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Hydrogen has been considered as a promising alternative energy to replace fossil

fuels. Electrochemical water splitting, as a green and renewable method for hydrogen

production, has been drawing more and more attention. In order to improve

hydrogen production efficiency and lower energy consumption, efficient catalysts

are required to drive the hydrogen evolution reaction (HER). Cobalt (Co)-based

metal-organic frameworks (MOFs) are porous materials with tunable structure, adjustable

pores and large specific surface areas, which has attracted great attention in

the field of electrocatalysis. In this review, we focus on the recent progress of

Co-based metal-organic frameworks and their derivatives, including their compositions,

morphologies, architectures and electrochemical performances. The challenges and

development prospects related to Co-based metal-organic frameworks as HER

electrocatalysts are also discussed, which might provide some insight in electrochemical

water splitting for future development.

Keywords: electrocatalysts, metal-organic frameworks, cobalt-base catalysts, hydrogen evolution reaction, water

electrolysis

INTRODUCTION

With the rapid development of economy, energy and environmental problems have raised
increasing concerns in recent years (Su et al., 2019; Lin et al., 2020; Liu H. et al., 2020; Liu S.
et al., 2020b). To reduce the fossil fuels reliance and lower greenhouse gas emission, there is an
urgent need to develop clean and sustainable energy resources. Hydrogen, which possesses high
gravimetric energy density, has been considered as an ideal alternative energy carrier to fossil
fuels (He et al., 2020). The green and sustainable supply of hydrogen is essential for the hydrogen
economy. At present, hydrogen is mainly obtained through a steam reforming of fossil fuels, which
not only consumes a large amount of non-renewable energy, but also increases CO2 emissions
(Qin et al., 2016; Li M. et al., 2017a,b). Therefore, to produce hydrogen in a clean and renewable
way is urgently required. Water electrolysis, featuring high energy conversion efficiency, high
hydrogen production rate and compact devices, has been regarded as an ideal method for hydrogen
production in the future (He et al., 2020).

The electrochemical water splitting is composed of two half reactions (Figure 1): HER on
cathode and oxygen evolution reaction (OER) on anode. Two electrodes of the electrolysis
system will play a key role in the hydrogen production. In theory, the decomposition voltage
of water is 1.23V. However, in order to overcome the thermodynamic equilibrium potential, a
certain overpotential (η) is required during the practical electrolytic process, which will increase
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energy consumption (Xiang et al., 2020). Generally, highly
efficient electrocatalysts could reduce the overpotential and
increase the current density of these catalytic reactions
(Karmodak and Andreussi, 2020; Xu et al., 2020). It is well-
known that platinum groupmetals are the most efficient catalysts
for HER (Tian et al., 2019; Huang C. et al., 2020; Huang H.
et al., 2020b; Lan et al., 2020; Liu Z. et al., 2020). However, the
scarcity and high cost of these preciousmetals impede their large-
scale applications. Therefore, it is pressingly needed to develop
low platinum or non-precious metal electrocatalysts with high
catalytic activity and long cycle stability for hydrogen production,
which will facilitate the realization of hydrogen economy.

During the past few years, a variety of electrocatalysts have
been studied for HER, mainly including metals (Xiu et al., 2020),

metal sulfides (Huang H. et al., 2020b), metal phosphides (Zhou
et al., 2020), metal carbides (Ma X. C. et al., 2020; Yu H. et al.,
2020; Yu Y. et al., 2020) and carbon-based materials (Wang
H.-F. et al., 2020; Wang J. et al., 2020; Wang X. et al., 2020).
In general, the electrocatalysis properties could be improved
through increasing the number of active sites and the intrinsic
activity of each active site (Huang H. et al., 2020b; Huang Z.
et al., 2020). It is worth noting that the concentration and
intrinsic activity of active sites can be simultaneously improved
by increasing the specific surface area of catalyst (Eiler et al.,
2020). In addition, regulating the electronic structure of catalysts
could also increase the intrinsic activity, such as heteroatom
doping (Liu et al., 2015; Nan et al., 2019; Liu H. et al., 2020),
defect engineering (Yilmaz et al., 2018), alloying (Yang et al.,
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FIGURE 1 | Schematic of water electrolysis system.

2015). Co is plentiful and low cost compared with noble metals.
It also has high theoretical catalytic activity due to Co have a low
energy barrier for H adsorption, making Co-based composites to
be excellent candidates for HER (Chai et al., 2020). Therefore,
Co-based catalysts have been widely investigated as the catalysts
for HER (Wang H. et al., 2018; Wang X. et al., 2018a; Kuznetsov
et al., 2019). Metal-organic frameworks are a porous material
consisted of metal nodes and organic linkers, and their derived
composites exhibit tunable structure, adjustable pores and large
specific surface area (Huang H. et al., 2020a,b). Moreover, the
high specific surface can provide a huge number of active sites
and the open pore structure in the catalytic process, which is
very important to increase the catalytic activity. Therefore, a large
number of MOFs have been exploited and classified according
to their structural characteristics in recent years, such as zeolitic
imidazolate frameworks (ZIFs) (Liu H. et al., 2020), boron
imidazolate frameworks (BIFs) (Liu et al., 2018), materials of
institute lavoisier (MIL) (Chen J. et al., 2019; ChenW. et al., 2019)
and so on. Through the pyrolysis process, these materials can
convert into various metals, metal sulfides/phosphides/carbides,
carbon-based materials, and other metal structures. Co-MOFs,
showing excellent performance for the HER, has sprung up
due to its intriguing advantages: (1) Co metal has a proper
binding energy for hydrogen atom (close to Pt) (Jin et al., 2015;
Huang et al., 2017); (2) the porosity of MOFs can improve
the exposure of active sites and electron/mass transfer (Jia
et al., 2017; Wang X. et al., 2020); (3) the organic linkers can
serve as the source of N-doping which facilitates to maximize
conductivity of carbon matrix (Li D. et al., 2018; Weng et al.,
2018). In light of the above unique characteristics, Co-based
MOFs have attracted great attention for obtaining highly efficient
catalysts for HER.

