent findings from investigations of health effects of U, including depleted U used in mil-

itary conflicts, suggest a much wider range of toxicity, including teratogenicity [11–13], dis-

ruption of the endocrine system by U mimicking estrogen’s effects [14], and genetic damage

[15–17] as well as neurotoxic effects [18–20]. Therefore, if high U levels were confirmed in

human populations exposed to the tailings, investigations of subsequent adverse health effects,

including cancer, would be justified.

To have a first overview of the distribution of human exposure in the potentially affected

populations, a pilot study was designed to include diverse populations, ranging from middle-

class and less-affluent neighbourhoods to the most vulnerable populations in informal settle-

ments, and including all races. This required non-invasive, ad hoc collection of biological spec-

imens by non-specialists, to deliver reliable measurements of U concentrations, and an easy

approach to reach a large number of subjects without verbose explanations on-site. Hair was

considered to be an appropriate specimen, given its use in previous studies [21–28]. In addi-

tion, a literature review was performed to compare the U concentrations in the study area with

those in other settings that applied comparable methods to measure U concentrations in

humans.
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Therefore, the present study had three objectives: (1) to test whether the sample measure-

ments in human populations confirm the expected higher U levels suggested from environ-

mental measurements and theoretical considerations of plausible uptake pathways; (2) to

investigate whether there are exposure differences, by sampling from neighbourhoods of pre-

sumably high or low exposure intensity as a result of their location in relation to the mine tail-

ings and other mining-related U sources; and (3) to find out how well the study protocol

performs and what would need to be optimized for any larger-scale longitudinal study.

Materials and methods

Study population

Wards (a ward is the smallest administrative unit of population counting in South Africa)

were identified according to expected exposure likelihood and racial diversity, given the differ-

ent living conditions of White, Indian, and Black populations that still largely prevail in post-

apartheid South Africa. The expected probability of exposure was assessed based on the prox-

imity of settlements to mine tailings as well as the anticipated degree of environmental U pol-

lution (rivers, mine water canals, soil including tailings, and dust) as known from previous

environmental measurement studies. Exposure pathways considered in this context included

drinking polluted water (e.g. untreated river water), ingesting contaminated food (including

fish from polluted rivers and vegetables, crops, and meat and milk livestock produced with

contaminated water and soil), direct consumption of tailings and polluted soil or sediment

(geophagia as well as unintended hand-to-mouth transfer, mainly in children), swallowing

polluted water while swimming, and inhalation of windblown tailings dust.

With the aim of selecting worst-exposure scenarios, nine wards of high exposure (HE)

probability were selected, representing the locally dominant Black, White, and Indian popula-

tions and, to a lesser extent, also Coloured (mixed-race) populations. Six of those wards were

located in the West Rand goldfield (Tudor Shaft, Kagiso Extension 6, Kagiso Extension 8, Riet-

vallei (all Black), Azaadville (Indian) and Mindalore (White)), most of them in close proximity

to the upper Wonderfonteinspruit, a heavily mining-polluted stream [1]. Khutsong North

(Black), a township of the Far West Rand goldfield further downstream of the Wonderfontein-

spruit stream was also selected, as well as two wards in the western part of the Central Rand

goldfield (Diepkloof Zone 4 (Black) and Noordgesig (Coloured)). For each Black, Indian, and

White population, a corresponding ward of low exposure (LE) probability was selected, aiming

for similarity in socioeconomic living conditions and a location well outside the various gold-

fields, namely Alexandra (Black), Laudium (Indian), and Randburg (White) (none identified

for Coloured). These 12 wards, shown in S1 Fig, form the study population.

