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Abstract

A growing number of DNA transacting proteins is found in the nucleus and in mitochondria, including the DNA repair and
replication protein Flap endonuclease 1, FEN1. Here we show a truncated FEN1 isoform is generated by alternative
translation initiation, exposing a mitochondrial targeting signal. The shortened form of FEN1, which we term FENMIT,
localizes to mitochondria, based on import into isolated organelles, immunocytochemistry and subcellular fractionation. In
vitro FENMIT binds to flap structures containing a 59 RNA flap, and prefers such substrates to single-stranded RNA. FENMIT
can also bind to R-loops, and to a lesser extent to D-loops. Exposing human cells to ethidium bromide results in the
generation of RNA/DNA hybrids near the origin of mitochondrial DNA replication. FENMIT is recruited to the DNA under
these conditions, and is released by RNase treatment. Moreover, high levels of recombinant FENMIT expression inhibit
mtDNA replication, following ethidium bromide treatment. These findings suggest FENMIT interacts with RNA/DNA hybrids
in mitochondrial DNA, such as those found at the origin of replication.
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Introduction

Nuclear genes encode the vast majority of mitochondrial

proteins [1] which are synthesized by ribosomes in the cytosol,

and subsequently imported into the organelle [2]. The import of

proteins into the mitochondrial matrix is frequently dependent on

an amino (N)-terminal, positively charged amphipathic a helix,

which functions as a mitochondrial targeting signal (MTS). Among

the many nuclear-encoded mitochondrial gene products, are

factors dedicated to the maintenance and expression of mitochon-

drial DNA (mtDNA) [3,4]. Other factors contributing to mtDNA

metabolism belong to the burgeoning group of proteins that are

targeted to multiple cellular compartments. In some cases, a single

protein is dually localized [5], more often, multiple protein

isoforms are synthesized from a single gene, via the use of

alternative splice sites or transcription start sites, or from a single

transcript by means of alternative translation initiation (ATI) sites

[6].

ATI, first discovered in viruses [7,8], is one of the gene

regulatory mechanisms that diversifies the mammalian proteome.

The generation of N-terminal protein variants by ATI may alter a

protein’s function or cellular location. If initiation from the first

AUG includes an MTS then the product will be directed to

mitochondria, whereas the use of an internal start site creates a

form of the protein destined for other compartments of the cell [9–

11]. Moreover, because the MTS is typically removed following

mitochondrial import, essentially the same protein can be made

for two compartments from a single transcript. However, the

ability of ATI to expose a cryptic MTS, located within the coding

sequence of a protein, is less well documented. Products generated

in this fashion would create N-terminally truncated mitochondrial

isoforms.

Flap endonuclease 1 (FEN1) has been implicated in processing

nucleic acid intermediates formed during lagging strand DNA

replication and DNA repair in the nucleus [12–15]. Fen1 deletion

in the mouse results in embryonic lethality [16], and mutations in

the gene give rise to human cancer [17]. While the majority of

FEN1 localizes to nuclei [18], it has also been detected in

mitochondria [19,20], where it has been linked to long-patch base

excision repair (LP-BER) [20]. However, the same role has been

ascribed to exo/endonuclease EXOG [21], although the pheno-

type associated with EXOG knockdown may be dependent on

replication, as opposed to repair defects, as the effects on mtDNA

were observed in the absence of any external DNA damaging

agent. One of the aforementioned studies of FEN1 detected

another polypeptide in mitochondria, cross-reacting with a FEN1

antibody [20]. This protein was shorter than FEN1 and was

associated with mitochondrial nucleoids.

Here we show that translation from an internal start codon

creates a mitochondrial isoform of FEN1. Its existence and

location is confirmed by subcellular fractionation, immunocyto-

chemistry and mitochondrial import. In vitro, the preferred

substrates of the truncated form of FEN1 are R-loops. In the major

non-coding region of mtDNA, where replication frequently starts,
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are GC-rich sequences that promote R-loop formation [22].

Hence, truncated FEN1 potentially has a role in stabilizing such

structures, and consistent with this hypothesis the protein is

recruited to mtDNA when RNA/DNA hybrids accumulate near

the origin of replication.

Results

Alternative translation initiation creates a mitochondrial
specific FEN1 isoform

FEN1 has well defined roles in DNA replication and repair in

the nucleus and it has also been detected in mitochondria, where

its functions are less well understood [12,18,20]. A protein shorter

than the annotated FEN1 was detected with an antibody to FEN1

in HeLa cells and shown to associate with mtDNA [20]. Using

antibodies to FEN1, we detected two endogenous proteins in

isolated mitochondria from one primary, and four immortal

human cell lines (Figure 1A, S1A, S1B), the shorter of which

(FEN1S) was enriched in mitochondria (Figure 1A). Limited

protease treatment of intact mitochondria is a key assay for

assigning proteins to internal compartments of these organelles, as

it can be used to degrade proteins outside mitochondria and

constituents of the outer mitochondrial membrane [23]. Although

the endogenous FEN1S appeared less abundant than the full-

length protein in mitochondrial preparations (Figure 1A, lane 2),

they were similar in amount after removal of non-mitochondrial

FEN1 with trypsin (Figure 1A, compare lane 2 to lanes 3–5).

Quantification of the relative amounts of FEN1 and FEN1S

showed the majority (,75%) of FEN1 that associated with isolated

mitochondria was sensitive to protease treatment, i.e.,75% of

FEN1 co-purifying with the organelles is located outside

mitochondria (Figure 1A chart). In contrast to FEN1, FEN1S

signal increased by,25% after trypsin treatment (Figure 1A

chart). Furthermore, after mitochondrial sub-fractionation on

Iodixanol gradients [24], FEN1S appeared to be the more

abundant of the two proteins (Figure S1A, S1B). However, little

if any FEN1S co-fractionated with mtDNA, with the majority

resolving close to the top of the gradient, where soluble proteins

are found. Thus, the majority of the putative short form of FEN1 is

not tightly bound to mtDNA after mitochondrial lysis with n-

Dodecyl b-D-maltoside. Expression of a short hairpin RNA

targeting Fen1 mRNA confirmed that the two species detected by

the antibody are products of the FEN1 gene, as both were

repressed to similar extents (Figure 1B), and Northern blotting

suggested that they derive from a single transcript (Figure 1C).