In this review, we present an overview of Co-based
MOFs for HER in the past few years. Firstly, the reaction
mechanisms of hydrogen evolution reaction were briefly

summarized, and also giving the design strategy of Co-
based MOFs electrocatalysts. According to the related research
works, we discussed the current progress of Co-based MOFs
electrocatalysts. In addition, the challenges and perspectives
for Co-based MOFs HER catalysts were also discussed, which
might provide some insight in electrochemical water splitting for
future development.

REACTION MECHANISM FOR HER

The reaction mechanism of HER has been extensively studied
(Chen et al., 2020). It is generally carried out in acidic condition
or alkaline condition. HER is a two-electron transfer process,
includes three possible reaction steps. The specific reaction steps
are as follows:

(1) Volmer reaction:

H3O
+
+M+ e− ↔ M−

∗ H+H2O (acidic medium)

(1)

H2O+M+ e− ↔ M−
∗ H+OH−(alkaline medium)

(2)

(2) Heyrovsky reaction:

H+
+ e− +M−

∗ H ↔ H2 +M (acidicmedium) (3)

H2O+ e− +M−
∗ H ↔ H2 +OH−

+M(alkaline medium) (4)

(3) Tafel reaction:

2M−
∗ H ↔ H2 + 2M (acidic and alkaline medium) (5)

M represents the hydrogen adsorption sites, ∗H represents the
reaction intermediates of hydrogen atom on catalyst. From the
above reaction steps, the reaction mechanism of HER in acidic
electrolyte and alkaline electrolyte is much more different. In
acidic electrolyte, the formation of ∗H is come from hydronium-
ion (H3O+) during Volmer process, while in alkaline electrolyte
∗H is formed by the dissociation of water molecules (H2O).
Subsequently, the adsorbed ∗H will react with H+ or H2O to
produce H2 via Heyrovsky process, or combined with another
∗H to generate H2 through Tafel process. The whole process
of HER includes the ∗H adsorption and hydrogen desorption
from the active sites on the surface of electrocatalysts. Generally,
the rate-determining step of HER is the adsorption free energy
of hydrogen (1GH∗ ) (Nørskov et al., 2005). For excellent HER
electrocatalysts, the bonding strength of the adsorbed hydrogen
atom with catalyst should be appropriate. In alkaline media,
however, it will introduce an additional energy barrier due to the
dissociation of water molecule, whichmay lower the reaction rate
of alkaline HER. It is obvious that the hydrogen adsorption and
dissociation on the electrode surface are two consecutive steps
in the electrocatalysis process (Li et al., 2020). However, they
are inherently competitive. If the bonding strength between the
catalyst and hydrogen atom is too weakly, it cannot effectively
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FIGURE 2 | Volcano plot for HER in alkaline medium for various metals. Reproduced with permission (Sheng et al., 2013). Copyright © 2013, Energy Environ. Sci. All

rights reserved.

adsorb hydrogen proton intermediates. On the contrary, if the
bonding strength between the catalyst and hydrogen atom is too
strongly, the generated hydrogen is difficult to desorb from the
catalyst. Therefore, only when the adsorption and desorption
reach a balance, the HER performance can achieve the most
excellent (Hossain et al., 2019). Skúlason et al. (2010) calculated
the free energy of hydrogen adsorption of different transition
metals using density functional theory, the results are consistent
with the Sabatier principle. Sheng has summarized the volcano
plots of various metals under alkaline conditions for the HER,
which is shown in Figure 2 (Sheng et al., 2013). This volcano plot
is a useful descriptor of hydrogen evolution activity for various
metals. When the position of metal is close to the apex of volcano
chart, the catalyst reaches the best balance of adsorption and
desorption of hydrogen, which has a best HER performance.

According to the volcano plot, Co has a lower adsorption
free energy of hydrogen, which should have excellent HER
performance. However, there is still a certain gap between
Co and precious metals, i.e., Pt, Pd. Hence, to improve
the HER performance of Co-based catalysts are necessary.
In view of the intrinsic features of large pore volumes,
high specific surface area, tunable chemical constituents, and
adjustable crystalline porous frameworks, Co-based MOFs
have become an increasingly important catalysts in the
field of HER. However, insufficient electrical conductivity
and low chemical stability seriously limit their applications.
Thus, to improve the HER performance of Co-based MOFs
catalysts are of great importance. In recent years, various
strategies have been adopted to improve the HER performance,
including adjusting precursors and synthetic methods, doping
heteroatoms, and alloying. Therefore, a reasonable design of Co-
based MOFs catalysts can be an effective method to improve the
electrocatalytic performance.

CO-BASED MOFs MATERIALS FOR HER

Co-based MOFs has been proved to have a low energy
barrier for HER (Jin et al., 2015). However, it still has
much room for improvement. Up to now, various strategies
have been adopted to improve its electrocatalytic performance,
such as choosing different precursor, selenizing, vulcanizing,
phosphating, and alloying.

Co-MOFs Derivatives Catalysts From
Various Precursor
MOFs and MOFs-derived materials are excellent catalytic
materials (Pan et al., 2018; Ma X. C. et al., 2020; Ma Y. et al.,
2020). They have attracted much attention because of their
designability and adjustability. The structure of MOFs depending
on the bridging metal ions and organic linkers. In the past several
years, various Co-MOFs derived materials have been extensively
developed and used as electrocatalysts for HER (Huang et al.,
2017; Li M. et al., 2017b; Tabassum et al., 2017).

