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Abstract

Background: Unmanned aerial vehicle (UAV)–based image retrieval in modern agriculture enables gathering large amounts of spatially
referenced crop image data. In large-scale experiments, however, UAV images suffer from containing a multitudinous amount of crops
in a complex canopy architecture. Especially for the observation of temporal effects, this complicates the recognition of individual
plants over several images and the extraction of relevant information tremendously.

Results: In this work, we present a hands-on workflow for the automatized temporal and spatial identification and individualization
of crop images from UAVs abbreviated as “cataloging” based on comprehensible computer vision methods. We evaluate the workflow
on 2 real-world datasets. One dataset is recorded for observation of Cercospora leaf spot—a fungal disease—in sugar beet over an
entire growing cycle. The other one deals with harvest prediction of cauliflower plants. The plant catalog is utilized for the extraction
of single plant images seen over multiple time points. This gathers a large-scale spatiotemporal image dataset that in turn can be
applied to train further machine learning models including various data layers.

Conclusion: The presented approach improves analysis and interpretation of UAV data in agriculture significantly. By validation with
some reference data, our method shows an accuracy that is similar to more complex deep learning–based recognition techniques.
Our workflow is able to automatize plant cataloging and training image extraction, especially for large datasets.
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� Complete automatized workflow from georeferenced
images to individual plant image time series

� Parallelized implementation for fast processing
� Enables fast in-field investigation and annotation tasks
� Generation of training data sets for various machine

learning tasks
� Basis for a multidimensional data framework

Background
The use of unmanned aerial vehicles (UAVs) is one of the main
drivers of modern precision agriculture. Equipped with cameras
and other sensors like LiDAR, UAVs can be used for diverse nonin-
vasive in-field analyses and observation tasks [1]. Analyzing and
interpreting resulting data with machine learning and pattern
recognition methods has the potential to gain economical and
ecological efficiency, which is why computational intelligence is
increasingly applied in agricultural contexts [2, 3]. Unlike satellite-
based remote sensing [4], UAV-based remote sensing offers low-

cost solutions for private usage and individual applications. There
are many conceivable use cases like plant species segmenta-
tion [5], multisensor plant analyses [6–8], or automated plant
counting [9]. Among those, several tasks are based on investiga-
tions on individual plants. This is challenging for applications in
real-world farming where the fields are densely seeded, in con-
trast to research cases where plants possibly could have larger
distances. We will make use of the cost-effective UAV imaging,
which enables having multiple images during a complete grow-
ing season, and combine this information for localizing plants in
a spatiotemporal way. Reasons and use cases for cataloging and
detecting plants in the field are manifold. On the one hand, it al-
lows determining the number of plants in the field accurately. On
the other hand, it enables the extraction of traits of great interest,
such as the distance between plants and plant density. Individual-
ization and identification of each plant in the field and the oppor-
tunity of retrieving individual plants again in a time series allow
generating a vast database of annotations. The availability of this
data framework enables to train more robust machine learning
models for disease severity analysis, to mention just one possible
use case.
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Figure 1: Overview of our proposed plant cataloging and image extraction workflow. The multichannel unmanned aerial vehicle images with different
acquisition dates are processed for plant-soil segmentation. Afterward, adaptive Gaussian blur filtering helps to locate the plant positions more
precisely via peak finding. Subsequently, the peaks are grouped by time and further manipulation like seeding line detection leads to the plant catalog.
Once this catalog is available, one can extract image time-series data of single plants.

To observe individual plants, the exact positions of the plants
in the image are required. For the moment, it is possible in 2 ar-
duous and time-consuming ways: (i) by georeferencing the plants
with subcentimeter accuracy directly on the field by using a GPS
receiver with real-time kinematic positioning (RTK) or (ii) after im-
age acquisition and orthorectification by manual annotating with
a geographic information system. When taking time-series im-
ages, the perfect alignment of these images requires the use of
well-known and measured points, called ground control points
(GCPs) [10]. If the GCPs are correctly georeferenced, they allow
allocation of the images not only in a local but also in a global
coordinate system, such as WGS84. This enables pixel-precise
transferability between images from different locations and time
points. The localization of a plant is thus only necessary at one
point in time. The determined absolute coordinate remains iden-
tical at every point in time, since the plant does not move in space.
Thus, a simple extraction of the plant at different points in time
is possible. Overlapping of neighboring plants does not affect lo-
calization in this approach if the position is calculated in an early
growth stage. If no georeferencing of the data is available (e.g., be-
cause no access to measuring devices or GCPs is possible), another
possibility is to match the images using plant position detection
based on single images. In a further step, those detection points
can be registered to each other. However, dealing with overlaps
of plants in later developmental stages is challenging in this ap-
proach.

Once the different time points are aligned, it is feasible to
extract time series for each individual plant. Time series al-
low the analysis of the plant growth and especially the as-
sessment of the plant traits and their development over time.
Based on time series, it is possible to identify the individual de-
velopment of each plant over time. This spatiotemporal infor-
mation enables optimization of crop management. Another as-
pect is the detection of stress factors and disease development,
and how it influences the growth of the affected plant over
time.

In this work, we introduce a complete workflow for plant
identification and individualization—further also referred to as
“cataloging”—of single plants. Fig. 1 summarizes our proposed

workflow with its main steps. We will evaluate the workflow on
ground truth data and give possible use case suggestions.

Data Description
In order to show that our workflow can be used on a variety of UAV
image data, we evaluate our approach on 2 agricultural datasets
with different contexts of use. However, the transfer to other
datasets and use cases is possible. On the one hand, a dataset from
sugar beet for research in the context of Cercospora leaf spot dis-
ease spread is used. As this disease is critically affecting the yield
of sugar beet farming, several phenotyping studies with UAVs and
unmanned ground vehicles have already been done [11, 12]. On
the other hand, a dataset is used that monitors the development
and harvest time of cauliflower. Such data can be used to extract
phenotypic traits such as diameter or height of cauliflower plants
or their head [8, 13]. Additionally, plant disease research in general
is an excellent use case for this workflow since it requires having
individual plant information throughout many growth stages [14–
16]. Thus, a spatiotemporal individualization of the investigated
plants is crucial. Especially for large-scale investigations, an ap-
proach as automatized as possible is desirable.

Some challenges for both data sets are, for example, the vary-
ing exposure due to the different data acquisition times during
the whole growing season and associated different weather con-
ditions. Occurring weeds can have positive as well as negative ef-
fects. On the one hand, it simplifies tasks such as registration,
since weeds are stationary and thus serve as markers. On the
other hand, the growth of weeds affects tasks such as plant detec-
tion, since a distinction must be made beforehand between weeds
and crops. Another challenge occurs when the plants are so large
that the canopy of the plants is closed. This complicates the sep-
aration of different plant instances and the search for distinctive
points in the field, which is often made possible by the contrast
between soil and plants.