Therefore, we examined the sequence of FEN1 for potential

internal translation start sites that could expose a MTS [23].

According to several mitochondrial prediction programs, a

hypothetical FEN1 protein starting at methionine 65 (M65) in

human and mouse will be targeted to mitochondria (Figure S1C),

suggesting that ATI could generate a mitochondrial isoform of

mammalian FEN1.

When full-length Fen1 cDNA, preceded by a consensus Kozak

sequence [25], was introduced into a coupled transcription/

translation (TnT) system, translation products initiating from M1,

M37 and M65 (or M67) were detected, based on comparisons with

truncated templates (Figure S2A, lanes 1–4). M1 was the most,

and M65 the least, abundant product, suggesting that initiation at

M65 occurs according to a leaky ribosomal scanning mechanism

[26]. An appropriate Kozak setting appears to be another relevant

parameter for translation initiation of FEN1, as replacing the

artificial consensus Kozak sequence with 21 nucleotides of the

native wild type Fen1 mRNA upstream of the AUG encoding M1

(WT M1), reduced translation from M1, and increased translation

from M65 (Figure S2A, compare lanes 4 to 5 and see chart).

However, the AUG encoding M37 is flanked by nucleotides that

more closely resemble an optimal Kozak sequence, than those of

M65 (Figure S2B), and so this model could not explain why the

increase in initiation from M65 was greater than that from M37.

The bias towards M65 might depend on a pair of out-of-frame

small ORFs (sORFs) terminating at M37 of FEN1 (Figure S2C). If

utilized by ribosomes, these sORFs will limit initiation events from

M37, in the manner proposed for RNase H1 [10]. Consistent with

this supposition, ablation of the two sORFs led to a significant

increase in initiation from M37, in vitro (Figure S2D). Thus, three

structural features of the FEN1 mRNA are implicated in the ATI

mechanism: the Kozak sequences flanking the AUGs, the presence

of two sORFs within the mRNA and the 59 untranslated region

immediately adjacent to the first initiator codon (M1).

Many proteins destined for the mitochondrial compartment of

the cell, such as transcription factor A of mitochondria (TFAM),

can be imported into isolated organelles. To determine if this was

the case for one or more of the FEN1 variants, the labeled TnT

products were incubated with isolated rat liver mitochondria. The

predicted dATI isoform starting at M65, FEN165, was imported

in a membrane potential-dependent manner, with an efficiency

of,40% relative to TFAM, at least five times that of the other

FEN1 variants (Figure S2E). Removing an additional two amino

acids (FEN167) resulted in an eight-fold decrease in import

efficiency, and there was essentially no import of FEN137 (0.5% of

TFAM import). Although, FEN11 was imported inefficiently

relative to TFAM (8%), this was 16 fold higher than FEN137 and

so was well above background. Moreover, inefficient mitochon-

drial import is fully compatible with the protein’s known major

destination, the nucleus; this finding supports the contention that

mitochondria contain some full-length FEN1 [19,20].

A standard test of cellular localization is to express tagged

proteins in cells and determine their distribution by immunocy-

tochemistry. Therefore, human osteosarcoma (HOS) cells were

transfected with Fen1 variants, tagged with hemagluttinin (HA) at

their carboxyl-termini. Full-length FEN1 (FEN11.HA) was target-

ed principally to the nucleus, as per the endogenous protein

(Figure 2A). To distinguish dATI from proteolytic processing we

substituted the first methionine of FEN1 with isoleucine

(FEN1M1I.HA). If the mitochondrial isoform was generated via

proteolytic processing of full-length FEN1 then the mutation

should result in the loss of both isoforms. However, FEN1M1I.HA

yielded a protein that co-localized exclusively with mitochondria

(Figure 2B), consistent with a dATI mechanism of synthesis; that

is, translation initiates at a site, downstream of M1, generating a

mitochondrial isoform of FEN1. In order to determine the internal

start codon responsible for mitochondrial targeting, the cellular

location of N-terminally truncated FEN1 cDNAs was assessed.

FEN137.HA was nuclear-localized (Figure 2C); FEN165.HA, with

or without a methionine at position 67 was targeted principally to

mitochondria (Figure 2D, S2F), whereas FEN167.HA was

predominantly in the nucleus (Figure S2G).