With the development of B-H key function research (Zhang
et al., 2014), BIFs are widely used in HER. There are two
types of tetrahedral centers in BIFs: B (boron) and M (metal)
(Zhang H. X. et al., 2016b; Zhang X. et al., 2016). BIFs are
generally using lightweight main group metals to build the
vertices of the framework and using light elements B to construct
polyhedral nodes (Zhang et al., 2009; Zhang H. X. et al., 2016a;
Zhang X. et al., 2016; Zhu et al., 2020). Liu et al. (2018)
prepared Co/NBC by carbonization of a cobalt-based boron
imidazolate frameworks (BIF-82-Co) under various pyrolysis
temperature. In 1.0M KOH solution, Co/NBC-900 required a
lower overpotential of 117mV to achieve the current density of
10mA cm−2 for HER, and a small Tafel slope of 146mV dec−1.
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FIGURE 3 | N-Doped carbon material derived Co/N-Carbon as an electrocatalyst for HER in 1M KOH solution. (A) LSV of different electrocatalysts with rotation disk

electrode at 1,600 rpm. (B) EIS of different electrocatalysts. Reproduced with permission (Huang et al., 2017). © 2017 ACS Sustain. Chem. Eng. All rights reserved.

However, the poor stability (10 h) of these catalysts seriously
limits their practical applications.

ZIFs, which is based on imidazolate complexes, can serve
as an excellent precursor for non-precious Co-MOFs catalysts.
Yang et al. (2017) proposed CoP nanoparticles encapsulated in
ultrathin nitrogen-doped porous carbon (CoP@NC) with ZIF-
9 as the precursor. The CoP@NC catalyst exhibits outstanding
HER catalytic activities in alkaline and acidic conditions.
Remarkably, the CoP@NC achieves a current density of 10mA
cm−2 at an extremely low overpotentials of 129 and 78mV
in 1.0M KOH and 0.5M H2SO4 solutions, respectively. More
recently, Sun et al. (2016) prepared the CoSe2/CF from
zeolitic imidazolate framework-67 (ZIF-67) through pyrolysis
and selenizing process. CoSe2/CF delivers a smaller Tafel slope
of ∼52mV dec−1. In addition, CoSe2/CF also shows a better
long-term stability than commercial Pt/C.

Apart from MOFs precursors, carbon matrix also plays a
decisive role of Co-MOFs derived HER catalysts. To date,
most MOF-derived catalysts are modified via the heteroatom
doping strategy. When the electronegativity of doping atoms
is larger than that of carbon atoms, they will act as electron
acceptors (i.e., N, O), on the contrary, they are called electron
donors (i.e., F, S, P, B) (Zhang K. et al., 2017; Zhang L. et al.,
2017). Nitrogen atom has a similar atomic size but one more
shell electron compared with carbon. Therefore, N is the most
common doping element among the above elements. The N
doping can promote the electrocatalytic activity by increasing the
conductivity, enhancing the adsorption strength of anion group
(-OH), reducing the reaction energy barrier and accelerating the
reaction kinetics (Li D. et al., 2018). Generally, there are two
ways to introduce nitrogen atom: one is to select a precursor
containing N elements, the other is to combine MOFs with N-
containing materials, then allowing the heteroatomic doping of
N in the post-processing process (Oh et al., 2019). With the
study of N doping, the content of N doping is a key factor to
affect the performance of catalyst. For example, Huang et al.
(2017) reported a facile one-step pyrolysis strategy to synthesize
Co/N-carbon in argon atmosphere. As illustrated in Figure 3A,
the overpotential of Co/N-carbon is 103mV (vs. RHE) at 10mA

cm−2. The dramatic enhancement of catalytic activity was even
more apparent of charge-transfer resistance (Rct) for the Co/N-
carbon (45Ω) (Figure 3B). Experimental results prove that after
doping with N, HER performance of Co/N-carbon has been
significantly improved. There is almost no HER polarization
curve shift for Co/N-carbon after 2,000 cycles, demonstrating
their superior cycling durability. To further investigate the effect
of N doping, they prepared various catalysts with different N
contents. According to the linear sweep voltammetry (LSV)
curves, the catalyst of N with 30mg dosage shows the best
HER performance, which further illustrated that the less dosage
of N atom can’t provide enough rich electronic. However,
excessive dopant will reduce the graphitic carbon, and degrade
the performance of HER. Therefore, the content of N is an
important factor affecting the HER performance.

Dual-heteroatom-doped has become a burgeoning research
topic to further boost the HER performance of Co-MOFs
derived catalysts. Experimental results revealed that co-doped
can downshift the valence bands of carbon matrix and reduce
HER overpotential (Zheng et al., 2014; Jiao et al., 2016). In
order to improve the catalytic performance of N doping, the
use of co-doped is generally required. In the co-doped system,
the second doping element is one of key problems needs to
be tackled. A simple and effective strategy to solve such a
problem is using two doping elements which play different roles
on the carbon matrix. N-doping can promote electrocatalytic
performance by enhancing the adsorption strength of anionic
groups (-OH), optimizing the 1GH∗ and 1GH2O. For S doping,
the electronegativity is almost the same as carbon, mainly by
changing the electron spin density to improve the performance
of the carbon matrix. The enhanced electrocatalytic activity of
catalysts was ascribed to the optimized water and hydrogen
adsorption free energy by N, S atoms co-doping (Weng et al.,
2018). Weng et al. (2018) demonstrated a facile preparation of
S-doping CoWP nanoparticles embedded in S- and N-doped
carbon matrix [S-CoWP@ (S, N)-C] and further proved the
synergistic effects between S and N. In addition, doping B and N
into the carbon matrix is another effective approach. When one
carbon atom is adjacent to two different doping atomswhich have
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the same electron-absorbing or electron-giving effects on the
middle carbon atom, it will not be conducive to the polarization
of the electron cloud of the middle carbon atom. On the contrary,
if the heteroatoms on the one side of the carbon atom are
pushing electrons on the other side of carbon, it will promote
the polarization of the electron cloud of the middle carbon atom
(Liu et al., 2018). Therefore, through the synergistic effect of B
and N, the catalytic performance of materials can be improved
(Liu et al., 2018).

