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Summary
Genome-wide association study (GWAS) summary data have become extremely useful in daily routine data analysis, largely facilitating

newmethods development and new applications. However, a severe limitation with the current use of GWAS summary data is its exclu-

sive restriction to only linear single nucleotide polymorphism (SNP)-trait association analyses. To further expand the use of GWAS sum-

mary data, alongwith a large sample of individual-level genotypes, we propose a nonparametricmethod for large-scale imputation of the

genetic component of the trait for the given genotypes. The imputed individual-level trait values, along with the individual-level geno-

types, make it possible to conduct any analysis as with individual-level GWAS data, including nonlinear SNP-trait associations and pre-

dictions. We use the UK Biobank data to highlight the usefulness and effectiveness of the proposed method in three applications that

currently cannot be done with only GWAS summary data (for SNP-trait associations): marginal SNP-trait association analysis under non-

additive genetic models, detection of SNP-SNP interactions, and genetic prediction of a trait using a nonlinear model of SNPs.
Introduction

Genome-wide association studies (GWASs) have been

quite successful in identifying genetic variants, mainly sin-

gle nucleotide polymorphisms (SNPs), associated with

complex traits and common diseases.1,2 In particular, the

increasing availability of GWAS summary data (for SNP-

trait association as usually used and assumed throughout

this paper) has been playing an indispensable role in

largely facilitating the development of new methods for

new applications and secondary data analyses,3 such as

construction of polygenic risk scores (PRSs) for trait predic-

tion,4 fine mapping,5 heritability estimation,6–8 genetic

correlation analysis,9,10 causal inference with Mendelian

randomization,11,12 and transcriptome-wide association

studies,13,14 just to name a few; see Pasaniuc and Price15

for a recent review. Nevertheless, since marginal SNP-trait

association estimates in GWAS summary data measure

only linear relationships between the SNPs and trait, the

current use of GWAS summary data is limited to exploiting

only linear SNP-trait associations; it is unknown how to

use GWAS summary data for nonlinear SNP-trait associa-

tion analysis. For example, given a GWAS summary dataset

(and a reference panel of individual-level genotypes), it

seems impossible to detect SNP-SNP interactions16,17 or

to build a PRS model accounting for possibly nonlinear

and epistatic SNP effects by taking advantage of many

emerging powerful nonlinear machine learning models

such as random forests (RFs)18–22 and deep learning.23,24

These nonlinear SNP-trait association and prediction ana-

lyses are expected to shed more light on the genetic archi-

tecture of complex traits, deepen mechanistic understand-
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ing of common diseases, and thus advance translational

applications of genetics.

Here we point out that it is possible for nonlinear

modeling and analyses based on a GWAS summary dataset

and a sample of individual-level genotypes. More generally,

with a GWAS summary dataset of a trait, we can impute the

trait values for a large sample of genotypes, which can be

useful if the trait is not available, either unmeasured or diffi-

cult to measure (e.g., status of a late-onset disease), in a bio-

bank. We propose a nonparametric method for large-scale

imputation of the genetic component of a trait for each of

the individuals with (genome-wide) genotypic data. With

the individual-level genotypes and imputed trait values,

one can conduct any (linear or nonlinear) GWAS analysis

as with individual-level data. We use the UK Biobank data

to show that, with GWAS summary data and individual-

level genotypes (that may or may not be different from

those of the summary data), using the imputed trait values

for subsequent analyses led to results quite similar to that

obtained from using the observed/true trait values. In

particular, we showcase three applications with trait impu-

tation: given a GWAS summary dataset, we conductedmar-

ginal SNP-trait association analysis under anon-additive ge-

netic model for SNPs,25,26 detecting SNP-SNP interactions,

and predicting a complex trait using a nonlinear model

(i.e., RFs) for a sample of individuals with only genotypic

data. Since any existing PRS method can be applied to

impute the trait values for a sample of genotypes, one may

wonder how our proposed method compares with existing

PRS methods. In short, because existing PRS methods for

GWAS summary data are all based on some assumed linear

models, theywill not be suitable for subsequent association
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analyses.Weused a state-of-the-art PRSmethod27 as a repre-

sentative to confirm the point in the above three applica-

tions. Given the increasing availability of GWAS summary

data of various traits and of large-scale biobanks with geno-

typic but not phenotypic data for some traits of interest, we

expect that the proposed method will further expand the

use of GWAS summary data in many new applications,

especially for nonlinear or/and integrative analysis of

GWAS summary data and biobank data.
Material and methods

Overview
For an individual with genome-wide genotype (score) vector x and

a quantitative trait y, we assume a genetic model:

y ¼ EðyjxÞ þ e ¼ gðxÞ þ e; (Equation 1)

where EðyjxÞ ¼ gðxÞ is the genetic (or genetically regulated)

component of the trait that is unknown, and ε captures all other

genetically independent environmental effects and white noises.

Note that the functional form of gðxÞ is unspecified; in particular,

it may not be linear in x, thus allowing and accounting for

nonlinear and epistatic effects of the SNPs.