To extend the immunocytochemistry findings, the cellular

location of FEN1 was assessed by immunoblotting, after subcel-

lular fractionation. These experiments employed transgenic

human cells, expressing tagged full-length FEN1 (FEN11.F) or

N-terminal truncated FEN1 (FEN165.F) under a doxycycline-

inducible promoter (Figure S3A). Although FEN11.F was more

abundant in nuclei, a fraction of it was associated with

mitochondria (Figure 2E, S3B). This observation is consistent

with published reports of full-length FEN1 in mitochondria [20],

despite it lacking a canonical N-terminal MTS. In contrast to

FEN11.F, a shorter protein, cross-reacting with the FLAG

The Truncated Mitochondrial Isoform of FEN1
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Figure 1. FEN1 antibody detects two polypeptides in mitochondria that are depleted by shRNA targeting the FEN1 transcript. (A)
Nuclei (Nuc - lane 1) and trypsin-treated mitochondria were subjected to immunoblotting for endogenous FEN1. Trypsin concentrations were: 0, 10,
50 and 100 mg/ml (lanes 2–5, respectively). SF2 (Splicing factor 2) and TFAM were used as nuclear and mitochondrial markers, respectively. FEN1 and
FEN1S signal was quantified by densitometry, and the signal of mitochondrial FEN1 (black circles) and FEN1S (white circles) was expressed relative to
0 mg/ml trypsin (lane 2), normalized to 1: see the chart below the immunoblots. Error bars represent standard error of the mean of three independent
experiments. FEN1S was also detected with another commercial FEN1 antibody (Bethyl) (data not shown). (B) Total protein was extracted from Fen-
Rex cells [48] following treatment without (-) or with (+) doxycycline (1 ng/ml) to express an shRNA targeted against the Fen1 transcript. PCNA and
GAPDH were used as loading controls. Quantification of immunoblots was done by densitometry, and is shown below the SDS-PAGE image. (C) After
shRNA induction, as per panel B, total RNA was extracted from Fen-Rex cells and analyzed by Northern blotting using probes targeting Fen1 and
Gapdh mRNA. For oligonucleotide sequences, see Text S1.
doi:10.1371/journal.pone.0062340.g001
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Figure 2. The M65 dATI variant of human FEN1 is targeted to mitochondria. Immunocytochemistry of Human Osteosarcoma (HOS) cells
transiently transfected with human FEN1 constructs with HA-tags on the C-terminus to determine cellular localization. (A) Full-length FEN1
(FEN11.HA), (B) M1 mutated to isoleucine (FEN1M1I.HA), (C) truncated FEN1, equivalent to dATI from M37 (FEN137.HA), and (D) truncated FEN1,
equivalent to dATI from M65 (FEN165.HA) were used. Recombinant proteins were labeled with anti-HA antibody (green), while nuclei (blue) and
mitochondria (red) were visualized by staining cells with DAPI and Mitotracker, respectively. Purified nuclei and mitochondria were isolated from Flp-
InTM T-RexTM 293 (HEK293T) cells expressing (E) FEN11 or (F) FEN165 transgenes, tagged with Flag (F) on their C-termini (FEN11.F and FEN165.F,
respectively). Mitochondria were subjected to trypsin protection assays, followed by immunoblotting. Transgenes were expressed by the addition of
10 ng/ml doxycycline (Sigma) for 24 h. Schematic representations of the transgenes are depicted above the immunoblots. Nuclei (Nuc. - lane 1);
beige slope, increasing trypsin concentrations of 0, 10, 50 and 100 mg/ml (lanes 2–5, respectively). Ectopic FEN1 was detected with anti-FLAG.
Mitochondrial markers were TFAM and TOM20 (translocase of the outer membrane 20). E and F are from a single gel, and a similar experiment can be
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antibody, was more abundant in mitochondrial extracts than in

nuclei (Figure 2E, lanes 2–5), and was assigned as FEN165.F,

based on it having the same mobility as the sole FLAG-tagged

protein detected in the cell line expressing ectopic FEN165.F

(Figures 2F, S3B). The truncated form of FEN1 detected in

mitochondria of cells containing full-length cDNA (Figures 2E and

S3B) indicates that a single ORF yields two FEN1 variants.

Moreover, the size of the endogenous short mitochondrial FEN1

isoform was the same as an untagged FEN1 recombinant protein

starting at M65 (Figure 2G, compare lanes 4 and 5). Collectively,

these data provided strong support for a mitochondrial isoform of

human FEN1 generated via dATI from M65, which we have

termed FENMIT, and we revert to calling the full-length protein

FEN1. However, the existence of FENMIT left open the questions

of its properties and function.

FENMIT is a R-Loop and a D-loop binding protein
Although FENMIT retains all the residues involved in the

primary protein-DNA interaction, it lacks much of the wedge that

induces a 100 degree bend in DNA, and several key residues

believed to be involved in binding to 59 and 39 flaps [27].

Therefore, FENMIT was expected to have different properties to

the full-length protein. Specifically, FENMIT was unlikely to be

capable of cleaving 59 single-stranded DNA (ssDNA) flap

structures, which are intermediates of Okazaki fragment process-

ing and LP-BER.

To evaluate the preferred substrates of FENMIT, wild type

(WT) and nuclease-deficient (D181A) forms of FEN1 and

FENMIT were purified from bacteria (Figure 3A, 3B). In contrast

to FEN1, FENMIT did not cleave the canonical substrate [28],

which is an equilibrating double flap with a 59 ssDNA flap and a 1

nucleotide 39 flap (Figure S4A and chart). Nor did FENMIT bind

to, or cleave, ssDNA, double-stranded DNA (dsDNA), RNA/

DNA hybrid (data not shown). While both the wild type and

catalytic mutant versions of FEN1 bound to a DNA flap, FENMIT

did not bind to this substrate (Figure 3C). However, FENMIT did

bind to a mixed RNA-DNA flap substrate, independent of

magnesium (Figure 3D, S4B), and the binding efficiency was

greatest when the 59 flap was exclusively RNA (Figure 3D,

compare lanes 3 and 4 to lanes 7 and 8). In contrast, FEN1 bound

the RNA flap with lower affinity (Figure S4C, compare lanes 3–6

to lanes 7 and 8). We confirmed that recombinant FENMIT forms

a complex with the RNA flap structure by inducing a supershift

with FEN1 antibodies (Figure S4D). Reversing the structure to

create a substrate with a 39 RNA flap markedly decreased binding

(Figure 3E), indicating FENMIT associates specifically with 59

RNA flaps.

The loss of the first 64 residues of FEN1 removes an acid block

loop (residues 56–59) that cannot accommodate a 39 flap longer

than one nucleotide, because of charge repulsion [27]. Hence,

extending the 39 DNA flap to 20 nucleotides inhibited the nuclease

action of FEN1 (Figure S4E, lanes 11–14), presumably because it

cannot bind to this substrate. In contrast to FEN1, FENMIT

bound to RNA-containing 59 flap structures with short or long 39

DNA flaps equally well (Figure S4F). Although FENMIT also

bound to ssRNA (Figure S4F), its affinity of binding was three-fold

lower than that for RNA flap substrates (Figure 3F). Moreover, in

competition experiments, radiolabeled RNA flap structures

required three times more ‘cold’ ssRNA to compete half of the

available FENMIT than was the case for radiolabeled ssRNA

(Figure 3G, S4G). The structure with a 59 RNA flap and an

extended 39 DNA flap resembles an R-loop, and when FENMIT

was incubated with a synthetic R-loop, it bound to it with similar

affinity (Figure 3H). However, it also bound to an R-loop lacking

an RNA flap (Figure 3I), and to a lesser extent, to a D-loop

(Figure 3J). Together, these results indicate that dATI-dependent

truncation of FEN1 generates a mitochondrial protein with altered

substrate recognition and enzymatic properties, converting a

protein that recognizes and cleaves flaps, to a protein that binds

preferentially to RNA flaps and R-loops.