To summarize, both BIFs and ZIFs are bridged by imidazolate.
Their derivatives are naturally B-or/and N-doping materials.
According to the above description, optimum N-doping
content and co-doping play a significant role for boosting the
performance of HER. However, to elucidate the synergistic effect
of heteroatomic doping remains a challenge.

Co-MOFs Derived Metal Selenide
Cobalt selenide has been attracted considerable attention in the
field of water electrolysis due to its excellent performance, high
stability and low cost (Liu Y. et al., 2014; Wang et al., 2015; Li
K. et al., 2016; Ao et al., 2018; Wang X. et al., 2018a,b; Yi et al.,
2020). The electrocatalysis activity of cobalt selenide is mainly
attributed to the number of active sites. Moreover, the density
of states (DOS) could also determine material properties. For
electrocatalysts, the DOS near Fermi level is responsible for the
adsorption strength of catalysts. Kong et al. (2013) has prepared
a various of first-row transition metal dichalcogenides (ME2, M
= Fe, Co, Ni; E =S, Se) as HER catalysts in acidic media. For all
samples, CoSe2 exhibits a high HER performance and shows a
small Tafel slope (42.175mV dec−1), which may be related to its
unique electronic structure.

However, CoSe2 has fewer active sites due to easy
agglomeration, which limits its application (Liu Y. et al.,
2014; Kim et al., 2017; Wang F. et al., 2019; Wang X. et al.,
2019; Ding et al., 2020). To overcome this drawback, assembling
catalysts with conductive carbon, such as carbon fiber paper
(Park and Kang, 2018), carbon nanotubes (Zhou W. et al., 2016;
Park and Kang, 2018; Ding et al., 2020), has been demonstrated
to be an effective approach. However, the uniform dispersion
of nanoparticle catalysts on carbon matrix is still a great
challenge. Thus, using MOFs as precursors to introduce carbon
nanomaterials has become a popular research subject. According
to the morphological relationship between the carbon material
and CoSe2, it can be divided into coating (Zhou W. et al., 2016;
Meng et al., 2017; Lu et al., 2019; Ding et al., 2020) and loading
(Park and Kang, 2018). By coating with carbon materials, the
agglomeration and corrosion of CoSe2 can be largely restricted
(Zhang F. et al., 2019; Zhang L. et al., 2019; Ding et al., 2020).
Zhou W. et al. (2016) prepared the core-shell structure of
CoSe2@DC with CoSe2 as the core and embedded CoSe2 with
defective carbon nanotubes by a carbonization-oxidation-
sialylation strategies. Polarization curves of the materials are
shown in Figures 4A,B. The overpotential of CoSe2@DC is
132mV at 10mA cm−2. Additionally, the Tafel slopes are drawn
to study the HER kinetics of the products (Figure 4C). The
CoSe2@DC exhibits a Tafel slope of 82mV dec−1, which is
lower than that of other materials. Nyquist plots of all catalysts

are given in Figure 4D, obviously, the Rct of CoSe2@DC is far
smaller than the other catalysts. In addition, Ding et al. (2020)
synthesized a CoSe2@N/C-CNT catalyst by self-assembling Co2+

ions in Adenine (Ade) which is the source of C and N. N-doping
bamboo-like carbon nanotubes is also used to prevent the
agglomeration and corrosion of catalyst. This method provides
strong inspiration for design encased core-shell structure, which
might eliminate the issue of the agglomeration. Loading the
sample on a carbon substrate is another method to mitigate the
agglomeration (Sun et al., 2016; Park and Kang, 2018). Sun et al.
(2016) reported that Co2+ and organic ligand are repeatedly
introduced on the carbon fiber paper. Then, Co-MOFs is formed
through the heterosexual attraction between the positively
charged Co2+ and the negatively charged -COOH group on the
carbon fiber paper. Because of the high conductivity of carbon
fiber paper, this material exhibits excellent electrocatalytic
activity of HER. The time of introducing Co2+ and organic
ligand was controlled in the synthesis process, which can avoid
the agglomeration and produce the optimal loading catalyst with
high performance.

Co-MOFs Derived Metal Sulfide
Cobalt sulfides have got tremendous attention due to their
intrinsic merits including low cost, easy synthesis and remarkable
chemical bond between Co and S (Li K. et al., 2016; Li Z. Q.
et al., 2016). The importance of S species in improving the HER
performance of Co-based MOFs materials has been confirmed
by Staszak-Jirkovsky et al. (2016). It has been known that the
electronegativity of S is larger than that of Co (Liu et al., 2019b),
the electron transfer from Co to S will increase the electron cloud
density around S atoms (Liu S. et al., 2020a). The integrated
effects of these factors in Co-MOFs derived metal sulfide ensure
its excellent performances. Chen W. et al. (2019) fabricated the
flower-like hybrid materials NCO@M (M = Co3O4, C, CoS, and
CoSe) by ZIF-67 supported of Ni-Fe foam. From the SEM and
TEM images, the morphology of NCO@CoS retains the flower-
like structure while other samples are changed, suggesting that
NCO@CoS has the strong chemical bond between Co and S
elements. In addition, NCO@CoS also shows the excellent HER
performances compared with the other three samples.