Suppose we have a GWAS summary dataset fðbb�
j ;s

�
j Þ :j ¼ 1;.; pg

for p SNPs based on an individual-levelGWAS dataset ðX�;Y�Þ, called
training data. As usual, the individual-level data are not available.

Each bb�
j is theordinary least-squares estimator (OLSE)of themarginal

association between SNP j and the trait, and s�j ¼ SEðbb�
j Þ is the stan-

darderror (SE).Nowgivenanindividual-level genotypicdatasetX for

a sample of (approximately) unrelated individuals from the same

population, called the test data, wewould like to recover (the genetic

component of) the trait for each individual in the test sample. We

developed a nonparametric method for this purpose without speci-

fying the functional form of gð:Þ; in contrast, all existing PRS

methods for summary data are based on a parametric linear model

for gð:Þ. Themain idea is that, ifwehadY,we could estimate themar-

ginal associationas bbj for eachSNP j; under theassumption thatboth

the training and test data come fromthe samepopulation,with large

sample sizes n1 and n2, we have bb�
zbb, which can be used to formu-

late a least-squares (LS) problem to estimate the genetic components

of Y. We loosely call the procedure imputing or recovering (the ge-

netic components of) Y.

After obtaining bY , we can conveniently treat ðX; bY Þ as an indi-

vidual-level GWAS dataset for subsequent analyses, including as-

sessing nonlinear SNP-trait associations that cannot be accom-

plished with the original GWAS summary data alone, such as

detecting SNP-trait associations under a non-additive model and

detecting SNP-SNP interactions as to be illustrated next.

We took a random sample of n1 ¼ 178;175 individuals from

the UK Biobank and used their genotypes and trait high-density li-

poprotein cholesterol (HDL) as the training data (to obtain and

then use the GWAS summary data) and those for the other n2 ¼
178;176 as the test data. We imputed the trait values for the test

data and compared the performance of using the observed trait

values with that of using imputed ones in various tasks.
The LS-imputation method
Suppose we have a GWAS summary dataset fðbb�

j ;s
�
j Þ : j ¼ 1;.; pg

for p SNPs derived from an individual-level GWAS dataset of n1

individuals, ðX�; Y�Þ, with X� ¼ ðX�
:1; X�

:2; .; X�
:pÞ, X�

:j ¼
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ðX�
1j;X

�
2j;.;X�

n1 j
Þ0, and Y� ¼ ðY�

1 ;Y
�
2 ;.;Y�

n1
Þ0, called training

data. As usual, only the GWAS summary data, not the individ-

ual-level training data, are available; we use the individual-level

data here only for the purpose of notation or illustration. We as-

sume throughout that each SNP is centered to have sample

mean 0; although not required, for simplicity of notation, we

also assume that each SNP is scaled to have sample variance 1.

Then the OLSE bb� ¼ ðbb�
1;.; bb�

pÞ
0
of the marginal associations be-

tween the SNPs and the trait is

cb� ¼ 1

n1 � 1
X�0Y�;or equivalently;

cb�
j ¼

�
X�

:j
0X�

:j

��1

X�
:j
0Y� ¼ 1

n1 � 1
X�

:j
0Y�:

Given a new test dataset of n2 individuals with only genotypic

data as an n23p SNP matrix X, we would like to impute the corre-

sponding (genetic components) of the trait vector Y. If Y were

available, we would estimate the marginal association effects asbb ¼ 1
n2 �1X

0Y. Since both bb and bb�
are consistently estimating

the same true (and unknown) marginal association parameter b,

if the sample sizes are not too small, they should be close to

each other. Hence, to impute Y, we consider the following LS

problem:

bY ¼ arg min
Y

kbb� � 1

n2 � 1
X0Yk

2

¼ ðn2 � 1ÞðXX0ÞþXbb�

¼ ðn2 � 1ÞX0þbb�
: (Equation 2)

In the above OLSE, due to centering of each SNP (i.e., column of

X) at sample mean 0, X is not of full rank, so the Moore-Penrose

generalized inverse is used (while other generalized inverse can

be equally used but will not be pursued here). It is easy to see

that the solution to the above LS problem is not unique: given

any solution bY , bY þ c for any constant c is a solution too, due

to X01c ¼ 0. Alternatively, some regularization via a small ridge

penalty can be added into the objective function to obtain a

unique solution bY ðlÞ ¼ ðn2 � 1ÞðXX0 þ lIÞ�1Xbb�
; it turns out

that bY ðlÞ with a small l > 0 is similar to bY because the Moore-

Penrose generalized inverse can be expressed as X0þ ¼
liml/0þ ðXX0 þ lIÞ�1X.

As detailed in the supplemental information, we compared

several implementations and found out that using bY ðlÞ with

l ¼ 10�6 was computationally both fast and stable, and thus it

was chosen as the default to be used in the paper. Furthermore,

if n2 is too large, we may not be able to invert the corresponding

matrix within a reasonable amount of computing time or mem-

ory; by default, we will divide the test dataset into smaller batches

of size m. As to be discussed next, we will try a few m values and

choose the one that gives marginal (additive) association results

similar to that from the training data. Note that we require

p > m (or p > n2 if no batch is used), while preferring to have

both n1 and p as large as possible.