FENMIT is recruited to mtDNA under conditions that
promote R-loop formation near the origin of replication

The in vitro data suggested that FENMIT binds to species

comprising an RNA that is partially, or fully, hybridized to DNA.

Although R-loops formed during transcription pose a threat to

genomic integrity, in other contexts R-loops make positive

contributions to nucleic acid metabolism [22]. For instance, the

initiation of mitochondrial DNA replication is thought to depend

on a RNA primer (generated by mitochondrial RNA polymerase,

mtRNAP) that is hybridized to the template parental strand,

generating an R-loop [29]. Because ethidium bromide (EB) is a

potent inhibitor of transcription elongation in mitochondria [30],

we inferred that its application would cause RNA synthesis to

arrest prematurely, as occurs in vitro [31], resulting in the

accumulation of short RNAs. Specifically, the RNA primer at the

origin of mtDNA replication, which is two orders of magnitude

shorter than the genome-length polycistronic transcripts required

for expression of mtDNA, should increase in the presence of EB,

creating a substrate for FENMIT. To test this idea, fragments of

mtDNA containing RNA/DNA hybrids, were immunocaptured

from mitochondria of cells treated with or without EB and

analyzed by two-dimensional agarose gel electrophoresis (2D-

AGE). Small bubble structures containing regions of RNA/DNA

hybrid were more abundant in the EB-treated samples than in

controls (Figure 4), suggesting that the chemical causes short R-

loops to accumulate on mtDNA in living cells.

The use of EB enabled us to investigate the interaction of

FENMIT with its predicted substrate in a biological setting. To

this end, mitochondria from cells treated with or without EB were

sub-fractionated on Iodixanol gradients. Analysis of the gradient

fractions by Southern blotting and immunoblotting revealed that

the majority of free FENMIT was recruited to mtDNA in the cells

treated with EB, despite the marked reduction in mtDNA copy

number (Figure 5A, fraction 7 of EB). In contrast to FENMIT, the

relative abundance and position of the mtDNA interacting

proteins, TFAM, POLG1 and mtRNAP correlated with mtDNA,

irrespective of EB exposure (Figure 5A).

Although full-length FEN1 has been linked to DNA repair in

mitochondria, the recruitment of FENMIT to mtDNA after

prolonged EB treatment cannot be attributed to a DNA damage

response, as EB is a poor mutagen of mtDNA [32]. Furthermore,

DNA damaging agents in the form of oxidative stress or UV

irradiation did not enhance the recruitment of FENMIT to

mtDNA (Figure S5).

seen in Figure S3B. The band in lane 1 located below full-length FEN1, but higher than FEN165, is probably a degradation product of full-length FEN1
due to excess of recombinant protein. (G) Anti-FEN1 immunoblot of whole cell protein extracts from HOS cells overexpressing empty vector (EV)
(lane 1) or a FEN1 cDNA starting at M1, M37 or M65 (lanes 2–4, respectively) and a trypsin-treated mitochondrial lysate (Mt) (lane 5).
doi:10.1371/journal.pone.0062340.g002
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Figure 3. Recombinant FENMIT binds preferentially to RNA flap structures. Recombinant His-tagged FEN1 and FENMIT purified either by
(A) a single nickel gravity column, or (B) HPLC-purified over nickel, DEAE, and SP columns, were fractionated on 4–20% gradient gels, and stained
with Coomassie Blue. Prominent bands were excised and analyzed by MALDI-TOF-TOF MS, and all were identified as FEN1, with the exception of an
unidentified protein of,60 kDa unique to (B). Gel shift analysis was used to measure recombinant His-tagged FENMIT binding to 0.2 nM of
radiolabeled equilibrating 59 flaps comprising exclusively (C) DNA, or (D) with 15 nucleotides (nt) of ssRNA at the 59 end of the flap (T1:U1:19RNA15*
(for this and other sequences see Text S1); lanes 1–4) or a full 59 RNA flap (T2:U2:RNA44*; lanes 5–8). FENMIT binding was analyzed by non-denaturing
PAGE. (E) Gel shift analysis was used to measure recombinant His-tagged FENMIT binding on 0.2 nM of a radiolabeled equilibrating full 59 RNA flap
(T2:U2:RNA44*; lanes 2–6) and full 39 RNA flap (T5:U5:RNA44*; lanes 8–12). Schematics of the substrates are indicated above and to the sides of the

The Truncated Mitochondrial Isoform of FEN1
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gel. (F) FENMIT (1–50 nM) binding to 0.2 nM of a radiolabelled 59 flap (with a 1 nt 39 equilibrating flap) (U2:T2:RNA44*) (gray line), a 59 flap (with a 20
nt 39 equilibrating flap) (U3:T2:RNA44*) (black line), or ssRNA (RNA44*) (red line); representative gel images from which the data were derived are
shown in Figure S4F. (G) Competition assay: the ability of FENMIT (25 nM) to bind to 0.2 nM of the radiolabeled substrates, used in panel C, in the
presence of increasing concentrations (0, 0.2, 0.5, 1, 2, and 5 nM) of non-radioactive ssRNA (RNA44); representative gel images from which the data
were derived are shown in Figure S4G. Color codes are as panel C. Schematic representation of the substrates used for panels C and D are illustrated
between them. Gel shift analysis was used to measure recombinant His-tagged FENMIT binding to 0.2 nM of a radiolabeled (H) 59 tailed R-loop
(T7:D2:RNA44*), (I) R-loop (T6:D1:RNA44*), and (J) D-loop (T7:D1:DNA44*). Schematics of the substrates are indicated above and to the right of the
gels.
doi:10.1371/journal.pone.0062340.g003