Aided by a local nongovernmental organization with close links to the communities, we

identified barber shops in each ward serving local customers of both sexes (except in Azaad-

ville, where the chosen barber turned out to serve only men). The barbers, who generally enjoy

a trust-based relationship with long-term clients, were instrumental in explaining the aim of

the study to their customers and addressing concerns about potential misuse of the hair as

“muti” (traditional medicine). The barbers confirmed in a questionnaire that most of their cli-

ents came from a radius of approximately 2 km around the barber shop, thus representing the

local population. Samples were compiled from the customers visiting the barber during the

sampling period (1–2 months). Efforts were made to identify low-cost barbers, in order to

include indigent groups such as informal settlers, who were expected to be among the most

exposed.

Barbers collected hair from up to 100 individuals per sex, following a detailed sampling pro-

tocol and instructions stipulating, inter alia, that they should collect a sufficient amount of hair
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per individual (at least 1 cm in length). Samples were totally anonymized. The instructions

included not collecting dyed or otherwise chemically treated hair or artificial hair extensions,

or hair that had fallen onto the floor, and to obtain oral consent from customers. Composite

samples of the same weight of hair were created by barber and sex and shipped to a laboratory

in Germany for the U analyses.

The study was approved by the IARC Ethics Committee. Customers were informed by the

barber about the purpose of the study, but because no other information was recorded apart

from sex, age group (minor, adult, or elderly), and race, the institutional review board (IARC

Ethics Committee) approved the use of oral consent (documented by the barber confirming

that only hair samples of customers giving oral consent were provided).

Additional samples. In addition to the samples from the study population, we obtained

further samples that were not part of the study population. Results for these additional samples

are reported here because those were also informative regarding the bigger picture of U expo-

sure in the region. In Noordgesig, some residents were approached directly by field assistants,

including a family of four suffering from an unspecified sickness. In addition, the barber in

Mindalore provided two bags, containing hair from 9 boys and 2 girls, respectively, which

were treated as special composite samples. For age comparison, samples of fully grey hair were

collected from Mindalore characterizing elderly clients (25 male, 6 female). Other special indi-

vidual samples included hair from a White boy who relocated from Potchefstroom (South

Africa) to Germany, as well as a very long cut of hair from a Black woman from Kagiso. The

locations where these special samples were obtained are also included in S1 Fig.

Uranium measurement

Based on recommendations by Karpas et al. [25], the homogenized hair was rinsed using dis-

tilled water, a surfactant (Triton X-100), and ethanol (or acetone) combined with sonication,

which was intended to remove external contaminants, such as tailings dust. To dissolve the

hair, a mixture of 1 ml of 70% nitric acid and 2 ml of 30% hydrogen peroxide was added, and

this was either left overnight or expedited by putting the tube into a hot water bath at 80˚C for

10 minutes. Before it was analysed, the sample in the test tube was diluted with distilled water

to 15 ml. In addition, 10 μg of a certified iridium or bismuth standard was added to each sam-

ple as well as to blanks (digestive solutions containing no hair) to correct for the matrix effect

and for fluctuations of the Inductively coupled plasma (ICP) torch, by adding an element that

was not in the sample but was similar in mass to the element of interest. Comparison of the

ICP-MS counts for iridium or bismuth between blanks and digested hair solutions indicated

to what extent the matrix of the hair solution may have attenuated the signal. All parameters of

the ICP-MS were set to optimal levels for U measurements, and the device was calibrated

using certified standard solutions for U. The U concentrations measured in the digestive solu-

tions were subsequently corrected for the matrix effect. Each sample was measured at least

twice (duplicates). When the amount of hair was sufficient to allow further measurements or

when the first two measurements differed by more than 50%, a third and fourth analysis was

performed. Each measured sample was drawn individually from the composite sample bags.

The U content in the hair sample (in μg/kg) was calculated by multiplying the corrected U

concentration in the digestive solution (in μg/l) by 15,000 (to account for the 15 ml of added

acid and water) and dividing this by the weight of the dried hair (before being digested) in mg.