Sugar beet dataset
The sugar beet data set was used to develop and evaluate our
workflow steps, which consist of multispectral drone (UAV) im-
ages over time.
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Figure 2: Overview of Cercospora leaf spot experimental field 2020 in
Göttingen, Germany. The 19 marked areas correspond to the plots under
analysis and undergo different treatments like disease inoculation and
fungicide application. The measurements were conducted throughout
the full growing season.

Figure 2 shows the location of the plots in the trial field. It was
conducted in 2020 near Göttingen, Germany (51◦33

′
N 9◦53

′
E), on

a weekly basis at 24 dates during the complete growing season
from 7 May to 12 October 2020. On these, one variety of sugar
beet plants that is susceptible against Cercospora leaf spot disease
(CLS) was selected—the Aluco1 variety. The sugar beet was sown
on 6 April 2020, with an interrow distance of 48 cm, an intrarow
distance of 18 cm, and an expected seeding rate of approximately
110,000 plants per hectare.

For the aerial data collection, the quadrocopter DJI Matrice 2102

was used. The position of the UAV during the flight was deter-
mined by GPS and GLONASS and corrected by the D-RTK 2 Mo-
bile Station.2 The camera mounted is a Micasense Altum multi-
spectral camera3 with 6 bands: blue (475 nm center, 32 nm band-
width), green (560 nm center, 27 nm bandwidth), red (668 nm cen-
ter, 14 nm bandwidth), red edge (717 nm center, 12 nm bandwidth),
near infrared (842 nm center, 57 nm bandwidth), and long-wave
thermal infrared (8,000 to 14,000 nm) with a Downwelling Light
Sensor (DLS2). The ground resolution was set to 4 mm/px. Side
overlap and forward overlap were set to 75%. The drone flew in
the range around 14 m above ground level with a speed of 0.5 m/s
and a resolution of 4 mm × 4 mm per pixel.

In addition, GCPs were set up at the corners and in the middle
of the test arrangement for the multitemporal monitoring in the
sense of georeferencing and correcting the collected data. Agisoft
Metashape Professional4 software has been used to create ortho-
mosaic images. QGIS5 [17] was used to delimit and select the area
to be analyzed, resulting in 19 plots with an equal area of 172 m2

each.
The experiment present presented 3 levels: (i) control with

fungicide, (ii) inoculated with fungicide, and (iii) inoculated with-

1 SESVanderHave.
2 SZ DJI Technology Co., Ltd., Shenzhen, China.
3 MicaSense, Inc., USA.
4 Version 1.6.3.10732.
5 Version 3.16.

out fungicide. Plots of inoculated treatments were infected man-
ually with CLS-diseased sugar beet air-dried leaf material.

The first image set was generated in an experimental field fo-
cused on detecting CLS. CLS is caused by Cercospora beticola Sacc.
and is one of the most important leaf diseases of sugar beet world-
wide. The actual aim of the experiment is to be able to develop
models for an accurate and early detection by monitoring the
disease with information from optical and environmental sen-
sors. However, common models are affected by the interaction be-
tween plants and the reaction of each plant to the environment.
To achieve more accurate and georeferenced information about
the plant and its interaction with the pathogen, the need arises
to determine the individual position of each plant throughout the
development of the growing season.

For the quality evaluation of our workflow, some fields are an-
notated by human experts, preferably in the earlier stages where
the plants are locally distinguishable, by marking the central po-
sition of each visible plant.

Cauliflower dataset
The cauliflower dataset serves for validation of our workflow. We
use a subset of the GrowliFlower dataset presented in Kierdorf et al.
[18]. It consists of a time series of RGB UAV images of a 0.6-ha-sized
cauliflower field of the Korlanu variety taken on a weekly basis be-
tween 28 July and 2 November 2020 near Bonn, Germany (50◦46

′
N

6◦57
′
E). The plants were planted with an intrarow distance of

50 cm and an interrow distance of 60 cm. The cauliflower field was
monitored once a week throughout the growing season. As with
the sugar beet dataset, the images of the cauliflower dataset were
processed into orthophotos using Agisoft Metashape Professional
software. The flight altitude of the DJI Matrice 6002 hexacopter
was 10 m, and with a Sony A7 rIII RGB camera, we obtained a
ground resolution of the orthophotos of roughly 1.5 × 1.5 mm/px.
Twenty-one GCPs were distributed throughout the field and mea-
sured using RTK.

The idea behind the acquisition of the dataset is to observe
cauliflower plants over their development and to develop mod-
els based on the acquired time series that predict, for example,
the harvest time of each plant in the field or reflect the matu-
rity state of the plant. Harvesting cauliflower is very laborious, so
over several days, field workers walk across the field and man-
ually harvest ripe cauliflower heads. In this process, the size of
the cauliflower heads is the most crucial plant trait that deter-
mines the harvest. Georeferenced monitoring attempts to help the
farmer to optimize fertilization and pest control as well as to work
more economically, in that the field workers already know in ad-
vance which plants are to be harvested and do not have to check
them individually.

Plant Extraction Workflow
In this section, we will describe the full plant extraction workflow
in detail. For each workflow step, we present plots on different
excerpts from the sugar beet dataset in order to visualize the re-
sults. Figure 1 can be read as a flowchart for the workflow, where
the captions on the arrows list the steps top to down.

Preprocessing
Some data sets may require preprocessing steps before the work-
flow can be applied effectively. First, we obviously need georefer-
enced data in the form of so-called orthophotos. These are flat-
tened, distortion-free images of the surface. For our datasets, we
generated them from the UAV images by using the software Ag-
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isoft Metashape Professional, as mentioned above. Second, it is
beneficial—especially for the seeding line detection that will be
discussed later—to crop the orthophotos to the region to be pro-
cessed by the workflow. Any foreign objects or tramlines should
preferably be removed. Foreign objects could have similar color
properties than plants and may lead to false recognitions. Further-
more, tramlines may cause irregular seeding line distances, which
could lead to inaccurate filtering. Additionally, cropping acceler-
ates the computation since less image data have to be processed
by the workflow steps.

Finding individual plants
As the first step of plant cataloging, the plant positions are de-
termined for each acquired image (i.e., for each plot at each ac-
quisition date). For this, we perform a segmentation between soil
and plants. Common approaches use vegetation indices (VIs) as a
preprocessing for the image information [19]. There are pure RGB-
based VIs as well as VIs including multi- or hyperspectral infor-
mation. Due to the multispectral acquisitions we have available
in the sugar beet dataset, the contrast between plants and soil
could be increased compared to pure RGB images. However, our
experiments showed that for our dataset, including multispectral
information, did not result in better results than with pure RGB in-
formation. This is evidence that our workflow performs well even
for cases where beyond-RGB imaging is not feasible.