Figure 4. RNA/DNA hybrids accumulate in the origin-containing region after partial mtDNA depletion with EB. (A) Schematic map of
human mtDNA annotated with HincII restriction sites and a black rectangle to denote the probe. OH, origin of heavy strand replication. To the right of
the human mtDNA schematic is a cartoon depicting the features of interest in experiments (B) and (C). 2D-AGE analysis after HincII digestion of
mtDNA from sucrose gradient-purified mitochondria, followed by immunocapture using the RNA/DNA hybrid antibody (S9.6) was carried out after:
(B) 72 h ethidium bromide (EB) treatment (100 ng/ml, 72 h) or (C) no treatment (Control). The abundance of the immunocaptured upper (bu) and
lower (bL) portions of the origin-containing bubble arcs were expressed as percentages: per cent bound = bound/(bound + unbound) x 100, and are
shown below the 2D-AGE images. Small bubble structures that map near the replication origin [34] resolve on the lower portion of the bubble arc
(bL), and these were more abundant in the EB-treated mtDNA samples. Slow-moving y arcs (smy) and eyebrows (e) are intermediates of RITOLS
replication [37], which were drastically reduced in the EB-treated mtDNA samples.
doi:10.1371/journal.pone.0062340.g004
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Figure 5. Enhanced, RNA-dependent recruitment of FENMIT to mtDNA in response to EB treatment. Analyses of trypsin-treated
mitochondria from control- and ethidium bromide (EB)-treated (100 ng/ml, 72 h) HEK293T cells, after lysis and ultracentrifugation through an
Iodixanol gradient[. Fractions, collected from the bottom of the tube are indicated at the top of the figure. Mitochondrial DNA was analyzed via
Southern blotting using a probe that spanned nucleotides 16,241–141, according to the human mtDNA reference sequence [49]. FEN1 was detected
via immunoblotting. TFAM, POLG1, and mtRNAP are proteins known to bind to mtDNA, whereas PRX3 and HSP60 do not bind to mtDNA. Dashed
boxes indicate the submitochondrial location of the majority of FENMIT. (B) Mitochondrial lysates from cells, expressing tagged FENMIT, treated
without (control) or with EB were incubated with anti-FLAG M2 agarose beads in the absence (-) or presence (+) of RNaseT1. Input and elutions
(following immunoprecipitation) were spiked with GFP cDNA (550 ng) to provide an internal control for nucleic acid precipitation. Mitochondrial DNA
(comparing the abundance of the mtDNA-encoded cytochrome b gene (CYTB) to that of the nuclear-encoded APP gene) and GFP were amplified via
qPCR in order to determine FENMIT.F occupancy of mtDNA. Error bars represent standard error of the mean of 3 or 4 separate experiments.
***p,0.01, * p,0.05, using one-way ANOVA.
doi:10.1371/journal.pone.0062340.g005
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FENMIT binding to mtDNA is dependent on RNA in
human cells

Because recombinant FENMIT binds to RNA flaps and R-

loops (Figure 3) yet associates with mtDNA when transcription is

repressed (Figure 5A), it was important to verify that FENMIT was

recruited to mtDNA molecules bearing RNA. Therefore, tagged

FENMIT was used as bait to co-immunoprecipitate mtDNA from

cells treated with or without EB. Under all conditions, FENMIT

was enriched by the immunoprecipitation procedure (Figure S6,

lanes 7–10). The proportion of mtDNA that co-precipitated with

FENMIT was significantly greater (.12-fold) when cells were

exposed to EB (Figure 5B), and a small amount of the mtDNA

packaging protein, TFAM, was detected exclusively in EB-treated

samples (Figure S6, lane 9). This confirms that the movement of

endogenous FENMIT on the Iodixanol gradient, in response to

EB exposure, is attributable to a physical association with a

modified form of mtDNA, or nucleoprotein. Importantly, the use

of RNase T1, to remove single-stranded RNA, decreased the

amount of mtDNA that co-precipitated with FENMIT by,55%

(Figure 5B), suggesting that binding of FENMIT to mtDNA is at

least partly dependent on the presence of RNA.

Elevated expression of FENMIT inhibits mtDNA
replication after EB treatment

The RNA-dependent binding of FENMIT to mtDNA, and its

recruitment to mtDNA after EB treatment when there is also an

increase in R-loops near the origin of replication, suggests

FENMIT might influence the initiation of replication in

mitochondria. If true, then FENMIT overexpression should be

most detrimental during the surge of mtDNA replication that

follows transient depletion [33]. Accordingly, whilst FENMIT

overexpression had no marked effect on mtDNA copy number

under standard culture conditions (Figure 6A), it significantly

inhibited the amplification of mtDNA following transient deple-

tion (Figure 6B). Therefore, we infer that an excess of FENMIT

stabilizes R-loops at the origin, and the impediment to mtDNA

recovery implies that processing of R-loops is necessary for the

progression of replication.

Discussion

The proposed derivative of FEN1, FENMIT, adds to the

growing list of mitochondrial isoforms, whose targeting to the

organelle depends on alternative translation initiation from an

internal start site [23]. Because ATI removes a highly conserved

portion of FEN1 that is critical to its canonical function [27], it was

inevitable that FENMIT would have different properties to full-

length FEN1. The first 64 residues include the hydrophobic wedge

that forms part of the track that distorts the path of the template

strand, enabling the active site to gain access to the scissile

phosphate [27]. Hence, cleavage of flap structures by FENMIT

was not detected. Because, FEN1 cleaves RNA flaps, whereas

FENMIT stabilizes them, the proteins might have opposing

functions. The computational software ‘BindN’ predicts that full-

length FEN1 should bind to RNA in preference to DNA (see Text

S1). Notwithstanding this, initiation at residue 65, to create

FENMIT, removes a portion of the protein that is predicted by

BindN to prefer DNA to RNA, and so FENMIT’s preference for

RNA should be greater than that of FEN1, which is concordant

with the findings of this report. In any case, the current study

demonstrates that the first 64 residues of FEN1 are key to its

nucleic acid binding properties, as without this region RNA is the

preferred substrate of the protein. Ultimately a crystal structure of

FENMIT in complex with RNA and RNA flap structures will be

needed to understand the critical protein-nucleic acid interactions.