Cobalt sulfides have good corrosion resistance in alkaline
solution, and the valence state of cobalt is abundant. Co and S
can form various compounds, such as CoS, CoS2, Co2S3, Co3S4,
Co9S8 (Chandrasekaran et al., 2019). The calcination time and
atmosphere have been described as key conditions to determine
the valence states of the cobalt. Sulfur could sublimate at high
temperature, increasing the calcination time can reduce the
sulfur content. When the experimental atmosphere is changed
from Ar to H2/Ar, the S content will be further reduced.
This might be ascribed to that S can react with H2 and thus
reduce the content of S (Sun et al., 2018). However, most
metal sulfide are semiconductors, when they are used as HER
catalysts in acidic or alkaline solutions, insufficient conductivity
and low stability seriously will degrade their electrocatalytic
performance (Li H. et al., 2017; Li M. et al., 2017b). Incorporating
carbon materials (e.g., carbon cloth and graphene oxide sheets)
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FIGURE 4 | HER performances of Co-MOFs derived metal selenide (CoSe2@DC) in 0.5M H2SO4. (A,B) Polarization curves of the different samples, (C) the Tafel

plots from (A,B,D) Nyquist plots of the different samples. Reproduced with permission (Zhou W. et al., 2016). © 2016 Nano Energy. All rights reserved.

is a well-established strategy to enhance the conductivity of
the electrocatalysts.

When the catalyst loading on the carbonmatrix, the additional
sulfur source will be partially doped in the carbon material (Wu
et al., 2015). Since most organic ligands are rich in N, S, and N are
usually co-doped in the carbon matrix (Li M. et al., 2017b; Wu
et al., 2017b). Recently, S, N co-doping has stimulated intensive
interest as an emerging method (Wang et al., 2017). Zhang X.
et al. (2016) used S- and N-containing chemicals with fixed S/N
atomic ratios as precursors to precisely control the doping of
S and N in the carbon structure. As shown in Figure 5A, the
Co/Co9S8@SNGS catalyst was synthesized by Co ions with S
containing thiophene-2,5-dicarboxylate (Tdc) and N-containing
4,4′-bipyridine (Bpy) (Figure 5A). The two-dimensional
network layer is formed by Tdc in the sample, and the connection
between the two-dimensional network structure is realized by
Bpy. The experimental results show that due to the periodic
arrangement of the two connectors, the precise ratio of N and

S can be achieved to 2.4:1. The electrocatalytic performance
of the Co/Co9S8@SNGS-T (T = 900, 1,000, 1,100◦C) and
Co@SNGS-800 was evaluated in 0.1M KOH solution. The
onset potentials of the Co@SNGS-800, Co/Co9S8@SNGS-900,
Co/Co9S8@SNGS-1000, Co/Co9S8@SNGS-1100, and Pt/C
are 320, 250, 150, 240, and 0mV (vs. RHE), respectively
(Figure 5B). Additionally, Co/Co9S8@SNGS-T shows the
smaller Tafel slope than that of Co@SNGS-800 (125.9mV
dec−1) (Figure 5C). The above HER results further confirmed
that the interaction between Co and S can promote the
performance of HER.

Co-MOFs Derived Metal Phosphide
Recent years, transition metal phosphides (TMPs) have attracted
wide attention due to their excellent HER activity, low cost and
stability in acidic environments (Tabassum et al., 2017; Wang Q.
et al., 2018; Wang X. et al., 2018a; Zhang et al., 2018; Ma X. C.
et al., 2020). Unlike the typical layer-structured metal sulfides,
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FIGURE 5 | Co-MOFs derived metal sulfide for HER electrocatalysis under N2-saturated 0.1M KOH solution. (A) A schematic illustration of the synthesis of

Co/Co9S8@SNGS; (B) Linear sweep voltammetry curves of the different samples; (C) Tafel plots of the different samples. Reproduced with permission (Zhang X.

et al., 2016). © 2016 Nano Energy. All rights reserved.

TMPs tend to form more isotropic crystal structures. Due to
the unique structure, metal phosphides usually exhibit abundant
unsaturated coordination atoms on the surface. Therefore, TMPs
are believed to have higher activity for HER than transition
metal sulfides (Das and Nanda, 2016). P vapor is often used for
TMP preparation, but it usually requires very high temperature
(>500◦C) due to the non-reactivity of P4 molecules (Zhang K.
et al., 2017). While, such high temperature will cause the collapse
of MOFs, thereby reducing the exposure of active sites and
hindering electrons transport (Zhang L. et al., 2019). Hence, it is
important to select an appropriate phosphorus source (Jia et al.,
2017; Yang et al., 2017; Liu et al., 2019b). PH3 with high reactivity
seems to be a better choice than P vapor, but it is extremely toxic,
and has high risk during the experiment. In order to solve this
problem, the use of NaH2PO2 as a phosphorus source can not
only achieve low temperature phosphating (∼300◦C) but also

ensure safety during the experiment (Liu Q. et al., 2014; Liu Y.
et al., 2014; Zhang et al., 2015).

The low conductivity of cobalt phosphides, however, seriously
limits their widespread application (Zhou D. et al., 2016; Zhou
W. et al., 2016; Wu et al., 2017a; Zhang K. et al., 2017; Pan
et al., 2018). Co-MOFs derived cobalt phosphides feature highly
dispersed active phases in carbon matrix, which improving the
conductivity of materials and making Co-MOFs derived cobalt
phosphide an ideal catalyst for HER. In 2018, Hao et al. (2018)
successfully embedded Co/CoP into a hairy N-doping carbon
polyhedron (Co/CoP HNC). The N-doping carbon nanotube
structure not only enhances the interface contact between catalyst
and electrolyte, but also facilitates the charge transfer. Inspired
by this structure, Pan et al. (2018) prepared the similar structure
sample with core shell ZIF-8@ZIF-67 as the precursor to the
CoP nanoparticles (NPs) into the hollow polyhedron N-doping
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FIGURE 6 | HER performances of Co-MOF derived metal phosphide. LSV curves (A), Tafel slope (B) in 1M PBS, LSV curves (C), Tafel slope (D) in 1M KOH and LSV

curves (E), Tafel slope (F) in 0.5M H2SO4 of the different samples. Reproduced with permission (Liu et al., 2019a) © 2019 Angew. Chem. Int. Edit. All rights reserved.
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FIGURE 7 | HER performances of Co-MOFs derived metal phosphide synthesized by controlling the pyrolysis temperature. (A) Calculated free energy diagram of the

HER for (i) *H2O and (ii) *1/2H2 on the different samples, (B) The contact angles of a drop of 1.0M KOH on (i): ZIF67 precursor, (ii): Co/Co2P@ACF/CNT HNCs-800,

(iii): Co/Co2P@ACF/CNT HNCs-900, and (iv): Co/Co2P@ACF/CNT HNCs-1000, (C) Calculated DOS of the different samples, (D) NBO charge distribution.