Extensions

As discussed exclusively in the supplemental information, if we

have the estimated intercept in the marginal regression model for

each SNP-trait pair, we can apply the same method but do not

need to center the SNP matrix X and X is of full rank, leading to

ðXX0Þþ ¼ ðXX0Þ�1, thus some simpler results and interpretations.



:

Furthermore, instead of using the OLSE, we can use the weighted

least-squares (WLS) method with the weights inversely propor-

tional to the variances of the elements of bb�
; but as shown in the

supplemental information, its results were similar to those from

the OLSE. Finally, as shown in the supplemental information, our

method can be extended to binary traits.

Key features

To gain some intuitive understanding of the LS-imputation

method, we consider a simpler scenario with the intercept known

in the marginal regressionmodel for each SNP-trait pair, for which

no centering onX orX� is needed and we have ðXX0Þþ ¼ ðXX0Þ�1.

The LS-imputed trait is

bY ¼ n2 � 1

n1 � 1
ðXX0Þ�1XX�0Y�;

a linear combination of the trait values Y� in the training data.

XX0 ¼ ðSijÞ and XX�0 ¼ ðSij� Þ can be regarded as some genotypic

similaritymatrices for the individuals in the test data and those be-

tween the test and training data, respectively. In other words, the

imputed trait value for a test individual is some weighted average

of the trait values in the training data, where the weights are deter-

mined by the genotypic similarities of this test individual with

others in both the training and test data. Consequently, the

imputed trait bY may contain nonlinear genetic information

embedded in the observed trait Y�. To make this clear, let us

consider a special case: if X ¼ X�, we have bY ¼ Y�; that is, if

we have the genotypes of the training data, we would perfectly

recover their trait values. Other more general cases with overlap-

ping individuals (or equal genotypes) are discussed in supple-

mental information S1.1.3. More generally, to be concrete, let us

consider n2 ¼ 2 individuals in the test data. It is easy to derive

bY ¼
� bY 1bY 2

�
¼ 1

ðn1 � 1Þ�S11S22 � S212
�
2
664
Xn1

j¼1

�
S22S1j� � S12S2j�

�
Y�
jXn1

j¼1

�
S11S2j� � S12S1j�

�
Y�
j

3
775

It not only confirms that an imputed value is a linear combina-

tion of the trait values in the training data, but it also illustrates a

distinct feature of the method: an imputed trait not only depends

on its own genotype but also other genotypes in the test data; that

is, there is information borrowing across similar individuals in the

test data. On the other hand, if the individuals are not similar at all

with S12 ¼ 0, we have bYi ¼
Pn1

j¼1S1j�Y
�
j =½ðn1 �1ÞSii� for i ¼ 1;2,

suggesting that an imputed value only depends on its genotypic

similarities to those in the training data.
Statistical properties of LS-imputation
Since XX0 plays a key role in our method, we show in the supple-

mental information that XX0=p behaves like the centering matrix

Cn2 ¼ I � 110=n2 for a large p, which will offer some insights on

the properties of the LS-imputation method. Note that we use 1

to also represent a vector with all elements’ 1’s.

We first consider a special case: when we have the genotypes of

the training data, the LS-imputed Y would (asymptotically)

recover the centered trait values in the training data. Specifically,

if X ¼ X�, we have

bY ¼ ðX�X�0ÞþX�X�0Y� ¼ ðX�X�0ÞþX�X�0�Cn2Y
��;

due to centered X� ¼ Cn2X
�, suggesting that the imputed bY is a

linear transformation of the centered Y�. If we have independent
Hu
individuals and independent SNPs (or locally dependent SNPs

satisfying the central limit theorem28), as p/N, we have

XX0=p/
P
Cn2 , as shown in the supplemental information. More-

over, we have Cþ
n2

¼ Cn2
¼ C2

n2
and thus

bY/
P
Cn2

þCn2Y
� ¼ Cn2Y

�:

That is, the imputed trait values would tend to the (centered) trait

values in the training data, which obviously contain information

about possible nonlinear SNP-trait associations, even though linear

SNP-trait associations bb�
are used for trait imputation. This result

may sound trivial, but it is unique to our method and offers

some insights about our method; we are not aware of any existing

PRS method possessing this property.

More generally, we have

bY ¼ n2 � 1

n1 � 1
ðXX0ÞþXX�0Y�z

n2 � 1

n1 � 1
ðXX�0 = pÞCn1Y

�;

suggesting that the imputed trait values for the test data are linear

combinationsof the (centered) trait values in the trainingdata,where

the weights are the genotypic similarities between the test and

trainingdata asmeasured byXX�0=p. In otherwords, an imputed trait

value is a linear combination of the (centered) trait values in

the training data, implying its possibly recovering/containing infor-

mationabout linearornonlinearSNP-traitassociations. Furthermore,

if n1 is large (as usual), we haveX�0Y� ¼ X�0gðX�Þ þX�0ezX�0gðX�Þ,
where gðX�Þ ¼ ðgðX�

1Þ; gðX�
2Þ;.; gðX�

n1
ÞÞ0 is the vector of the genetic

components of the individuals inX� withX�
i being the genotype vec-

tor for individual i. Thus

bYz
n2 � 1

n1 � 1
ðXX�0 = pÞCn1gðX�Þ;

indicating that the imputed trait values are related to their genetic

components.