FENMIT binds to synthetic RNA-containing structures,

resembling 59 RNA flaps and R-loops (Figure 3), and RNA flaps

contribute to the recruitment of FENMIT to DNA, as an enzyme

that can trim such flaps (RNase T1) decreased the amount of

mtDNA co-immunopurifying with FENMIT (Figure 5B). These

nucleic acid binding properties make the protein highly unusual, if

not unique, and there are particular features of mtDNA

metabolism that could utilize these properties of FENMIT.

Notably, R-loops have been implicated in the initiation of mtDNA

replication. Transcription by mtRNAP from the light strand

promoter (LSP) in the noncoding region (NCR) gives rise to short

transcripts, whose 39 ends are close to prominent 59 ends of DNA

Figure 6. FENMIT overexpression inhibits recovery of mtDNA
copy number after transient mtDNA depletion. (A) HEK293T cell
lines overexpressing FEN1.F or FENMIT.F (by addition of 10 ng/ml
doxycycline) for the indicated times (48 h and 96 h). The copy number
of mtDNA is expressed relative to non-induced (NI) cell line values set to
1 (dashed line). (B) Following partial depletion of mtDNA with EB
(100 ng/ml) for 72 h, mtDNA was allowed to recover for 120 h, and
samples were taken every 24 h. Mitochondrial DNA copy number was
determined by qPCR, comparing the abundance of the mtDNA-
encoded cytochrome b gene (CYTB) to that of the nuclear-encoded
APP gene. Error bars represent standard error of the mean of 2 or 3
separate experiments. ***p,0.01, using two-way ANOVA.
doi:10.1371/journal.pone.0062340.g006
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that delineate the origin/terminus of replication, known as OH

[29]. R-loops may have a propensity to form in the NCR of

mtDNA because of the high GC content downstream of LSP, as

elsewhere this is correlated with an increased incidence of R-loop

formation [22]. Therefore, we posit that one function of FENMIT

is to secure the R-loop between LSP and OH, to facilitate the

initiation of mtDNA replication (Figure S7A, S7B). Equally, it

might play a role in the initiation of mtDNA replication from other

sites in the NCR [34]. This model marries the biochemical

properties of FENMIT, the accumulation of early replication

intermediates containing RNA/DNA hybrid and FENMIT’s

RNA-dependent association with mtDNA.

Interestingly, the short RNA from LSP to OH contains a G-rich

sequence that can form a G-quadruplex structure in vitro [35].

Thus, RNA synthesis in the OH primer region might produce an

interrupted R-loop providing the ideal substrate for FENMIT

(Figure S7C). G-quadruplexes notwithstanding, once the transition

from RNA to DNA synthesis occurs the structure becomes part R-

loop and part D-loop and so the ability of FENMIT to bind to D-

loop structures might aid its retention at the origin beyond the

initiation of DNA synthesis.

Although RNA is incorporated throughout the lagging strand

during mtDNA replication [36,37], FENMIT does not appear to

be tightly associated with mtDNA under standard growth

conditions when this mode of replication is active. Nevertheless,

FENMIT might facilitate the use of lagging strand RNA for DNA

repair. Mitochondria contain reverse transcriptase activity in the

form of telomerase [38], and the lagging strand RNA could be

used as a template for repairing or bypassing lesions on the leading

strand, in a process aided by FENMIT. Finally, FENMIT might

play a role in the processing of polycistronic mitochondrial

transcripts, as this is believed to occur while the RNA is partly

bound to DNA [39]. Because of the unique mechanisms of

replication and expression of mtDNA, none of these possible

functions is applicable to the nucleus, which would explain why

the truncated form of FEN1 is detectable only in the mitochon-

drial compartment of the cell.

Ablating FENMIT expression while preserving that of FEN1

would help clarify its role in mtDNA metabolism. However, Fen1

is essential in mammals [16] and the key residue for dATI is

located in a region of the hydrophobic wedge required for

substrate recognition. Hence, designing a fully functional FEN1

whose transcript cannot yield FENMIT via dATI will be

challenging. Because of the high degree of sequence conservation

of FEN1, it is not clear how many organisms create a dATI-

dependent mitochondrial isoform of FEN1, and whether M65 is

conserved in order to maintain the function of FEN1 or to

generate FENMIT. Thus, whilst M65 is preserved from yeast to

human, dATI need not be the driving force behind this

evolutionary conservation.

Materials and Methods

Cell culture and construct designs
HOS, HeLa, Fibroblasts, and Flp-InTM T-RexTM 293

(HEK293T) cells (Invitrogen) were cultured in DMEM, 0.1%

penicillin/streptomycin, 10% FBS. DG75 cells were cultured in

IMDM. Stable HEK293T transformants were selected with

Hygromycin B. Mutant constructs were made using the Quik-

Change site-directed mutagenesis kit (Stratagene).

Confocal microscopy
HOS cells were transfected using Lipofectamine 2000 with Fen1

cDNAs. 24 hours post transfection, cells were stained with

Mitotracker, fixed with paraformaldehyde, and incubated with

anti-HA (Roche Diagnostics) antibody. Subsequently, cells were

incubated with Alexa Fluor 488 goat anti-rat IgG. Coverslips were

mounted with 1,4-diazabicyclo[2.2.2]octane (Sigma), containing

49,6-diamidino-2-phenylindole, dihydrochloride (DAPI). Images

were acquired with an LSM 510 META confocal microscope

(Carl Zeiss, Jena, Germany).

Immunoblotting
Proteins were resolved by 4–12% NuPAGE Bis-Tris SDS-

PAGE (Invitrogen) and transferred to nitrocellulose membrane.