Reproduced with permission (Wang F. et al., 2019). © 2019 J. Mater. Chem. A. All rights reserved.

carbon nanotubes (NCNHP). It is found that the CoP/NCHNP
has high conductivity, which can be ascribed to the hollow
polyhedron unique N-doping carbon nanotubes.

The hybridization of Co and cobalt phosphides is another
effective approach to enhance the conductivity (Masa et al., 2016;
Xue et al., 2017). However, the higher concentration of P in the
catalysts impedes the delocalization of cobalt atoms (Wang F.
et al., 2019), which is amajor reason why it has a low performance
of HER. Hence, to control the concentration of P is still an urgent
task. Liu et al. (2019a) proposed CoP/Co-MOF on a carbon
fiber paper (CF) through a controllable partial phosphorization
strategy. The optimized CoP/Co-MOF/CF exhibits outstanding
HER performance in alkaline, acidic, and neutral conditions.
Remarkably, the CoP/Co-MOF/CF achieves a current density of
10mA cm−2 at an extremely low overpotential of 49, 34, and
21mV in 1.0M PBS, 1.0M KOH, and 0.5M H2SO4 solutions,
respectively (Figures 6A,C,E). Figures 6B,D,F indicate that
CoP/Co-MOF possesses the fast dynamics with the Tafel slope of

63, 56, and 43mV dec−1 in 1.0M PBS, 1.0M KOH, and 0.5M
H2SO4 solutions, respectively. Both experiment and density
functional theory (DFT) results show that theN atom inCo-MOF
has large electronegativity, the electrons transfer fromCoP to Co-
MOF increases the positive charge of Co atoms. Positive charge
Co atoms interact with the negative charge oxygen atoms in water
is conducive to the adsorption and activation of water molecules,
thus improve the performance of HER.

In addition to partial phosphorization strategy, annealing
temperature is another method to control the doping content
of P. High temperature annealing could accelerate the loss of
phosphorus and increase the content of Co (Wang F. et al.,
2019).Wang F. et al. (2019) prepared the component controllable
Co/Co2P@ACF/CNT HNCs materials through simple etching-
pyrolysis-phosphate process. From the free energy calculation
results (Figure 7A), Co/Co2P@ACF/CNT-900 has an optimal
adsorption energy for water activation. The water contact
angle (Figure 7B) shows that Co/Co2P@ACF/CNT-900 has
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FIGURE 8 | (A) The calculated free-energy diagram of the different samples, (B) Calculated DOS curves for CoP and Ni-CoP. Adapted with permission from Pan et al.

(2019). © 2019 Nano Energy. All rights reserved. (C) Tafel plots of different catalysts in 1M KOH solution. (D) Electrochemical impedance spectra of various catalysts

at −0.07V vs. RHE in 1M KOH solution. Reproduced with permission (Li D. et al., 2018). © 2018 ACS Sustain. Chem. Eng. All rights reserved.

a lower H∗ intermediate adsorption energy. This indicates
that Co/Co2P@ACF/CNT-900 is conducive to the adsorption
of water, and promotes the Volmer steps, further enhances
the HER performance. In addition, the d-band center of
Co/Co2P@ACF/CNT-900 is close to the Fermi level, which
possess the moderate H adsorption energy (Figures 7C,D). The
subsequent electrochemical test was consistent with the above
calculations, Co/Co2P-@ACF/CNT HNCS-900 exhibits the best
HER performance. What’s more, the phosphating degree could
be controlled by changing the mass ratio of phosphorus source
and Co during the experiment. Xue et al. (2017) synthesized
a novel Mott–Schottky Co/Co2P microspheres (Co/Co2P@C)
catalyst through carbonization and gradual phosphorization of
Co-basedMOFs. The hybridization between cobalt and Co2P can
form the Mott-Schottky effect, which could effectively promote
the electron transfer.

Synergies With Other Metals
In addition to Co ion, the presence of other metals in the nodes
or anchoring other metal ions intoMOFs pores can obtain mixed
Co-metal MOFs (CoM-MOFs). Compared with single metal Co-
MOFs, CoM-MOFs exhibits better HER performance due to the
increased active sites (Singh et al., 2019) or optimized absorption
and desorption of hydrogen intermediates (Yilmaz et al., 2017;
Li D. et al., 2018; Li X. et al., 2018; Yu et al., 2018; Chen
W. et al., 2019; Feng et al., 2019; Zhang L. et al., 2019). In
order to further improve the performance of the CoM-MOFs,
it is important to understand the reaction mechanism of this
materials. Increasing the level of the d-band center of metal ions
could enhance the interaction between metal and the adsorbed
molecules (Hammer and Norskov, 1995; Skúlason et al., 2010;
Zheng et al., 2014; Chen et al., 2018). Therefore, regulating the
d band center of Co can adjust the interaction between catalysts
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FIGURE 9 | (A) Calculated free-energy diagram of HER at the equilibrium potential for different models, (B) Tentative model of an alloy core particle consisting of Co

and Ir, (C,D) Electrocatalytic HER performance of the catalysts in N2-saturated 0.5M H2SO4 solution. (C) Polarization curves of the different samples, (D) Tafel plots of

the different catalysts. Reproduced with permission (Jiang et al., 2018). © 2018 Adv. Mater. All rights reserved.

and hydrogen intermediates, optimize the 1GH∗ (Ahn et al.,
2018). There are two strategies to modulate the d-band center
of Co: (1) adopting two metals with different electronegativities
to promote the electron transfer, and adjusting the level of
the d-band center of Co (Xu et al., 2018; Lian et al., 2019;
Qiao et al., 2020). (2) regulating the lattice parameters and
bandwidth of Co, thereby changing the height of the d-band
center of Co (Lai et al., 2019; Wang X. et al., 2020; Zhang et al.,
2020).