VI
Using spectral information to condense the information in a one-
channel image is the main concept of VIs. Besides reducing the im-
age dimension, the goal behind introducing the VI is to enhance
the contrast between soil and plants compared with a standard
RGB image, for instance. There are plenty of publications of differ-
ent VIs so far [20, 21]. However, they all combine different spectral
channels by a certain calculation specification. In addition, some
indices use (empirically motivated) parameters to further opti-
mize them for different use cases. Since we want to demonstrate
that our plant extraction method works for pure RGB information
already, we stick to RGB-based VIs. Two indices that turn out to
work well in our experiments are the Green Leaf Index (GLI) [22]

GLIi = 2Gi − Ri − Bi

2Gi + Ri + Bi
,

as well as the Normalized Green/Red Difference Index
(NGRDI) [23]

NGRDIi = Gi − Ri

Gi + Ri
.

These indices map the information of red (R), green (G), and blue
(B) channels of each image pixel i onto a single value in the inter-
val [ − 1, 1]. If there are multispectral data available, nevertheless,
one may use the Optimized Soil Adjusted Vegetation Index (OS-
AVI) [24], defined as

OSAVIi = NIRi − Ri

NIRi + Ri + Y
,

where Y > 0 is an empirical parameter. In this work, we use Y = 0.6.
Although it is not necessary to work with multispectral VIs in this
stage, they can further discriminate plants from foreign objects
in the UAV image data. Figure 3 shows the mentioned VIs applied
on an example image snippet taken from the sugar beet dataset.
The remarkable points are that all 3 VIs can handle shadows fairly
well, but the OSAVI is slightly better in ignoring foreign objects.

Figure 3: Different vegetation indices (VIs) for discrimination between
plants and soil. The RGB image information (upper left) and 3 VIs are
shown. The Optimized Soil Adjusted Vegetation Index (OSAVI) as a
multispectral index (upper right) as well as the RGB-only indices Green
Leaf Index (GLI; lower left) and Normalized Green/Red Difference Index
(NGRDI; lower right) can be calculated for the multispectral sugar beet
dataset. Using multispectral information, OSAVI is less susceptible to
foreign objects in the field than RGB-only indices.

Note that, surely, also other VIs that produce a substantial con-
trast between plants and soil are conceivable at this point. How-
ever, we restrict us to the RGB-only VI images for the further plant-
finding procedure at this place. They are named V(t) for each ac-
quisition date t ∈ T in the set of given acquisition dates T . The
single pixel values are named by vi.

Plant-soil segmentation
In the next step, the soil has to be discriminated from the plant
area. Thus, we will perform a segmentation.

As the VI section may already have suggested, the ratio be-
tween plant and soil coverage in the images is highly variable for
an image series during a complete growing season. Therefore, it is
important to keep the growing state—or the plant size—in mind
for each image. Thus, a convenient measure is the cover ratio c
defined by

c = 1
Npx

Npx∑
i

χ{vi≥ϑ}

where vi is the VI value for the ith of Npx total pixels and ϑ is a
predefined threshold value. χ { · } is the indicator function, which
is 1 if the condition given in the index is met and 0 otherwise.
Descriptively, the cover ratio is just the percentage of pixels above
threshold.

As a threshold technique, we use Otsu’s method [25]. The main
idea is to find the threshold that minimizes the intraclass vari-
ance of 2 classes to be considered foreground and background. For
intermediately covered fields, this method leads to a reliable dis-
crimination between soil and plants. However, it has weaknesses
for the following extreme cases. For very sparsely covered fields
(c < 1%), Otsu’s method usually results in a threshold that is ap-
proximately at the most frequent value (i.e., the mode) of the VI
values. This is because the small amount of “plant pixels” sim-
ply disappears in the value distribution, which then has a single
peak structure. In those images, the most frequent value is at soil
level; thus, we would obtain much noise by using Otsu’s threshold
and would overestimate the cover ratio calculated by the result-
ing segmentation mask. We bypass this problem by setting the
threshold to the 99th percentile of the VI distribution, which ob-
viously results in a modified cover ratio of exactly 1%. For cover ra-
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Figure 4: Plant-soil segmentation for different growing stages. The left
plots show the Normalized Green/Red Difference Index (NGRDI) image.
The middle histograms show the distributions of pixel values and the
applied threshold for the segmentation—as seen in the right plots. In
(A), the estimated cover ratio is below 1% so that the 99th percentile
value is used as threshold. In cases depicted in (B) and (C), Otsu’s
method is applied. Until roughly the 75% cover ratio, single plants and
seeding lines are visible. Images beyond that limit like (D) are not used
for further analysis.

tios above circa 75%, single plants or seeding lines are not properly
distinguishable anymore. We therefore do not use those stages for
segmentation.

Due to these limitations, we need an initial estimate of the
cover ratio in order to classify the images. For the 2 VIs consid-
ered in this work, we investigated good initial thresholds for both
datasets. As a result, we set the initial thresholds to ϑGLI = 0.2 and
ϑNGRDI = 0, respectively. For OSAVI, the initial threshold would be
set to ϑOSAVI = 0.25. With the preliminary estimations for c, we de-
cide which threshold method to use and calculate the final cover
ratio for each image. Figure 4 summarizes the findings by some
exemplary field sectors during different growing stages.

Excursus: Growth function
If enough images during a complete growing season are acquired,
we can estimate a functional relation between the single esti-
mated cover ratio. Empirically and plotted against the acquisition
date, the cover ratio follows a saturated exponential function until
the plants are dying or suffering diseases. From then on, the cover
ratio decreases exponentially. These phenomenological consider-
ations motivate the approach for a growth function f(t) defined as:

f (t) = g
1 + exp (−λg(t − tg))

− χ{d>0}
d

1 + exp (−λd (t − td ))
. (1)

Figure 5: Growth function curve fits. The cover ratio estimates versus
days since first acquisition is fitted with the growth function (1). The
shape of the growth function is different for the 3 categories. The blue
curve shows an inoculated field. After the growing phase, the dying
process due to the disease starts and saturates in the latest acquisitions.
In case of the untreated field (yellow curve), the natural dying process is
not saturated. In the fungicide-treated field shown by the green curve,
no dying phase is visible. Thus, the second dying term of the fit function
is not present, in contrast to the first 2 cases.