Statistical methods

Statistical methods include univariate statistics and their visualization in figures. Sex-weighted

averages (arithmetic means for men and women weighted according to the number of men
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and women in the respective sample) were calculated to compare different wards when the

sexes were combined, to take into account potential differences between the hair from men or

from women (e.g. in terms of hair length and hair care). Acknowledging the small sample size

of 70 measurements, we performed an analysis of variance (ANOVA) with the measured U

levels as response variable and sex, race, and HE vs LE as explanatory variables mutually

adjusted for each other, using a fixed-effect model (with SAS 9.4).

Results

In total, 27 composite samples were collected from the 12 wards of the study population. These

included 6 samples from LE wards, as planned, namely from 3 barbers serving both sexes.

From HE wards, 21 samples were provided instead of the planned 18, for the following rea-

sons. In the Kagiso Extension 8 and Rietvallei wards, hair collection was performed in two

phases. As a result of concerns among local customers about the use of their hair, the fieldwork

was interrupted and it was then decided not to mix the hair from the two phases (therefore, 8

samples were obtained from the two wards, instead of 4). In Azaadville, the selected barber

turned out to serve only men (therefore, only 1 sample set was obtained, instead of 2). From

the 27 composite samples (21 HE and 6 LE), 70 measurements of U were retrieved (see the

Materials and Methods section). Overall, hair from 1332 individuals was analysed (Table 1).

Table 1 shows the 2–4 individual measurement values in μg/kg dry hair and the summary

statistics by ward and sex (men, women, and combined), with arithmetic means and sex-

weighted arithmetic means for the two sexes combined. U values ranged from 31 μg/kg to

2524 μg/kg, with an average (arithmetic mean) across all measurements of 192 μg/kg (standard

deviation, 310 μg/kg) and a median of 122 μg/kg (1st quartile: 74 μg/kg; 3rd quartile: 190 μg/

kg). Only one measurement exceeded 1000 μg/kg.

To put those U concentrations into context, as stated in objective 1, Fig 1 contrasts our find-

ings from the HE wards and LE wards (all those from Table 1) with results from other studies

of U measurements in hair from different countries. These studies include surveys in suppos-

edly unexposed populations and also in populations assumed to have increased U levels in hair

due to occupational or environmental exposure. Among those, U concentrations reported by

Byrne and Benedick [22] were particularly suited for comparison, because of their emphasis

on data quality control. U levels in hair of workers and nearby residents of a U mine in

Namibia as reported in Kudzu Science [29–30] are also of special relevance, because it is a

southern African context, including ethnicity aspects, and links mining to impacts on nearby

residents under similar natural conditions. The studies used are listed in S1 Table.

Regarding objective 2, contrary to what was expected, the arithmetic means from LE White

and Indian wards displayed higher instead of lower U concentrations than those of the corre-

sponding HE White and Indian wards (98 vs 41 μg/kg, 110 vs 45 μg/kg (men only)). However,

the LE Black ward showed lower levels than the sex-weighted average of all HE Black wards

combined (188 vs 248 μg/kg). Collectively, U levels of HE wards were therefore not much

higher than those of LE wards (186 vs 134 μg/kg). Fig 2 shows sex-weighted arithmetic means,

maximum, and minimum for all wards by HE vs LE and race. Overall, higher U levels were

measured in women than in men (140 vs 114 μg/kg), which also holds true for most ward–race

combinations except for HE Coloured (equal) and LE Black (higher in men). ANOVA showed

that these differences in arithmetic means are only suggestive and need to be confirmed with

larger samples. In ANOVA, the effects of sex (P = 0.42), HE vs LE (P = 0.49), and race

(P = 0.32) were not statistically significant, with an overall R2 of 7%.

Regarding objective 3, in addition to the insight gained into conducting such a study in a

challenging setting, the most valuable information from Table 1 in this context is that

Human uranium exposure in South African gold mining areas
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Table 1. Uranium concentration in human scalp hair of 70 measurements in 27 composite hair samples of 1332 individuals from 12 selected wards in Gauteng

Province, South Africa.