Recently, Pan et al. (2019) prepared M-doped CoP (M =

Ni, Mn, Fe) on a hollow polyhedral framework (HPFs) by self-
template transformation (STT) strategy. With Fe, Mn, and Ni
doping, the doping ions substituted some Co2+ ions in CoP.
DFT study (Figure 8A) suggested that Ni-doped CoP had the
optimal hydrogen adsorption free energy. The doping of Ni
atoms will lead to the transfer of electron from doping metal
to Co atoms, and could improve the performance of HER. DOS
calculation further proved how it changes the electronic structure
of CoP. As shown in Figure 8B, the d-band center decreases
as Ni doping in CoP, thus decrease the binding strength of

H. These studies indicate that the downshift of d-band center
reduces the adsorption of H and increase the desorption of H,
which can improve the HER performance. Similarly, doping
of other metals could also adjust the d-band center of Co.
Li D. et al. (2018), Li X. et al. (2018) prepared Co@Ir/NC-x
catalyst through a galvanic replacement reaction between IrCl3
and Co/NC. According to the X-ray photoelectron spectroscopy
(XPS) analysis, the binding energy of the Co 2p electrons
of Co@Ir/NC-10% (781.9 eV) is higher than that of Co/NC
(780.0 eV). This indicates that the electron transferred from the
Co core to the Ir shell, which can significantly optimize the
electrocatalytic performance. According to Figure 8C, the Tafel
slopes of Co/NC, Co@Ir/NC-5%, Co@Ir/NC-10%, Co@Ir/NC-
15%, and Pt/C are measured to be 158.4, 142.9, 97.6, 133.2,
and 38mV dec−1, respectively. The Co@Ir/NC-10% also shows
the lowest charge transfer resistance (Figure 8D). Unlike the
above post-modification method, Chen W. et al. (2019) used
two metal salts as metal sources and 1,4-benzenedicarboxylic
acid (1,4-BDC) as a linker to synthesize Co-Fe-P nanotubes.
The charge transfer from Fe to Co of Co-Fe-P catalyst
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TABLE 1 | Summary of Co-MOFs derived electrocatalysts for HER.

Precursor Loading amount

[mg cm−2]

Electrolytes Overpotential at

10mA cm−2 [mV]

Tafel slope

[mV dec−1]

References

FeCo-600 ZIF-67 0.285 0.5M H2SO4 262 Yang et al., 2015

Co/Co2P@C-10 ZIF-67 0.2 0.5M H2SO4 192 Yu H. et al., 2020

1.0M KOH 158 56.35

CoP@BCN ZIF-67 0.4 0.5M H2SO4 87 46 Tabassum et al., 2017

1.0M KOH 215 52

1M PBS 122 59

Co-NC/CF ZIF-67 0.649 1.0M KOH 103 109 Huang et al., 2017

Co/NBC-900 BIF 2 1.0M KOH 117 146 Liu et al., 2018

CoSe2/CF ZIF-67 2.9 1.0M KOH 52 95 Sun et al., 2016

S-CoWP@(S, N)-C ZIF-67 0.75 1.0M KOH 35 35 Weng et al., 2018

CoSe2@N/C-CNT ZIF-67 0.255 0.5M H2SO4 185 98 Ding et al., 2020

CoSe2@NC-NR/CNT ZIF-67 1.3 0.5M H2SO4 49.8 Park and Kang, 2018

CoSe2@DC ZIF-67 0.357 0.5M H2SO4 132 82 Zhou W. et al., 2016

CoSe2(400)-NC-800 ZIF-67 0.212 0.5M H2SO4 234 95 Lu et al., 2019

NCO@CoS ZIF-67 / 1.0M KOH 100 68 Chen W. et al., 2019

Co9S8/CoS1.097/rGO ZIF-67 1.684 0.5M H2SO4 188 96 Sun et al., 2018

Co/Co9S8@SNGS-1000 ZIF-67 1 0.1M KOH 350 96.1 Zhang X. et al., 2016

CoP/Co-MOF/CF ZIF-67 5 0.5M H2SO4 21 43 Liu et al., 2019a

1.0M KOH 34 56

1M PBS 49 63

CoP–CNTs ZIF-67 0.267 0.5M H2SO4 139 52
Wu et al., 2017a

Co/CoP–HNC ZIF-67 0.19 1.0M KOH 180 105.6 Hao et al., 2018

CoP/NCNHP ZIF-67 0.390 0.5M H2SO4 140 53 Pan et al., 2018

0.390 1.0M KOH 115 66

FexCo2-xP ZIF-67 4 1.0M KOH 114 97 Singh et al., 2019

Co@Ir/NC-10% ZIF-67 0.202 0.5M H2SO4 29.4 41.9 Li D. et al., 2018; Li X.