Basically, we approximate the growing and dying phase as 2 in-
dependent sigmoid functions. The difference between them is the
complete growing function. The growing (dying) slope constants
λg and g (λd and d) as well as the corresponding time offsets tg (td)
are treated as optimization parameters. By separating cases for
positive and nonpositive d, one can give the optimization process
the option to ignore the dying phase if it is not visible. For the time
t, the days since the first acquisition is used. Figure 5 shows the
growth function fit for 3 fields with different treatments.

Filtering and peak finding
As segmentation masks are calculated, one can find single plants
by applying filtering and peak finding techniques. Recap that we
have the segmentation masks (cf. plant-soil segmentation section)
represented as binary images

B(t) =
{
χ{vi≥ϑ (t)}

}Npx

i=0

by applying Otsu’s or the 99th percentile threshold ϑ(t) for each VI
image pixel vi and acquisition date t. The resulting binary images
B(t) can then be blurred with a Gaussian filter. Mathematically, the
images B(t) are convolved with a 2-dimensional Gaussian kernel

G(x, y, t) = 1
2πσ 2(t)

exp
(

− x2 + y2

2σ 2(t)

)

where σ (t) is the bandwidth parameter. x and y represent the 2-
dimensional image pixel dimensions. Note the time dependency
here, since it makes sense to adapt the bandwidth with the size
of the plants (i.e., given by our cover ratio estimate) and introduce
an interval of reasonable bandwidth for the given images [σmin,
σmax] in units of image pixels.

As a proxy, the given bandwidth boundaries should roughly rep-
resent the size of the plants in the images of the beginning growing
stage and maximum growing stage, respectively. Finally, one gets
the blurred images B̃(t) by convolution (∗) of the binary images B(t)
with the Gaussian kernel matrix G(t), hence

B̃(t) = B(t) ∗ G(t) .

Subsequently, a simple peak finder is applied to extract the
plant centers. The blurring has the effect that the plants are visi-
ble as blurred quasi-circular objects. In this way, the peak finding
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Figure 6: Plant peaks for different growing stages. The left plots show
the determined segmentation masks for different growing stages of
different fields. On the right, the results of the Gaussian blurring with
the adaptive bandwidth and the peak detection (red dots) are shown.

algorithm detects the plant center rather than individual leaves.
To further improve the results of this peak finding, we can set a
minimal peak distance and/or intensity to avoid double detection
of bigger plants or still visible weed.

Nevertheless, the outcome of this method is highly dependent
on choosing the ranges for binary thresholds and Gaussian filter
bandwidth correctly. In order to make this more user-friendly and
adaptive to new datasets, it is beneficial to use metric units for
the parameters and convert them into pixel units by the given
geospatial information given. Thus, the workflow user can regard
real-world plant sizes being independent of image resolution. A
good choice for σmin and σmax includes the radii of a seedling and
a fully grown plant, respectively.

Moreover, this method is generally performing significantly bet-
ter on images with lower plant cover ratios. For higher cover ra-
tios, the plants are no longer spatially divided, which results in
misdeterminations or multidetections. As stated in Fig. 4, single
plants are hard to discriminate above circa 75% cover ratio. Thus,
we only perform this method on the lower cover ratio images. Fig-
ure 6 shows plant detection results for different exemplary grow-
ing stages. It also happens that unwanted weeds are recognized
by this method or not every single plant is detected. However,
the steps in the following sections minimize those weaknesses by
some further filtering and reconstruction methods.

Grouping the plants
The steps described in the section on finding individual plants
yield the peak positions for each valid (i.e., with sufficiently low
cover ratio) UAV image as pixel coordinates. By using the avail-
able geospatial information, the rasterized pixels can be trans-
lated into absolute GPS coordinates. Further, we apply a Universal
Transverse Mercator coordinate system to translate longitude and
latitude into a metric scale (e.g., centimeters). This yields metric
peak positions

P (t) =
{
�xi(t)

}Np (t)

i=0
,

where �xi(t) is the position vector of the ith peak, and Np(t) is the
number of detected peaks in the image with acquisition date
t. Further, we define T as the set of all acquisition dates and
T ∗ ⊆ T as the set of all acquisition dates where the peak extrac-

Figure 7: Point cloud alignment. Exemplary snippet from the application
on peak positions. The color encodes the chronologically sorted
acquisition date. Since the alignment procedure iterates over the layers
with ascending cover ratio, this is not necessarily the alignment order.
Shaded circles show the raw peak position data, whereas the crosses
represent the same data after alignment. The data are already
prealigned quite well so that only minimal improvements can be
observed.

tion method was performed. The goal of this section is to group
these—yet independent—plant positions in a spatial way to iden-
tify single plants throughout all images of the whole growing sea-
son, even though they might not have been detected in every sin-
gle image. Therefore, it is mandatory to align the image series in
order to correct latent stitching errors or calibration glitches of the
UAV’s GPS sensor. Additionally, fixed georeference points to align
the images to each other—as in the cauliflower dataset—can be
used. If the plants are seeded in certain line structures—for row
crops, cereals are considerably more complex—one can do further
steps in finding those lines and filtering “offline” weed. This pro-
cedure is elaborated in the following.

Aligning plant positions
In order to avoid confusion of different plant IDs, the metric coor-
dinates P (t) for each acquisition date t are aligned to each other.
Not every single plant is detected in each image. Therefore, the
point clouds visualizing the plant positions are not congruent but
still highly correlated. Additionally, also weed and other objects
that can be observed in the VI images may be included in P (t).
However, we can assume that these incorrectly detected objects
are stationary in location as well and, thus, are helpful with the
alignment. Afterward, methods will be described to reduce un-
wanted objects from the detected peak positions. The main goal
of this step is to avoid the largest GPS calibration errors. An appli-
cation example is shown in Fig. 7. In the following, the particular
processing steps are described. Furthermore, a pseudocode algo-
rithm for the position alignment can be found in the supplemen-
tary material.

Currently,P (t) contains (absolute) metric coordinates. However,
for the next steps, it is convenient to centralize the coordinates by
subtracting the centroid of all peak positions. This results in the
centralized coordinates

P̄ (t) =
{
�xi(t) − �xmean

}Np (t)

i=0
,

�xmean := 1
|T ∗|

∑
t∈T ∗

1
Np(t)

Np (t)∑
i=1

�xi(t) . (2)

Generally, one can apply a transform containing constant shift,
shearing, rotation, and scaling by an affine transform given by the
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rule

x′(t) =
(

T00(t) T01(t)
T10(t) T11(t)

)
x(t) +

(
B0(t)
B1(t)

)
, (3)

where x(t) is the (2 × Np(t)) matrix of the centralized plant posi-
tions P̄ (t). We assume that shearing effects are not relevant for the
case of GPS calibration issues. By this assumption, one can con-
cretize equation (3) by only allowing shift, rotation, and scaling,
which results in

x′(t) = S(t)

(
cos α(t) − sin α(t)
sin α(t) cos α(t)

)
x(t) +

(
B0(t)
B1(t)

)
. (4)

Thus, we can reduce the generic transformation matrix elements
Tij(t) to a scaling factor S(t) and a rotation angle α(t). Initially, the
images should be aligned at least roughly so that one can assume
that S(t) ≈ 1 and α(t) ≈ 0◦. The shift parameters B0(t) and B1(t)
should be on the order of several centimeters. We will perform
what is usually called registration. Constraining the transform to
the setting in equation (4), it is also referred to as rigid registra-
tion. For the optimization, the method of coherent point drift [26] is
applied. Roughly speaking, it is based on a basis point set and a
floating one, where the basis point set acts as data points. The
floating point set behaves as the centroids of a Gaussian mixture
model. The objective is to minimize the negative log-likelihood
function. At minimum, the 2 point sets are considered optimally
aligned—or registered—to each other. More detailed information
is provided in Myronenko and Song [26].