Immunoblotting was done as described previously [24].

Mitochondrial Import
[35S]-methionine-labeled proteins were incubated with rat liver

mitochondria as previously described [24].

Nuclear, cytosolic, and mitochondrial isolation from
cultured cells

HOS or HEK293T cells were homogenized in hypotonic buffer

(20 mM Hepes-NaOH [pH 7.8], 5 mM KCl, 1.5 mM MgCl2,

2 mM DTT, 1 mg/ml BSA, 1 mM PMSF, Protease Inhibitor

Cocktail (Roche)). Low speed centrifugation of HEK293T cells

resulted in a pellet that was used to isolate intact nuclei. Cytosolic

extracts were obtained from post-mitochondrial supernatants, and

mitochondria were prepared as described previously [24].

Quantification of mtDNA copy number
Total DNA was extracted from cell lysed in proteinase K (PK)

Buffer (20 mM HEPES, pH 7.8; 75 mM NaCl; 50 mM EDTA;

0.2% SDS; 0.2 mg/ml PK) for 2 hours at 50uC. After precipita-

tion and resuspension in TE buffer, pH 8.0, 25 ng DNA lots of

DNA were used for Q-PCR with Amplitaq Gold (Applied

Biosystems) according to manufacturer’s instructions, except that

5% w/v glycerol was added. Primers and probes are listed in Text

S1. Cycle conditions were 95uC for 10 min, followed by 40 cycles

of 95uC for 0.25 min and 60uC for 1 min).

Mitochondrial DNA analysis
mtDNA was extracted and analyzed by one or two dimensional

agarose gel electrophoresis and Southern hybridization as

previously described [24,33]. Primers and probes are listed in

Text S1.

Co-immunoprecipitation
Mitochondria were purified from FENMIT.F-expressing HEK

cells, lysed, and incubated with FLAG M2 agarose beads (Sigma).

RNase T1 buffer (10 mM Tris, pH 7.4; 5 mM EDTA; 300 mM

NaCl) was added to mitochondrial lysates from ethidium bromide-

treated cells along with 1000 units of RNase T1 (Roche) or no

enzyme (control). FENMIT.F was eluted with Flag peptide. Inputs

and elutions were spiked with GFP cDNA (550 ng) in order to use

as an internal control for nucleic acid precipitation. mtDNA and

GFP were amplified via qPCR, as previously described [40], in

order to determine FENMIT.F occupancy of mtDNA.

In silico mitochondrial localization prediction
Methionine residues occurring at the amino terminus of the

FEN1 amino acid sequence were queried for possible dATI, with

mitochondrial targeting predicted using Mitoprot [41], TargetP

[42], Predotar [43], PSORTII [44] and iPSORT [45].
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S9.6 antibody purification
Crude supernatant from S9.6-expressing hybridoma cells [46]

was a gift from Dr. Andrew Jackson. The mouse monoclonal S9.6

antibody was purified from the supernatant using a recombinant

Protein A/G spin column (Pierce) to a final concentration of

0.7 mg/ml.

Immunopurification of RNA/DNA hybrids
DNA from HEK cell mitochondria was digested with HincII,

precipitated, and resuspended in binding buffer (10 mM HEPES,

pH 7.2; 50 mM NaCl; 10 mM EDTA). Immunocapture was as

previously described [47].

FEN1 purification
E. coli (BL-21 strain) were grown to an OD600 of 0.4 to 0.6.

FEN1 variants were overexpressed using 5 mM IPTG and cells

were grown overnight at 25uC. Cells were sonicated and

centrifuged. The supernatant was clarified through a 0.2 mm

filter. For single gravity column purification, bacterial cell lysate

was run through a Ni Sepharose gravity column in the presence of

Imidazole (5 mM). Column was washed with 10 volumes of PN

buffer (40 mM NaPO4, pH 7.4; 0.1 M NaCl)+5 mM Imidazole,

two column volumes with 60 mM Imidazole, and then eluted with

1 M Imidazole. For HPLC purification, bacterial lysate from cells

that had been induced with 1 mM IPTG was run through a Ni

Sepharose column, washed with 0.3 M Imidazole and eluted with

1 M Imidazole. The Ni Sepharose elution was loaded onto a

DEAE to remove contaminating proteins that might bind nucleic

acids, and then sample was loaded on to a HiTrap SP column,

eluted with a linear NaCl gradient, and dialyzed against Protein

storage buffer (40 mM NaPO4, pH 7.4; 0.1 M NaCl; 50%

glycerol), and flash frozen in liquid nitrogen and stored at280uC.

Nuclease and Binding assays
All substrates for binding and nuclease assays were gel purified

prior to their use and 32P was incorporated at the 59 end of the

oligonucleotides for detection purposes. Recombinant proteins

were incubated with 0.2 nM radiolabeled substrates in FEN1

Buffer (25 mM Tris, pH 8.0; 1 mM DTT; 0.1 mg/ml BSA; 6%

glycerol). Binding reactions were 1 h on ice, whereas nuclease

reactions, with 10 mM MgCl2, were 30 min at 37uC. The

reaction products were electrophoresed on 10% non-denaturing

polyacrylamide gels in tris-borate buffer and visualized on the

Typhoon 9410 Variable Mode Imager (GE Healthcare). Oligo-

nucleotide sequences for FEN1 nuclease and gel-shift analyses are

listed in Text S1.

Supporting Information

Figure S1 Long and short forms of FEN1 are expressed
in several human cell lines, the short form is consistent
with translation initiation from an internal methionine
and is predicted to be targeted to mitochondria. (A)

Expression of full-length FEN1 and a shorter protein (FEN1S)

were detected by a FEN1 antibody in trypsin-treated human

mitochondria of osteosarcoma (HOS) cells, DG75 lymphoblasts

and primary fibroblasts (Fibro). Trypsin-treated mitochondria,

purified from HOS cells were lysed and centrifuged through an

Iodixanol gradient. The migration of mtDNA was detected using a

probe that spanned a region within the NCR (nt 16,241–141)

according to the human mtDNA reference sequence (49).