The variance of bY can be calculated as

VarðbY Þ : ¼ VarðbY jX;X�Þ ¼ ðn2 � 1Þ2ðXX0ÞþXVarðbb�ÞX0ðXX0Þþ;
(Equation 3)

suggesting that in general the elements of bY are correlated (and

have unequal variances). However, since it will be difficult to invert

the large matrixXX0 (while being complicated to deal with the ele-

ments that are not independent and identically distributed [iid] ofbY in subsequent analyses), a simple way we take is to (incorrectly)

treat the elements of bY as independent (with an equal variance)

in subsequent analyses, which, as to be shown,may lead to slightly

over- or under-estimating SEs; but with a suitable choice of batch

size, the problem was largely negligible.

To gain more insights, we consider a special case with elements

of X being iid standard normal and X being of full rank (i.e., no

centering of each column of X), under which we have

Var
�bYj

� ¼ ðn2 � 1Þ2ðXX0Þ�1
jj

�
1

n1

þ 1

n2

�
t2;

where ðXX0Þ�1
jj is the j th diagonal element of matrix ðXX0Þ�1, and

t2 ¼ VarðX�
ijY

�
i Þ. We show the following in the supplemental in-

formation. First, if n2 is small (and fixed), by the strong law of large

numbers, we have VarðbYjÞzn2t
2=p. Second, if n2 < p is large with

n2=p/c˛ ð0;1Þ as both n2 and p go to N, using random matrix

theory,29 we have

Var
�bY j

� ¼ n2Oð1Þ
�
1

n1

þ 1

n2

�
t2:
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Figure 1. Comparison of the observed
and imputed (HDL) trait values on one
batch of the training data: (A) by our LS-
imputation method; (B) by PRS-CS
As discussed in more detail in the supplemental information,

these results suggest that we should use a small n2 to obtain small

variances for imputed bY . Finally and more generally, although the

SNPs are not iid normal, the above random matrix theory can be

extended to dependent non-normal distributions29 and serve as

a good approximation for SNP data.30

A practical question is, given a large sample of genotypes, from

both computational and statistical considerations, whether and

how we should divide it into smaller batches of size m so that

we can impute Y for each batch separately. Based on the above an-

alyses, on one hand, a smaller m leads to smaller variances of the

elements of bY ; on the other hand, because of imputed bY for each

batch being centered at mean 0, there would be information loss

between any two batches because they may be no longer compa-

rable. Considering two batches with true Yð1Þ and Yð2Þ with the

former stochastically larger than the latter, since both bY ð1Þ andbY ð2Þ will be centered at mean 0, we lose the information that the

elements of Yð1Þ tend to be larger than those of Yð2Þ. Note that,

with a large m, by the law of large numbers, the means of the

Y’s in the batches will be close, so the centering effects of imputing

on each batch will be small. Hence, we currently suggest using a

relatively large batch size m that is computationally feasible and

gives marginal analysis results similar to those of the training data.
UKB data
We used the UK Biobank (UKB) data31 to illustrate the application

of our proposed method. Specifically, we considered trait HDL
Figure 2. Comparison of the estimatedmarginal effect sizes (A), th
and LS-recovered (HDL) trait values for one batch of the training d
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and 356,351 individuals of White British ancestry with no

missing value of HDL. Starting with the imputed genotypic

data, we filtered out the SNPs each with minor allele frequency

less than 0.05, with missing values larger than 10%, or failing

the Hardy-Weinberg equilibrium exact test with p value less

than 0.001. Furthermore, we pruned out SNPs in high linkage

disequilibrium (LD) with a window size of 50, a step size of 1,

and an r2 threshold of 0.8. After these steps, we ended up with

715,783 SNPs.

We then randomly split the data into two parts, one as the

training set X� of dimension 178;1753715;783 and the other as

the test set X of 178;1763 715;783. Both X� and X contained

some missing values, each of which was replaced/imputed with

the mean of the observed values of the corresponding SNP. Both

X� and X were centered (so that each SNP had mean 0). We used

the training data to calculate the estimated marginal effects bb�
,

their SEs, and the p values. Our primary goal was to use the

(training set-based) GWAS summary data and the individual-level

genotypic test data X to impute Y; we compared the performance

of using imputed bY with that of using the observed Y.
Implementation details
Due to computational and data storage limitations, we could not

use all the 715,783 SNPs to apply our method. Instead, we selected

50,000 SNPs in subsequent analyses: in the training data, we had

67,036 SNPs with p values less than 0.05, from which we

randomly selected 50,000 SNPs and used them throughout (unless

specified otherwise).
eir SEs (B), and –log10(p values) (C) calculated with the observed
ata



Figure 3. Comparison of the observed
and imputed (HDL) trait values on the
test data: (A) by our LS-imputation
method; (B) by PRS-CS
Similarly, there may not be enough computer memory to hold

data for all n2 individuals in the test data, or it would take too

long to invert the corresponding matrices; furthermore, as

analyzed earlier, to achieve a better bias-variance trade-off, it

may be better to impute for a smaller set of individuals at one

time. Accordingly, in our example, we split the test data into

nine batches of almost equal sizes, eight with sample size m ¼
20;000 and one with m ¼ 18;176. We applied the LS-imputa-

tion method to each batch separately and then pooled the

imputed trait values across the batches together. In implementing

our method, we used linalg.inv function in Python package
Figure 4. Manhattan plots under the additive model: (A) observed
data; (C) LS-imputed trait in the test data; (D) PRS-CS-imputed tra
The horizontal red and blue lines correspond to the usual and s
respectively.