In order to align all (centralized) point clouds P̄ (t) corresponding
to the acquisition dates, one has to apply the procedure multi-
ple times for all layers in T ∗ step by step. Typically, the lower the
cover ratio is, the more peaks are detected. One of the reasons
is that the lower blurring bandwidth keeps finer structures being
visible for the low cover ratios. Therefore, it is useful to sort the
acquisitions not by calendar date but by ascending cover ratio as
estimated before—either by the growth function fit (cf. excursus:
growth function section) or by the cover ratio estimation (cf. plant-
soil segmentation section). For rigid registration, we need a basis
point set and a floating point set. As an initial basis set, the point
cloud belonging to the image with the lowest cover ratio with ac-
quisition date tinit ∈ T ∗ is chosen, that is, P̄ (tinit ). The floating set is
the point cloud with the next higher cover ratio. In order to make
the alignment robust, only those points of both sets are consid-
ered that have a next neighbor point in the other set within a
maximum distance dregister.

After performing the registration, the resulting transforma-
tion (cf. equation (4)) is applied on all points of the floating layer.
The new basis set is formed by grouping the aligned points that
are in the vicinity of each other and calculating their centroid.
The resulting set P̄comb contains only those group—or cluster—
centroids. Points without neighbors inside a given threshold dis-
tance dgroup are considered new groups. This distance should be
chosen smaller than dregister. Subsequently, the method is repeated
with the basis (centroid) set P̄comb and the point cloud with the
next higher cover ratio as a floating set.

The developed grouping algorithm is applied in the final group-
ing as well, so we will make a detailed discussion later in sec-
tion on linking individual plants during time.

Recognizing seeding lines
The peak positions are aligned to each other, which means that
possible image acquisition errors should be mostly eliminated.
Usually—like in the given datasets—the plants are seeded in

straight, parallel seeding lines. Recognized peaks off those lines
can then be considered weed, other unwanted objects, or miscel-
laneous noise. Therefore, it is convenient to extract the seeding
line positions in order to filter out those. In order to do this, we
align the possible seeding lines with the x- or y-axis, since this
is not necessarily the case for the GPS-based images, which are
aligned to a geographical coordinate system. In this work, the
seeding lines are aligned to be parallel to the x-axis. In contrast
to approaches like in Lottes et al. [27] that use the image infor-
mation directly, we use the point cloud information to infer the
seeding line positions and angles. Again, a pseudocode algorithm
for seeding line recognition is given in the supplementary mate-
rial.

Let us consider the acquisition dates T ∗ for which the peak
point clouds are available. The idea of the seeding lines recog-
nition is to apply a rotation transform on the joint point clouds⋃

t∈T ∗ P̄aligned(t) = P̄aligned. The task is to find the right rotation an-
gle αs. An established method in the field of computer vision to
find regular structures like lines and circles in images is the Hough
transform [28]. It detects points in images that form line struc-
tures by transformation of those lines into a feature space (Hough
space) consisting of the line angle θ and its minimum distance d
from origin. Thus, an infinite line in the (euclidean) image space is
mapped to a point in the Hough space. The brute-force approach
of filling the Hough space is to scan in each nonzero image point a
bunch of lines with different angles that intersect in this point. If
another point is on this line, one increments the corresponding (θ ,
d)-bin in Hough space. In the end, the infinite lines that are found
in the image are visible by “nodes” in Hough space.

To use this method, we first need to transfer P̄aligned into a
rasterized image by binning the peaks into a 2-dimensional his-
togram with a fixed bin width. Thus, the bins can be inter-
preted as image pixels. However, the gained image has a substan-
tially lower resolution than the original image, which makes this
method faster than considering the full-resolution plant images
as in Lottes et al. [27]. Second, we initially scan for a fixed amount
of angles in ( − 90◦, 90◦]. This results in a rather rough search of
angles, although we expect that all seeding lines are rotated with
a common angle. Other randomly found lines in the image can oc-
cur, but they are at diffuse angles. The correct seeding line angles
are expected to occur regularly so that we can expect a clustering
around the correct seeding line angle. Thus, we use the princi-
ple of nested intervals: we divide the interval of queried angles
into small bins. In the next step, we calculate the histogram of all
found angles by using those bins. The diffuse angles will distribute
over multiple bins, whereas our seeding line angle should accu-
mulate in one or at least few bins. We take this bin, and maybe
the surrounding bins as well, and take these as the new query
interval, which is then again divided into bins. After several iter-
ations, one finds the common angle of all visible seeding lines αs.
Figure 8 shows the Hough transform applied on a rasterized peak
position image.

Since the Hough transform not only yields the line angles but
also their distances, one might use this method directly to ex-
tract the seeding lines itself. However, it may happen that the
Hough transform-based detection misses some less prominent
line constellations. This is why we search the seeding line posi-
tions again in the point cloud, which is rotated by αs. Neverthe-
less, we can use the distance information of the Hough trans-
form results as an estimate for the expected seeding line dis-
tances. To have a stable estimate that is robust against missed
seeding lines, we use the median seeding line distance for our
next step.
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Figure 8: Seeding line rotation angle determination with Hough
transform. The left plot shows the Hough transform applied to the
rasterized image shown on the right. For reasons of visibility, the right
image is rasterized with a 5 times larger bin width than for the actual
Hough transformed image. One can see a bunch of nodes in the Hough
transform at angles of roughly −14◦. Each node corresponds to one
found line in the right image. By the vertical distance of the nodes, one
can infer the line distances.