et al., 2018

1.0M KOH 121 97.6

NC@Cu-Co-W-C-700 ZIF-67 2 1.0M KOH 98 50 Qiao et al., 2020

Co0.6Fe0.4P-1.125 0.270 0.5M H2SO4 97 Lian et al., 2019

ZIF-67 1.0M KOH 133 61

1M PBS 140

NiCoN/C ZIF-67 / 1.0M KOH 103 Lai et al., 2019

Co-NCF@600-Ni ZIF-67 0.28 1.0M KOH 157 112 Zhang et al., 2020

Ni-CoP/HPFs ZIF-67 0.796 0.5M H2SO4 144 52 Pan et al., 2019

1.0M KOH 92 71

IrCo@NC-500 ZIF-67 0.285 0.5M H2SO4 24 23 Jiang et al., 2018

N/Co-PCP//NRGO ZIF-67 0.714 0.5M H2SO4 126 Hou et al., 2015

Co-NC/CF ZIF-67 1 1.0M KOH 157 109 Huang H. et al., 2020b

Co/Co9S8 ZIF-67 0.64 1.0M KOH 216 80 Du et al., 2019

MOF-CoSe2 ZIF-67 0.539 0.5M H2SO4 42 Lin et al., 2017

CoP - NB ZIF-67 0.707 0.5M H2SO4 51 Wang X. et al., 2018a

CoPS@NPS-C (4 wt%) ZIF-67 0.357 0.5M H2SO4 93 63 Hu et al., 2018

Co0.75Fe0.25-NC ZIF-67 0.212 1.0M KOH 202 67.96 Feng et al., 2018

Zn0.30Co2.70S4 ZIF-67 0.285 0.5M H2SO4 80 47.5 Huang et al., 2016

achieved the desirable electronic configuration and boost the
HER performance.

Alloying is another simple and feasible strategy to adjust
the d-band center (Wang X. et al., 2020). After alloying, the

electronic structure of Co was altered, and hydrogen bonding
energy was optimized, thus the HER performance was promoted
(Greeley and Mavrikakis, 2004). The surface lattice strain and
the coordination environment can be changed by adjusting
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the ratio of two kinds of metal atoms, thereby optimizing the
d-band center of Co (Pan et al., 2019). Yang et al. (2015)
prepared FeCo alloy nanoparticles by annealing of MOFs
nanoparticles. Raising the annealing temperature, the average
crystallite sizes of the crystal grain increases. After forming
the alloy, the bond length of Fe-Co (2.18 Å) is lower than
that of Co-Co, suggesting that the doping of Fe could result
in strain effects. These results help to shift the d-band center
of Co and increases the 1GH∗ . Jiang et al. (2018) prepared
IrCo alloys (IrCo@NC) with a simple annealing strategy from
Ir-doped Co-based MOFs. Compared with Co@NC, the d-
band center of the IrCo@NC located in the vicinity of the
Fermi level, which lead to the IrCo@NC has a moderate
1GH∗ (Figure 9A). Due to the different atomic radius of
Co and Ir, the lattice parameters of Co will be changed
when Ir is introduced into the Co core (Figure 9B). From
the electrochemical test, the IrCo@NC catalyst shows a low
onset overpotential (24mV) (Figure 9C) and a small Tafel
slope (23mV dec−1) (Figure 9D) than that of commercial
Pt/C (30 mV dec−1).

CoM-MOFs is expected to provide a promising avenue
in designing and developing novel catalysts, which can
improve the performance by offering two different catalytic
centers. Apart from doping other metals with different
electronegativity, adjusting the lattice parameters of cobalt
is another method to achieve the goals. However, how
to control the distribution of metals in the catalyst is
worth exploring.

CONCLUSIONS AND PERSPECTIVES

In summary, due to porous structures and variable chemical
compositions, Co-MOFs have been proved to be an effective
catalyst for HER. However, the HER performance of the original
Co-based MOFs is still not very well. In this review, we
summarize the recent efforts of Co-MOFs derived materials
for HER: (1) Co-MOFs derivatives from various precursor; (2)
Co-MOFs derived metal selenide; (3) Co-MOFs derived metal
sulfide; (4) Co-MOFs derived metal phosphide; (5) synergies
with other metals. To better understand the advantages of the
above strategies, the HER performances of Co-MOFs derivatives
catalysts are listed in Table 1. Those studies will provide some
new insight in the development of Co-based catalysts for HER.
Despite the impressive progress of Co-MOFs in this field, there
are still many issues to be solved. In the end, to improve the
catalytic performance of Co-MOFs derived materials for HER,
the following urgent issues should be rationally considered.

1) It is important to explore various novel Co-based MOFs
precursors. Currently, the preparation of Co-based MOFs
is mainly come from ZIF-67 (Table 1), which possess
chemical and thermal stability, and rich topological diversity.
Nonetheless, exploring novel precursors to obtain more
excellent Co-MOFs catalysts is of great significant for the
development of hydrogen production in the future.

2) Optimizing the preparation condition of Co-based MOFs
electrocatalysts is crucial. Although most MOFs are crystals,
the conductivity of these materials are poorly or scarcely
existing due to the insulating character of ligands. High
temperature pyrolysis is necessary for MOFs precursor to
improve the conductivity. However, the high temperature
often leads to the aggregation of metal atoms and collapse of
porous network of the MOFs-derived materials. Therefore,
achieving an optimal balance among pyrolysis temperature,
conductivity, metal particles distribution and surface
structure of MOFs-based catalysts is still challenging.

3) The synergistic effect between Co and other metals can
reduce the HER energy barrier and improve the catalysts
performance. However, the existence of multiple metals
increases the complexity of designing MOFs-based materials.
The main challenge is how to control the synthesis of
Co with other metals, including optimizing of the ratio of
metal ions. In addition, the precise reaction mechanism of
CoM-MOFs based catalysts is unclear. Hence, to obtain a
high performance HER catalysts, it is necessary to have a
fundamental understanding of the reaction mechanism for
CoM-MOFs based materials.
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