Hu
numpy to invert a matrix (with all the parameters in the function

set to their default values).

Based on the previous theoretical analysis, we would recommend

using p and n1 as large as possible. Even if it is computationally

feasible todealwitha largen2,we recommendusinga smallerm < p.

PRS-CS
PRS-CS is a PRS method based on a high-dimensional Bayesian

linear regression model:

Y ¼ Xbþ e;
/true trait (HDL) in the training data; (B) observed trait in the test
it in the test data
uggestive genome-wide significance levels of 5310�8 and 10�5

man Genetics and Genomics Advances 4, 100197, July 13, 2023 5



Figure 5. Manhattan plots under the recessive model: (A) using the observed/true trait (HDL) in the training data; (B) observed trait
in the test data; (C) LS-imputed trait in the test data; (D) PRS-CS-imputed trait in the test data
The horizontal red and blue lines correspond to the usual and suggestive genome-wide significance levels of 5310�8 and 10�5

respectively.
where a continuous shrinkage (CS) prior is put on b to improve

the prediction accuracy.27 It has been shown to be a top

performer among the existing PRS methods.4,32,33 As for LS-

imputation, we first apply PRS-CS to a training GWAS summary

dataset to estimate the parameters in the model and then use

the fitted model to predict/impute Y for any given test

genotypes X.

To implement PRS-CS, we used the PRS-CS-auto version

(without a separate validation dataset for tuning parameter

selection) in the software provided by the original authors of

the PRS-CS paper (https://github.com/getian107/PRScs). The

software requires GWAS summary statistics and a reference

panel (to estimate the LD structure) as the input. In our analysis,

we chose the UK Biobank EUR data provided by the software as

the reference panel. All the parameters in the software just used

the default values. We applied PRS-CS(-auto) to the pre-pro-

cessed UKB GWAS data with all 715,783 SNPs; at the end, it re-

tained 120,634 SNPs to calculate a polygenic risk score for HDL

in the main results.

Statistical analysis
Statistical analyses, including that for marginal SNP-trait associa-

tion and SNP-SNP interactions, were conducted in R. RF models

were fitted using the RandomForestRegressor function in Python

package sklearn.
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Results

Recovering the trait values in the training data

First we would like to confirm that our LS-imputation

method can (almost) perfectly recover the trait values

if the same genotypic data X ¼ X� as in the training

data are used. Figure 1 compares the observed

and imputed trait values for a batch by our LS-imputa-

tion method and PRS-CS method. We could see that

the LS-imputation method, but not PRS-CS, could

almost perfectly recover the trait values in the

training data.

Figure 2 shows the scatterplots of the estimated mar-

ginal effect sizes, SEs of the estimated marginal effects,

and -log10(p values) calculated with the observed and

LS-recovered trait (HDL) values on one random batch

ðn ¼ 20;000Þ of the training set respectively; the corre-

sponding (Pearson) correlations are all > 0:999. We

could see that our method performed extremely well

on the estimation of the marginal effects, SEs, and the

p values for the SNPs because it gave the results almost

exactly the same as those from using the observed trait

values.

https://github.com/getian107/PRScs


Figure 6. Comparison of the estimated marginal effect sizes (A–C) and –log10(p values) (D–F) under the additive model: calculated
(A and D) with the observed (HDL) trait (and genotypes) in the training and test data respectively; (B and E) with the observed (HDL)
trait in the test data and LS-imputed trait in the test data; and (C and F) with the observed (HDL) trait in the test data and PRS-CS-
imputed trait in the test data
Imputing the trait values in the test data

Figure 3 compares the observed and imputed trait values on

the test data. For comparison, we also show the results from

PRS-CS. The corresponding correlations between the

observed and imputed trait values were 0.177 and 0.279

for the LS and PRS-CS methods respectively. Note that

throughout this paper we did not adjust for any covariates;

as expected and shown in the supplemental information, if

we adjusted for sex and age, the correlations between the

observed and LS- or PRS-CS-imputed trait values for the

test datawere slightly larger at 0.204 and0.313 respectively.

The linearmodel-based PRS-CS did better in trait prediction

than the nonparametric LS-imputation method, perhaps

because linear/additive effects of SNPs dominated the heri-

tability.34,35 Nevertheless, as to be shown later, the LS-

imputation method performed much better in subsequent

association analyses, including nonlinear analyses.