We consider only the y-coordinates �ys of the rotated point
cloud. The principle is to count the points that are inside a cer-
tain window with a central y coordinate and a size λ. A scan
through all coordinates with a given precision ρ (i.e., the distance
between the 2 nearest window centers) results in the sum of in-
cluded points against the window center position. Finally, one ap-
plies a peak finding method to extract the local maxima, which
represent the (sorted) seeding line positions �y∗. An example plot
can be found in the supplementary material. The success of this
method is strongly dependent on the right choice of λ and ρ. In
order to get this procedure to work stably, it is helpful to set λ and
ρ in relation with the seeding line distance estimate of the Hough
transform. The peak finding can also be tweaked considering that
one actually knows roughly where the peaks should be located.

Filtering weed
One benefit of knowing the seeding line positions is that one can
effectively filter out recognized objects that are located off the
lines that are mainly weed or false detections. Usually, the seed-
ing lines have a regular distance to their neighboring ones so that
all distances are approximately by the mean distance. However, if
the images contain few irregular seeding line distances (e.g., due
to cart tracks in between), it is again helpful to prefer the median
distance d̃ over the mean. Additionally, we determine the distance
of each point to its next seeding line by

di = min |yi�1 − �y∗| , (5)

where yi is the centralized, aligned, and rotated y-coordinate of
the ith plant position and �1
 = {1}dim �y∗

. Once all nearest distances
di are determined, a threshold factor ϑd can be set that specifies
which proportion of the median distance d̃ should be the maxi-
mum distance of each plant position to their next seeding line to
be considered valid detection. Hence, the condition is

di ≤ ϑdd̃ . (6)

The threshold factor is another parameter of the workflow that
has to be chosen deliberately. Too small values lead to the incor-
rect identification of plants as weed, while too large values reduce
the filter effect so that much weed is recognized as plants. Figure 9
shows an example weed filtering with threshold factor ϑd = 0.15,
which turned out to be a good choice for the considered datasets.

Figure 9: Weed filtering. Excerpt from peak positions where weed
filtering is applied. Peaks inside the green shaded valid regions are
considered valid plants (green dots), whereas peaks being outside are
masked as weed (red dots).

Linking individual plants during time
After aligning and filtering the peak positions, we redefine P (t) to
be the aligned, filtered plant positions and P := ⋃

t∈T ∗ P (t) to be
the unified point cloud.

Furthermore, the corresponding image acquisition dates of all
plants are summarized in the label vector �t ∈ T ∗|P|. The goal is
to group the point cloud into clusters G ⊂ P and thereby identify
single plants recorded in those images where they are detected
by the previous methods. An important coordinate of each cluster
therefore is its centroid �ζ , calculated by

�ζi = 1
|Gi|

∑
�x∈Gi

�x , (7)

where the �x are the clusters’ point coordinates in P. We call the
set of all nc cluster centroids C := {�ζi}nc

i=0. Furthermore, we can pos-
tulate that each cluster contains not more than one member per
acquisition date in T ∗. Using classical approaches like k-means
or even more sophisticated ones like DBSCAN [29] for the clus-
tering, we can hardly make use of this knowledge. Those com-
mon methods only handle single point clouds without integrating
more information on those points. Thus, there may be multiple
points from the same acquisition date in one cluster. To integrate
the acquisition date information, we use an iterative—or “layer-
wise”—approach comparable to a point-to-point registration, sim-
ilar to the coherent point drift method (cf. aligning plant positions
section). The different acquisition dates are considered layers of
points. Plant detections in plots with low cover ratio are more pre-
cise in general, so we start from the layer of the date with the low-
est cover ratio, as we did for the alignment. Each plant position
is considered the centroid of a cluster containing—so far—one
member. We label those by assigning a unique cluster ID for each
centroid. Subsequently, the layer with the second lowest cover ra-
tio is considered. We evaluate a nearest neighbor model based on
the cluster centroids to get the euclidean distance for each point
in the new layer to its next cluster centroid. Next, some decisions
have to be made based on this next neighbor distance d. We set
a maximum point-centroid distance dmax for points to be consid-
ered members of the corresponding clusters. Thus, if the new can-
didate is inside this distance (d ≤ dmax), we label those points with
the corresponding cluster ID. It can happen that multiple candi-
dates are inside this distance. We then only register the closest
point to the cluster and discard the other candidates. Points out-
side this distance (d > dmax) are assumed to be new clusters la-
beled new individual cluster IDs. Finally, the cluster centroids are



Agricultural plant cataloging and a data framework | 9

Figure 10: Cluster centroids. Each cluster represents a plant and
incorporates the detections in the image series.

recalculated by including the new candidates with their corre-
sponding clusters. This procedure is repeated iteratively until all
layers are processed. In the end, we get clusters with at most |T ∗|
members and a label vector �l containing the corresponding clus-
ter ID for each point. Figure 10 shows an exemplary plot of the
cluster centroids that now represent single plants. The IDs are as-
cending integer values starting from 0. Discarded points get the
label −1. The summarizing algorithm, written in pseudocode, can
be found in the supplementary material.

Further filtering and indirect detections
With the information of the cluster centroids C from the results of
the section on linking individual plants during time, we can find
a single plant also in images where it is not necessarily detected
since the spatial location is fixed. But first, we start with a some-
how “cosmetic” step.

The label numbering in our clustering algorithm is continuous
but—due to new clusters starting at different steps—not sorted.
However, we may want to have the labels sorted for reasons of
clarity and easier retrieval of the plants in in-field operations. A
reasonable approach would be to use the seeding line coordinates
�y∗ from the section on recognizing seeding lines again in order to
determine the seeding line ID for each plant group. The cluster
centroids C are used to calculate the nearest seeding line and as-
sign its ID is to each cluster.

is = arg min
y∗∈�y∗

|yc − y∗| ,

where yc is the y-coordinate of the cluster centroids. Thus, we sub-
stitute the initial labels with new sorted labels: primarily sorted by
the seeding line ID and secondarily by—in this case, for instance—
the x-coordinates of cluster centroids. A figure that shows this la-
bel sorting for a complete field is shown in the supplementary
material.

Moreover, the special point in having the cluster centroid posi-
tions is that we can retrieve the plant positions in the high-cover-
ratio images—those with acquisition dates t ∈ T \ T ∗—where
above methods could not be applied. Additionally, not every plant
may be recognized in all analyzed images. In this context, we
name the detections by the above methods to be direct detec-
tions, whereas the reconstructed positions by using the cluster
centroids are referred to as indirect detections. The aligning algo-
rithm gives us not only the aligned coordinates of the (directly
detected) plant positions but also the transform vectors �R(t) :=
(S(t), α(t), B0(t), B1(t))
 for each image.6 Thanks to the alignments

6 ... as long as the cover ratio is not too high. If it is, however, the alignment
cannot be performed and the transform vector is the identity transform �R(t) :=
(1, 0, 0, 0)
.

being (rigid) affine transforms, they are invertible. Hence, it is

x(t) = 1
S(t)

(
cos α(t) sin α(t)

− sin α(t) cos α(t)

) (
x′(t) −

(
B0(t)
B1(t)

))
.

by rearranging equation (4). Thus, we can calculate the plant po-
sitions for indirect detections with this inverse transform in order
to fill up the point clouds. In order to recover the directly detected
plant positions in the individual images, we have to add the cal-
ibration error (cf. aligning plant positions section) again. Please
note further that x(t) are still the centralized Universal Transverse
Mercator coordinates introduced in the section on aligning plant
positions. For a complete inverse transform into the GPS coordi-
nate system and the rasterized image pixel system, respectively,
we have to add the mean vector �xmean again. Finally, the indirect
detections at each acquisition date are basically the detected clus-
ter centroids inversely transformed into the coordinate systems of
the image data at respective acquisition dates.