Exposure

level

Ward Race Sex N U concentrations (μg/kg) N Mean Sex-weighted meanb

Subjects 1st run 2nd run 3rd run 4th run Measurements μg/kg μg/kg

HE Kagiso Extension 6 Black Male 31 274 470 63 66 4 218

Female 81 121 192 108 109 4 133

Combined 112 8 175 156

HE Kagiso Extension

8a
Black Male (1st phase) 49 73 57 2 65

Male (2nd phase) 44 136 83 58 107 4 96

Female (1st phase) 39 108 341 77 72 4 150

Female (2nd

phase)

40 2524 132 171 71 4 725

Combined 172 14 286 247

HE Rietvalleia Black Male (1st phase 50 125 125 2 125

Male (2nd phase) 50 301 295 2 298

Female (1st phase) 50 123 129 2 126

Female (2nd

phase)

48 191 193 2 192

Combined 198 8 185 186

HE Diepkloof Black Male 33 222 156 116 124 4 155

Female 66 177 73 169 217 4 159

Combined 99 8 157 158

HE Tudor Shaft Black Male 31 275 248 2 262

Female 20 87 109 2 98

Combined 51 4 180 197

HE Khutsong North Black Male 55 660 611 2 636

Female 64 478 459 2 469

Combined 119 4 552 546

HE Azaadville Indian Male 100 45 44 2 45

HE Noordgesig Coloured Male 11 110 96 2 103

Female 51 102 102 2 102

Combined 62 4 103 102

HE Mindalore White Male 100 43 31 41 34 4 37

Female 33 56 46 2 51

Combined 133 6 42 41

LE Alexandra Black Male 14 187 233 2 210

Female 10 159 155 2 157

Combined 24 4 184 188

LE Laudium Indian Male 49 102 118 2 115

Female 26 121 134 2 128

Combined 75 4 119 116

LE Randburg White Male 107 72 57 2 65

Female 80 154 133 2 144

Combined 187 4 104 98

HE, high exposure; LE, low exposure.
a In Kagiso Extension 8 and Rietvallei, sample collection was interrupted and therefore took place in two phases.
b Weighted according to number of samples per sex.

https://doi.org/10.1371/journal.pone.0219059.t001

Human uranium exposure in South African gold mining areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0219059 June 27, 2019 6 / 13

https://doi.org/10.1371/journal.pone.0219059.t001
https://doi.org/10.1371/journal.pone.0219059


variations within repeated measurements from the same composite sample were often sub-

stantial. This indicates that the mixing of samples from up to 100 individuals in a bag from

which a composite sample for the U measurement is drawn does not lead to the same averaged

U concentrations. Incomplete homogenization of mixed hair stems from effects such as elec-

trostatic charging or lumping of curled hair, which even freezing and subsequent milling in a

steel ball chamber could not overcome. Complete digestion of all mixed hair was impossible

because of laboratory safety regulations limiting the volume of corrosive acids.

Fig 1. Uranium (U) concentrations in μg/kg measured in all composite hair samples and in high-exposure (HE)

and low-exposure (LE) wards (as shown in Table 1) combined of the present study in Gauteng Province, South

Africa, compared with international measurements of U concentrations in presumably unexposed populations

(ue), populations with expected higher U in drinking water (uw), populations exposed to U contamination from

nuclear facilities or depleted U in war zones (uc), or populations affected by mining or U production (up) (shown

as means and ranges). Three-letter code in the study name indicates the study ID from S1 Table for reference.

https://doi.org/10.1371/journal.pone.0219059.g001

Fig 2. Uranium (U) concentrations in μg/kg measured in composite hair samples from assumed high-exposure

(HE) and low-exposure (LE) wards by race (wards with mostly Black, Coloured, Indian, or White populations),

with sex-weighted arithmetic mean (X) and range (maximum and minimum) in n measurements (n = number of

composite samples measured). The “All” group comprises all 70 measured composite samples from HE and LE wards

combined (all shown in Table 1).