Marginal associations under various genetic models for

SNPs

Next we demonstrate a main advantage of our method: the

imputed trait values for the (test) genotypic data can be

used to detect nonlinear effects of SNPs; in contrast, we
Hu
cannot do so based on the original/trainingGWAS summary

data or imputed trait values derived from a standard PRS

method. Specifically, we will consider another two genetic

models in addition to the additive model that is used by

default in GWAS as in any generated GWAS summary data.

For better visualization throughout this paper, we truncated

any p value < 2:2310�16 at 2:23 10�16.

We first consider the usual additive model with the re-

sults shown in Figure 4: panels A and B are based on the

observed trait (HDL) values in the training and test data,

respectively, while panels C and D are the imputed trait

values based on our LS-imputation method and PRS-CS,

respectively, for the test data. We could see that the distri-

butions of the significant SNPs identified with the

observed trait on the training and test data look quite

similar, and more importantly, they are similar to that

identified with our LS-imputed trait, though our method

gave slightly more conservative results with less and fewer

significant SNPs. In contrast, PRS-CS identified way too

many significant SNPs; in fact, any SNPs used in the PRS-

CS (or any other PRS) model and those in LD with them,

by definition, will be significant if the sample size is large

enough.
man Genetics and Genomics Advances 4, 100197, July 13, 2023 7



Figure 7. Comparison of the estimated marginal effect sizes (A–C) and –log10(p values) (D–F) under the recessive model: (A and D)
calculated with the observed (HDL) trait (and genotypes) in the training and test data respectively; (B and E) with the observed (HDL)
trait in the test data and LS-imputed trait in the test data; (C and F) with the observed (HDL) trait in the test data and PRS-CS-imputed
trait in the test data
We reached the same conclusion under the dominant

model (Figure S12) and recessive model (Figure 5) respec-

tively: using the trait values imputed by our LS-imputation

method, the GWAS results for the test data were in general

quite similar to, though a bitmore conservative than, those

basedon theobserved trait values. In contrast, usingPRS-CS

returned too many significant associations.

We can further compare the estimated marginal effect

sizes and their p values (for the 50,000 SNPs used in imple-

menting our method) between various methods. As shown

in Figures 6 (under the additive model) and 7 (under the

recessive model), and in supplemental information S13

(under the dominant model), using the trait values

imputed by our method, we could infer the marginal asso-

ciations with the results similar to those achieved with the

use of the observed trait values under each of the three ge-

netic models. For comparison, again our method per-

formed much better than PRS-CS for the purpose of this

analysis.

As a summary, we show the Venn diagrams for the signif-

icant SNPs or loci identified under the various models in

Figure 8. The significance cutoff was 53 10�8. Each locus

was defined as one of the 1,703 (approximately) indepen-
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dent LDblocks;36 if a locus contained at least one significant

SNP, itwas declared tobe a significant locus. It is clear that us-

ing the LS-imputed trait values gave the results inhigh agree-

ments with those from using the observed trait values; in

particular, the differences of the results between using the

imputed and observed trait values were no more than that

of using the observed trait values between the training and

test data. As expected, the results from using the imputed

trait values were similar to not only those of the test data

with the observed trait values but also those of the training

data, due to its use of both the training and test data.

SNP-SNP interactions

Here we consider whether we can detect SNP-SNP interac-

tions based on imputed trait values compared with using

the observed trait values. Based on the training data (and

the additive model unless specified otherwise), we detected

1,758 marginally significant SNPs at p < 10�6; after

removing those in high LD (i.e., correlation > 0:99), we

had 1,652 SNPs. We tested all pairwise interactions among

the 1,652 SNPs; although the main effects of two SNPs in

each pair were included in the model, we only tested the

significance of their interaction term.



Figure 8. Venn diagrams for the significant SNPs (A and B) or loci (C and D) identified under the additive model (A and C) or under
the recessive model (B and D)
Specifically, for any two of the 1,652 SNPs, we fitted a

linear regression model:

Yi ¼ a0 þ SNP1i 3a1 þ SNP2i 3a2 þ SNP1i 3 SNP2i 3a12

þei;

where Yi, SNP1i, and SNP2i were the observed (or imputed)

trait value and the two SNPs for individual i, and ei was the

error term.We applied theWald test on the null hypothesis

H0: a12 ¼ 0.

Figure 9 compares the SNP-SNP interaction estimates

and their p values for the test data using the observed trait

values with using (A&D) the observed trait values (and ge-

notypes) in the training data and (B&E) LS-imputed and

(C&F) PRS-CS-imputed trait values in the test data. It is

clear that using the LS-imputed trait values gave the results

quite similar to those using the observed trait values,

though the former might give slightly more conservative

p values. Compared with PRS-CS, the LS-imputation

method performed much better for the purpose of esti-

mating and testing SNP-SNP interactions.

Figure 10 summarizes the results in terms of the signifi-

cant SNP-SNP interactions and locus-locus interactions.

Since we first searched the genome for marginally signifi-

cant SNPs before testing them pairwise, we used the Bon-

ferroni adjustment to obtain the significance cutoff of

2:53 10�8, and as before, each locus was defined as one

of the 1,703 (approximately) independent LD blocks.36

For any significant SNP pair, we identified the locus of
Hu
each of its SNPs and thus a significant locus-locus pair.