With all these above filtering rules, we have a labeled point set
where each cluster has exactly nt = |T | members, one for each ac-
quisition date t ∈ T . Finally, we claim the plants to be “cataloged.”

Evaluation and Discussion
In this section, we evaluate our results on available ground truth
information for both datasets. Furthermore, we introduce 2 con-
ceivable exemplary application use cases for the workflow.

Validation: Sugar beet dataset
With available manually annotated information on the plant po-
sitions as a reference, we can validate the above methods. For the
sugar beet dataset, there are some ground truth data available,
which enables us to perform an evaluation of the binary classi-
fiers of true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) detections. Since true-negative detections make
no sense in this application, measures like accuracy are not ap-
propriate. Therefore, we focus on 2 other measures called precision
and recall defined by

recall = TP
TP + FN

, precision = TP
TP + FP

.

Descriptively spoken, the recall describes which ratio of really
seeded plants our method catches, whereas the precision mea-
sures the ratio of how many detections of our method indeed are
real plants. We want to compare dot-like positions to each other.
Thus, we additionally set a tolerance radius of maximum distance
between a true plant position and its potential position of detec-
tion. We require the plants to be recognized with a maximum
tolerance of 8 cm (i.e., the maximum distance between detected
plant position and ground truth annotation). The counting of TP,
FP, and FN is done thanks to a nearest neighbor approach. For each
plant detection, the ID and the distance to the next true plant
position are evaluated. Then we iterate over the true plant posi-
tions. For each of them, we look at the distances from the plant
detections that were assigned to those corresponding true plants.
If there is at least one assignment inside our tolerance, we incre-
ment TP by 1 and FP by the number of remaining total assign-
ments. If no assignment is inside the tolerance, we increment FN
by 1 and FP by the number of total assignments. Since every rec-
ognized plant position is assigned to exactly one true position, we
consider each true and recognized plant by this method. In the
end, we obtain the binary classifier counts and can calculate pre-
cision and recall. Moreover, our method yields the plant positions
by direct and indirect detections. In the ground truth data, the
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Figure 11: Precision and recall evaluation summary for the sugar beet
dataset. The upper plot shows precision versus recall for all field images
with available ground truth data. Colors show the acquisition date of
the corresponding image. Below, field excerpts are shown
exemplarily—one for each available acquisition date. In these plots, the
real plants are marked by white dots. Black dots represent direct
detections via our peak detection method. The gray dots are indirect
detections by using information of other images of the same field and
back transform the positions in each image.

plant is not annotated if it is not visible, for instance, in an early
image. Since our method uses the inverse transformations of the
plant position centroids C, it would already find the plant even if
it is not yet visible. Therefore, we ignore all “leading” indirect de-
tections, so all are earlier than the first direct detection in terms
of acquisition date.

The upper plot of Fig. 11 shows evaluations of precision ver-
sus recall for field images with available ground truth. Below, for
each acquisition date (encoded by the color), an example image is
shown. For most of the images, we achieve a precision of at least
90%. The recall is at least 90% for most of the images. As we ex-
pect, the plant detection gets slightly more inaccurate the higher
the cover ratio is due to the lower punctiformity of the plants.
However, the early plant detections at lower cover ratios are more
confident. This should give the hint that high-cover-ratio images
are inappropriate for plant detection and should only be used for
the indirect retrieval of already known plant positions at the clus-
ter centroids C.

Generally, the precision is lower than the recall, indicating that
our workflow has some false-positive plant recognitions. Mostly,
those false plants are double recognitions or still remaining weed
inside the seeding lines or within the tolerance region defined in
the filtering weed section. Since our method is not sensitive to
the actual plant shape like possible deep learning approaches, this
remains a problem. Our workflow tends to have a higher precision

Figure 12: Precision and recall evaluation summary for the cauliflower
dataset. The upper plot shows precision versus recall for all field images
with available reference detection data. Colors show the acquisition
date of the corresponding image. Below, field excerpts are shown
exemplarily—one for each available acquisition date. In these plots, the
real plants are marked by white dots. Black dots represent direct
detections via our peak detection method. The gray dots are indirect
detections by using information of other images of the same field and
back-transforming the positions in each image. As a reference detection
method, plant positions are detected by a Mask R-CNN [30].

the better the fields are weeded, like in the cauliflower dataset.
The online weed may be filtered manually or by further shape-
sensitive methods, whereas double detections may be reduced by
better clustering parameters.

Validation: Cauliflower dataset
We evaluate our method on the cauliflower dataset analogously
to the sugar beet dataset described in the section on validation:
sugar beet dataset. The difference here is that there are no “hu-
man annotated” ground truth data available. However, in the ac-
tual use case of the cauliflower data, a Mask Region-Based Con-
volutional Neural Network (Mask R-CNN) [30] trained with single
cauliflower plant images is used to extract the plant position. Our
evaluation uses the Mask R-CNN results as reference for our own
direct and indirect detections. The Mask R-CNN is applied on a
single image (19 August 2020). Nevertheless, we consider the de-
tections to be valid for all acquisition dates to evaluate our date-
wise (direct and indirect) detections. As a maximum tolerance dis-
tance between our and the reference detections, we choose 12 cm,
which is roughly the plant radius on the reference detection date.
Five dates were available for the evaluation shown in Fig. 12. Due
to our method, that—as long as being in a reasonable cover ratio
range—the plants are detected in each image, our method yields
more precise plant positions than the Mask R-CNN approach. This
can be crucial for further image extraction of individual plants,
where the plants should be centered in each extracted image. Our
detections coincide well with the Mark R-CNN detections, result-
ing in a precision above 95% and a recall above 97%. In particular,
these benchmarks are better than for the sugar beet dataset. This
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Figure 13: Plant catalog for in-field observations with QField. Exemplary
screenshot on an Android smartphone. Detected plants can be accessed
individually and various annotations like quality assessments,
additional notes, or other images can be added.

is most likely due to the greater spacing and the resolution of the
cauliflower plants compared to the sugar beets.