https://doi.org/10.1371/journal.pone.0219059.g002
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In addition, some information was derived from the special samples. Table 2 shows the 15

measurement values from the 5 special samples in μg/kg dry hair and the summary statistics

by sample. Among these additional samples, U values ranged from 27 μg/kg to 3607 μg/kg,

with an average (arithmetic mean) across all measurements of 636 μg/kg (standard deviation,

1194 μg/kg) and a median of 68 μg/kg. All three measurements of hair of 2 girls from Minda-

lore exceeded 1000 μg/kg. The latter group shows that exceptionally high values can be found.

Notably, the measurements in the four sick people from Nordgeesig were not higher than the

average from Table 1.

Fig 3 shows U levels in hair from one individual with long hair, to examine U concentration

in relation to the hair length at different time points. Notably, the concentration varies consid-

erably over the 12 cm total length by a factor of more than 2. Even higher temporal variations

were found in a White boy who relocated from South Africa to Germany, showing a decrease

from 38 μg/kg while living in Potchefstroom, where the drinking water supply was affected by

upstream U pollution [31], to 7 μg/kg after living for 10 months in Halle (Saale), with no ele-

vated U concentrations in the drinking water.

Discussion

Comparing the general population composite hair samples from our pilot study with uranium

(U) concentrations reported in the literature for unexposed populations shows that the major-

ity of our samples clearly exceeded background levels (objective 1). Notably, the arithmetic

mean from our study population was higher than that among a population in Northern Swe-

den [32] and comparable to that of a population in Finland [24], both with increased U levels

in their drinking water. Some of our measured values overlapped with measured values

reported for workers in U and (uraniferous) phosphate mines in Slovenia, Namibia, and Syria.

This confirms the rationale for conducting the pilot study, namely that the environmental

Table 2. Uranium concentration in human scalp hair of 15 measurements in 5 special samples from 46 individuals in Gauteng Province, South Africa.

Type of sample Ward Race Sex N U concentrations (μg/kg) N Mean

Subjects 1st run 2nd run 3rd run 4th run Measurements μg/kg

Special Mindalore White Boys 9 145 115 2 130

Girls 2 2875 2153 3607 3 2878

Male (elderly) 25 52 52 38 68 4 53

Female (elderly) 6 28 28 27 29 4 28

Special Noordgesig Coloured Sick family 4 156 166 2 161

https://doi.org/10.1371/journal.pone.0219059.t002

Fig 3. Uranium concentration measured at different lengths of 12 cm long hair from a Black woman from Kagiso.

https://doi.org/10.1371/journal.pone.0219059.g003
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levels above the normal background levels and plausible scenarios of human exposures do in

fact lead to a measurably higher uptake. In addition, due to the lack of human data, risk assess-

ments for Gauteng Province so far have relied only on modelling. However, inconsistencies in

those assessments [33–37] support our approach, with measuring actual human exposure

instead of modelling (original data for international comparison in S1 Table, extracted from

references [13, 21–26, 29, 38–42]).

There was little difference in averages between the HE and LE wards and large overlaps in

measured values, which was unexpected because the wards were chosen deliberately, mainly

based on distance to tailings dams (objective 2). In fact, comparing male and female popula-

tions showed tendencies of consistently higher U levels for LE wards across all races and sexes

except for Black females. There are three possible explanations for this finding. First, U in the

environment may spread more widely than assumed; this is, however, purely speculative and

is not supported by the available environmental measurements from previous surveys [7]. Sec-

ond, individual habits may be more important than residence, and the individual choice of

water and food, and also the occupation may lead to a dilution of measured group-level expo-

sure. Third, and perhaps most likely, is the influence of the choice of barber shops. Re-contact-

ing the barber shops at the end of study showed that many had more commuting customers

than anticipated, and for any future study inclusion of the cheap street barbers in the HE

wards is highly recommended to better capture residents from the local neighbourhood. Tem-

poral variation appears to be another important factor, as illustrated in the, though only one,

very long hair sample of 12 cm available to us. Although hair levels are supposed to represent a

longer exposure period than, for example, urine levels, this variation casts doubt on how much

biological samples can be used as predictors of exposure over several decades, as would be

needed for investigating cancer risk.