There was a high agreement between the results of using

the LS-imputed trait values and those from using the

observed trait values in either the training or test data.

Trait prediction with a nonlinear model

We compared the trait prediction performance using the

nonlinear RF model trained with either the observed or

imputed (HDL) trait values. Specifically, we considered the

1,652 SNPs marginally significantly associated with the trait

based on the training data (as in the previous section for

SNP-SNP interaction detection), along with either the

observed or imputed trait values in a random subset of 70%

test data to train an RF model. Then we used the remaining

30%of the test data as the validationdata to compare the pre-

dicted trait values from various RF models. Our goal was to

assess the extent of the agreement between thepredicted trait

values from theRFmodels trainedwith either the observedor

imputed trait values. As shown inFigure 11, the correlationof

the predicted trait values between using the observed and LS-

imputed trait values (at 0.722) was slightly higher than that

(0.658) between the observed andPRS-CS-imputedones, sug-

gesting that our LS-imputed trait values retained more infor-

mation about SNP-trait associations, possibly nonlinear, in

the original data than that of the PRS-CS-imputed ones.

Other results

In the supplemental information S3.3, we compared the

performance of the LS-imputation method with various
man Genetics and Genomics Advances 4, 100197, July 13, 2023 9



Figure 9. Comparison of the estimated SNP-SNP interaction effect sizes (A–C) and their –log10(p values) (D–F): (A and D) calculated
with the observed (HDL) trait values (and genotypes) in the training and test data respectively; (B and E) with the observed and LS-
imputed trait values in the test data; (C and F) with the observed and PRS-CS-imputed trait values in the test data
values of the training sample size ðn1Þ, test sample size ðn2Þ,
SNP number ðpÞ, and batch size ðmÞ. As expected, usually
the larger n1 and p, the better is the performance; the re-

sults were not sensitive to n2 as long as n2 R25;000. On

the other hand, the batch sizem also mattered in a compli-

cated way: it was not necessarily better to use a larger (or

smaller) batch size. Note that m corresponds to n2 in our

analysis in statistical properties of LS-imputation, where

it is indicated that its optimal choice cannot be too large

or too small. Our current solution is to choose an m giving

the (additive) marginal analysis results (i.e., in terms of the

marginal association estimates and their SEs) with imputed

traits in the test data similar to those from the training

data. Note that, if the sample sizes from the training and

test data are different, we need to rescale the SEs from

one of the two samples to make them comparable. For

any given SNPwith its SEs as SE1 and SE2 from the training

and test data (of sample size n1 and n2), respectively, we

would rescale the SE from the test data as
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2=n1

p
SE2.

Furthermore, as shown in supplemental information

S3.5 and S3.6, we have also compared the computational

speed and stability of several implementations of the LS-

imputation method, In the end, we found that inverting

a regularized XX0 (i.e., XX0 þ lI), denoted inv ðl ¼ 10�6Þ,
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was always fast and stable, so it was chosen as the default

implementation. Second, as shown in supplemental infor-

mation S3.4, we found that the results from the WLS were

quite similar to those from the default ordinary least-

squares (OLS) method. Third, we applied the LS-imputa-

tion method to a smaller subset of the UKB GWAS data

of trait BMI, obtaining similar results.
Simulations

As shown in supplemental information S4, we did a simu-

lation studymimicking the real UKB HDLGWAS data, con-

firming the good performance of our method.
Binary traits

As shown in supplemental information S2, we have

extended the LS-imputation method to binary traits and

applied it to the UKB hypertension GWAS data, obtaining

promising results.
Discussion

We have proposed a nonparametric method for large-scale

imputation of (the genetic components of) a trait based
3



Figure 10. Venn diagrams for the significant (A) SNP-SNP interactions and (B) locus-locus interactions identified
on a GWAS summary dataset and a large dataset of individ-

ual-level (genome-wide) genotypes. We emphasize that,

although linear marginal association estimates are used

for trait imputation, we impose no assumption on the spe-

cific functional form of the genetic component of the trait,

so the imputed trait values can be used for both linear and

nonlinear SNP-trait association or prediction analysis.

This may sound surprising, and we offer some intuitive ex-

planations from two aspects. First, as shown theoretically, if

the test genotypic data are the same as the training geno-

typic data, we will recover the trait values of the training

data exactly, which clearly contain information about

possible SNP-trait nonlinear associations. Second, more

generally, for any given test sample, its imputed trait value

is a linear combination of the trait values in the training

data; the weights in the linear combination depend on

the similarities between the test genotype and the training

genotypes. Again, a linear combination of the trait values is

expected to contain information about possible nonlinear

SNP-trait associations. Another distinct feature of the pro-

posedmethod is its borrowing information across the geno-

types of the individuals whose trait values are to be

imputed: if some individuals are similar to each other (in

terms of their genotypes), their imputed trait values would

incorporate each other’s genotypes (in addition to their

own). Hence, plus its nonparametric nature, our method

is most suitable for large-scale trait imputation simulta-

neously for a large set of individuals.