Application: In-field annotations
We have all plant positions available as GPS coordinates, which
enables processing the data with geographic information system
applications like QGIS [17]. For in-field operations like plant as-
sessment or annotation, the plant catalog can support by provid-
ing a structured position sample of interesting plants. Addition-
ally, some interesting applications like QField [31] are able to pro-
cess georeferenced data directly on a smartphone. This is an ex-
cellent tool for farmers, who then can do in-field tasks directly
“online” using the plant catalog and their current GPS position.
Exporting the plant catalog, for instance, as a KML file [32] allows
enriching the georeferenced plant catalog with further annotation
data like disease severity score, number of leaves, additional im-
ages, and so on. Figure 13 shows what this could possibly look like
for an in-field scenario.

Application: Image extraction for disease severity classifica-
tion
An interesting use case of the gathered plant catalog is image ex-
traction. The catalog makes it possible to accumulate a time se-
ries of images of individual plants. By inverse transformation of
the cluster member coordinates in their respective image pixel-
based coordinate system (cf. further filtering and indirect detec-
tions section), one gets the, say, “original” pixel positions of the
plants. Next, we simply define a frame around those pixels and
get smaller “tiles.” These can then be used for further steps, for in-
stance, as a training set for neural network architectures as in Ya-
mati et al. [33]. The fact that the images are linked to individual
plants at multiple dates enables this dataset to be used not only
for spatially related but also for time-series analyses. Figure 14
shows a few example image tiles for the cauliflower dataset. Other
example image tiles for the sugar beet dataset can be found in the
supplementary material.

As a brief sample application, we can use the extracted im-
ages to automatize the plant health rating by image classifica-
tion. The rating scale7 is based on a scale by the corporation KWS

7 German: Bonitur.

Figure 14: Detected plant positions of the cauliflower dataset. Five
randomly picked image series of plant RGB images detected by our
method. The acquisition date increases downward. Black frames
annotate direct and gray frames indirect detections.

SAAT SE & Co. KGa [34, 35]. Five plant health states are shown
and ordered into classes 1, 3, 5, and 9. We complement classes
in between, resulting in 10 disease severity degrees from 1 (com-
pletely healthy) to 10 (completely diseased). A subsample of about
4,000 extracted plant images was annotated to train a convolu-
tional neural network. In order to increase the size of the training
sample, we augment the data by sampling further images of the
same plants with random shift and rotation. Further augmenta-
tion methods like sampling different light conditions are conceiv-
able as well [36]. For the example convolutional neural network,
we use a standard ResNet-50 model [37] that is pretrained on the
ImageNet dataset [38] consisting of RGB images. We adapt the net-
work to our use case (5 channels, 10 output classes) by adding 2
convolutional layers before the ResNet-50 network, successively
reducing the 5 channels to 3. After the ResNet-50 layers, we add
a dense layer reducing the 2,048 classes to our 10 disease severity
degrees. The confusion matrix between true and predicted disease
severity degrees in Fig. 15 shows that the classification is largely
possible. However, the discrimination between the first 5 degrees
seems to be challenging. Certainly, further research can be done,
since this is beyond the scope of this work.

Conclusion
The presented workflow shows a very satisfactory detection per-
formance for both considered datasets. By choosing RGB-only VIs
for the peak detection, we demonstrated successfully that for
our plant cataloging, RGB information is sufficient. This could be
important for use cases—as shown in the cauliflower dataset—
where a multi- or even hyperspectral data acquisition is not fea-
sible for whatever reason. Nevertheless, we may not exclude that
the peak detection performance could be improved having avail-
able data beyond the optical spectrum. The high degree of autom-
atization enables the analysis of large-scale data. Particularly for
those consisting of multiple smaller fields, like in the sugar beet
dataset, many workflow steps can be processed in parallel.
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Figure 15: Confusion matrix for the disease severity classification
example. The values inside the heatmap are percentages of the
corresponding category. Percentages are normalized to the truth, so that
all rows sum up to 100%.

Deep learning–based plant recognition approaches have to be
trained on the distinct plant sizes if training data are available at
all. Unfortunately, for the images with canopy closure (c > 75%),
both deep learning and our rather “classical” approach will fail,
since neighboring plants cannot be distinguished from each other
anymore. However, for feasible plant sizes, our approach is mostly
agnostic to the plant size and can effectively extract images that
can be used to train even better deep learning–based plant recog-
nition systems.

By exploiting the geospatial information in UAV images, we can
convert between pixel units and metric units like centimeters.
From the user’s point of view, this makes the workflow very adapt-
able to other datasets with different plants and seeding condi-
tions. We can directly refer to real-world measures like plant radii
or seeding distance without having to consider the image resolu-
tion.

High-level deep learning models that have been developed re-
cently require large amounts of data, especially for tasks involving
image processing, such as classification and instance segmenta-
tion with Mask R-CNNs. In principle, noninvasive remote sensing
and UAVs enable the application to large-scale agricultural exper-
iments and corresponding data. By automatizing the plant cata-
loging and providing a data framework, our work helps to exploit
the full potential of UAV imaging in agricultural contexts.

Availability of Source Code
The source code of our workflow is available in the following
repository:

� Project name: Plant Cataloging Workflow
� GitHub repository: https://github.com/mrcgndr/plant_catal

oging_workflow
� RRID: SCR_022276
� Operating system(s): Platform independent (with conda),

Linux (with Docker)
� Programming language: Python (3.9 or higher)
� License: Apache License 2.0

Data Availability
A subset of the sugar beet data is available in order to run the
workflow and reproduce our results. The data have been uploaded
to the GigaScience database (GigaDB), along with snapshots of our
code [39]. As mentioned before, the specific use case of the dataset
is subsidiary to our workflow. Both datasets are used for ongoing
research purposes and therefore cannot be published completely.
However, the distributed subset is sufficient to support the results
of this article.

Additional Files
Figure 16. Seeding line recognition. For the seeding line recog-
nition, the points inside a window with the size λ = 32 px are
scanned with a precision of ρ = 0.5 px as seen in the left plot. In
this example, 29 valid peaks are found by k-means. They repre-
sent the center y-coordinates of the seeding lines shown in the
right plot with the corresponding (rotated) peak positions.
Figure 17. Group label sorting.
Figure 18. Detected plant positions of sugar beet leaf spot dataset.
Four randomly picked image series of plant RGB images detected
by our method. The acquisition date increases downward. Each
second acquisition date is shown. Black frames annotate direct
and gray frames indirect detections. The columns are ordered in
blocks of 4 examples from inoculated, fungicide-treated, natural,
and reference fields, respectively.
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