Therefore, it remains an objective to develop an exposure prediction model based on resi-

dence, taking into account proximity to tailings dams, wind directions, erosion, water distribu-

tion and consumption, use of local food, and other potential exposure routes (including

occupational), with the aim of looking at correlations between exposure and health outcomes

on an ecological level, but the experience of this pilot study shows that validation of any such

exposure maps would be essential before they could be applied.

Regarding objective 3, hair sampling through barber shops turned out to be an efficient and

low-cost method of hair collection, including in the most deprived areas where it would be

challenging, if not impossible, to collect other biological samples, such as blood (due to safety-

assured medical staff needed for sampling) or urine (due to lack of even the most basic sanitary

facilities). However, in these areas hair plays a major role in traditions and is suspected to be

used in witchcraft, so barbers need to be carefully instructed on how to inform their customers,

so as to not lose the trust of the local residents. We had expected that acceptance would be

higher when explaining hair would be analysed for groups and not for the individual, but it

did not matter as much as anticipated and acceptance turned out to be high for hair collection

from individuals. Individual hair collection and U analysis should be foreseen for future stud-

ies because the potential benefit of ease of collection is outweighed by the fact that the treat-

ment of composite hair in laboratory measurements is very difficult. Electrostatic charging

and mechanical lumping of heavily curled hair prevents a balanced mixing of hair from differ-

ent individuals, and freezing and crushing solves this problem only to a small extent. This

explains the large variation across repeated measurements of samples from the same composite

sample. The choice of barbers turned out to be crucial. For the samples to be representative of

the ward, it must be confirmed beforehand that only a local customer group is served. The

study can definitely not be carried out if the fieldwork is not supported by people who are very

familiar with the setting and are trusted in the communities, so very close collaboration of lay
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staff and research staff is necessary, with the research staff maintaining permanent quality con-

trol and oversight.

The main strengths of this study include the first direct human exposure measurement in

the area concerned, the large sample, and the protocol that allowed sampling of also the most

deprived communities. Weaknesses are that the selection of barbers did perhaps mask some of

the difference in exposure levels we had expected to find between the HE and LE wards. Also,

major variability was found in measured samples coming from the same composite sample.

This suggests that individual variation may be larger than group-level variation, but this

hypothesis needs to be addressed with better exposure modelling and a respective measure-

ment validation study. Based on this, it remains an objective to develop an exposure prediction

model based on geographical location of residence, taking into account proximity to tailings

dams, dust pollution, wind directions, erosion levels, water distribution and consumption, use

of local food, and other potential exposure routes (including occupational) into account. The

experience of this pilot study shows that validation of predictions in the form of exposure

maps would be essential.

Conclusions

In conclusion, U concentrations measured in the hair of the resident population of this South

African gold mining area indicate elevated U levels that merit research on possible adverse

health consequences. Further methodological work is needed on whether the exposure likeli-

hood can be better modelled taking into account measured environmental levels, distance to

mine tailings, wind directions, water flow, consumption of local water and food, and how

common personal habits such as geophagia are. Such prediction models would need to be vali-

dated with a new series of individual (rather than composite) human measurements, with a

choice of barbers serving fewer commuting customers while serving the most highly exposed

indigent population. If it is explained well to the barbers and their customers, collecting hair

from barbers appears to be an acceptable, efficient, and non-invasive sampling method,

enabling access to people in resource-restricted communities where other methods fail. How-

ever, collecting composite samples as a means of minimizing analytical costs is discouraged,

due to difficulties in their laboratory analyses.
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