Compared with a leading PRS method, PRS-CS, which is

linearmodel-based as all existing PRSmethods for summary

data, our LS-imputation method performed much better in

imputing the trait for subsequent linear or nonlinear SNP-

trait association analyses, such as in estimating additive or

non-additive effects of SNPs, and in detecting SNP-SNP in-

teractions. We emphasize that in general any existing PRS

method is not designed for trait imputation for subsequent

association analyses as targeted here; however, since the

application of a PRS method seems to offer an alternative,

we assessed and compared the performance of PRS-CS for

our problems here. In fact, in our UKB HDL GWAS data

example, the linear model-based PRS-CS did better than

the nonparametric LS-imputation method in giving pre-
Hum
dicted/imputed trait values more highly correlated with

the observed trait values, perhaps due to that linear/additive

effects of SNPs dominated the heritability.34,35 However,

since PRS-CS, as many other model-based PRS methods, as-

sumes linear effects of some specific SNPs on a trait, its

imputed trait values are based on the estimated linear effects

of the selected SNPs (whichmay not be truly causal or asso-

ciated ones) and accordingly are not suitable for subsequent

association analyses, though they are useful for prediction.

Relatedly, although other methods have been proposed to

impute a few missing values of a focal trait using other

traits,37–39 they are not suitable for ourpurpose of large-scale

trait imputation for downstream genetic association anal-

ysis because of the loss of specificity: by definition, any ge-

netic variants associatedwith a trait used to impute the focal

trait are expected tobeassociatedwith the imputed focal trait,

even not truly associated with the (observed) focal trait.

Ourmethods require p > n2 (or more generally, p > m if

batches are used); that is, the number of the SNPs chosen to

be used for trait imputation is larger than the test (or batch)

sample size. The basic idea of our method is that each mar-

ginal SNP-trait association estimate in the GWAS summary

data imposes a constraint on the possible values of the trait;

with p > n2, we havemore constraints than the number of

unknown trait values, thus uniquely determining the trait

values. Under this condition (and that of no closely related

individuals in the test data), the non-full-rank of the geno-

type matrix and thus the use of the Moore-Penrose inverse

are completely due to the effects of centering the genotype

matrix (to account for unknown intercepts), leading to the

effects of centering the imputed trait values.We expect that

other generalized inverses may be used (but with possibly

different properties of the imputed trait values).

The current implementation of our proposedmethod can

be further extended. First, we have only considered using

marginal associations from common variants. Although

rare variants can be equally used, they are expected to

contain less association or heritability information than

common variants and to have lower genotyping quality in

array-based GWAS data. As more large-scale sequencing

data become available and computing power keeps going

up, it will be worthwhile to explore the use of rare variants
an Genetics and Genomics Advances 4, 100197, July 13, 2023 11



Figure 11. Comparison of the predicted
(HDL) trait values with random forests
models: (A) trained with the observed
versus LS-imputed trait values; (B) with
the observed versus PRS-CS-imputed ones
for trait imputation. Second,wenote that, to savecomputing

cost (andtosimplify subsequentanalyses),wecurrentlyhave

ignored the correlations and unequal variances of the

imputed trait values, leading to possibly slightly more con-

servative (or liberal) inference; accounting for the correla-

tions is straightforward in theory but requiring much more

andevenunrealistic computing resourceswitha likely return

of onlyminor performance improvement, sowe decidednot

to pursue it, though itmay be further explored in the future.

Third, we have considered some of the perhaps more

extreme andchallengingproblemsof statistical inferenceus-

ing only imputed traits; other more practical applications

include using the imputed traits to augment a complete indi-

vidual-level GWAS dataset for inference or prediction or us-

ing the imputed data to generate prior information or as par-

tial validation data for other GWAS analyses. Fourth, we

expect that more efficient algorithms to handle larger data

will beuseful andneeded. Insteadofusing theOLS to impute

the (genetic components of) trait values, using generalized

least-squares (to account for correlated marginal association

estimateswithvaryingvariances)mayoffer statisticallymore

efficient imputation, though itwill be computationally even

more demanding (mainly in dealing with a large covariance

matrix of bb�
). Fifth, althoughwe have extended themethod

to binary traits, further evaluations and applications arewar-

ranted. Finally and more importantly, it would be worth

exploring other applications with imputed traits beyond

those showcased here. With the ever-increasing availability

of GWAS summary data of various traits and the emergence

of large-scale biobanks, the proposedmethod can be applied

to impute traits that are notmeasured or not (fully) available

in a biobank (e.g., status of a late-onset disease not yet fully

manifesting in a cohort of younger individuals), which can

be then used for analyses (with suitable adjustments) along

with other available traits and genotypes. As an example,

while individual-level GWAS data are required to fit a neural

network to detect genes with possibly nonlinear effects of

gene expression on Alzheimer disease (AD) in transcrip-

tome-wide association studies,40 the sample size of such

data is small; on the other hand, we have large-scale AD

GWAS summary data41 and UKB individual-level genotypes
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available, but due to the late-onset nature of AD, we do not

havemany AD cases in the UKB data. Applying our method

to impute the AD status for genotyped individuals in UKB

would largely augment the sample size of individual-level

AD GWAS data, thus improving model fitting and subse-

quent statistical power. This application motivated the

development of our LS-imputation method and is currently

under investigation.
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