Endogenous FEN1, TWINKLE and TFAM were evaluated by

immunoblotting. (B) Separation of HEK293T mitochondrial

lysates through an Iodixanol gradient, followed by immunoblot-

ting of FEN1 and TFAM. (C) N-terminal amino acid sequence

alignment of FEN1 between Human, Orangutan, Mouse, Pig,

Cow, Dolphin, Megabat, and S. cerevisiae, and in silico mitochon-

drial targeting prediction scores. M1, M37, M65, and M67 above

the alignment correspond to methionines 1, 37, 65 and 67 of

FEN1, respectively. Green and black rectangles indicate conserved

methionine residues. Red color in the heat map indicates a strong

probability of mitochondrial localization.

(EPS)

Figure S2 dATI and mitochondrial targeting occur
primarily with FEN165. (A) SDS-PAGE gel of [35S]-methio-

nine-labeled FEN1 polypeptide variants generated in vitro. ‘‘M67’’,

‘‘M65’’, ‘‘M37’’ and ‘‘M1’’ refer to the methionines where

translation starts, all of which have an artificial consensus Kozak

sequence (GCCACCAUG). ‘‘WT M1’’ indicates that the AUG

encoding M1 is preceded by 21 nucleotides of the native FEN1

mRNA. The in vitro-synthesized proteins are depicted schemati-

cally below the SDS-PAGE gels, and to the right, translation

efficiency from M37 (grey bars) and M65/67 (black bars) is

depicted graphically, relative to translation from M1 (set to 1).

Translation abundance was determined by densitometric quanti-

fication of bands corresponding to M1, M37, or M65/67,

corrected for background. (B) Nucleotides flanking AUG codons

encoding M1, M37, M65, and M67 of Fen1 mRNA. Annotated,

M1 AUG codon is labeled green and the putative dATI AUG

codon is labeled in red. Larger font indicates Kozak sequence

conservation with the optimal Kozak sequence: (A/G)CC(A/

G)CCAUGG. (C) Partial DNA sequence alignment of Fen1 from

human to yeast. Yellow bars delineate two out-of-frame sORFs.

Clear boxes - two out-of-frame ATG codons that mark the

beginning of sORF1 and sORF2, and the M37-ATG codon. Blue

box - out-of-frame stop codon (TGA) of the two sORFs. Red box -

the M65-ATG codon. (D) SDS-PAGE gel of [35S]-methionine-

labeled FEN1 polypeptide variants generated in vitro. WT, wild

type; DsORF1, DsORF2, and DsORF1+2 indicate Fen1 cDNAs

containing synonymous mutations that ablate sORF1, sORF2, or

both sORF1 and 2. The graph to the right shows the

quantification of the different proteins generated from each in

vitro reaction. Dashed line on the graph marks translation events

starting from M37 using WT Fen1 mRNA. Error bars represent

standard error of three independent experiments. *p,0.05 using

one-way ANOVA. (E) Import of [35S]-methionine-labeled TFAM

(positive control) and FEN1 variants into rat liver mitochondria.

1 mM FCCP (lanes 5–7) was used to dissipate membrane potential.

White arrowhead indicates the most prominent FEN1 form that is

imported into mitochondria. To the right, import efficiency was

determined by densitometric quantification of the trypsin-resistant

band (lane 3), relative to total protein surviving incubation with

mitochondria (lane 2). Quantification was expressed relative to

TFAM import, which was arbitrarily set as 100%. Start

methionines are indicated to the right of the gel images. Error

bars represent standard error of the mean (n = 3 or 4 experiments).

***p,0.001 using one-way ANOVA. Immunocytochemistry of

HOS cells transiently transfected with human FEN1 constructs

with HA-tags on the C-terminus starting translation at (F) M65,

and containing a methionine to isoleucine point mutation at

residue 67 (FEN165/M67I.HA), and starting translation at (G) M67

(FEN167.HA). Recombinant proteins were labeled with anti-HA

antibody (green), while nuclei (blue) and mitochondria (red) were

visualized by staining cells with DAPI and Mitotracker, respec-

tively.

(EPS)
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Figure S3 The truncated isoform of FEN1 corresponds
in size to a product initiating translation from M65 in
human cells. (A) Immunoblotting of inducible HEK293T cells

after selection of clones expressing FLAG-tagged full-length FEN1

(FEN11.F) and truncated FEN1 forced to start translation from

M65 (FEN165.F). Transgene expression was induced with 1 or

3 ng/ml doxycycline (Sigma) for 24 h. (B) Nuclei were run beside

purified mitochondria isolated from HEK293T cells expressing

FEN11.F or FEN165.F transgenes (1 ng/ml doxycycline for 24 h).

Mitochondria were subjected to trypsin protection assays, prior to

lysis and immunoblotting. Nuclei (lanes 1, 2, 8, and 9), black slope

indicates increasing trypsin concentrations of 0 mg/ml (lanes 3 and

10), 10 mg/ml (lanes 4 and 11), 50 mg/ml (lanes 5 and 12), 100 mg/

ml (lanes 6 and 13), and samples treated with both 1% Triton-X100

and 100 mg/ml trypsin (lanes 7 and 14). Ectopic FEN1 was detected

with anti-FLAG. GAPDH was used as a loading control in A.

(EPS)

Figure S4 Endonuclease and nucleic acid binding
properties of recombinant human FEN1 variants. Re-

combinant FEN1 variants (1 and 5 nM) and 0.2 nM of

radiolabeled (A) equilibrating 19 nt 59 ssDNA flap substrate

(T1:U1:19DNA*). FEN1 cleavage was assessed by non-denaturing

10% PAGE, with the cleavage products formed by FEN1.His in

panel C arbitrarily set as 100%, and graphically represented to the

right of the gel image. (B) Substrates with an equilibrating 59 flap

containing 15 nt of ssRNA at the 59 end of the flap

(T1:U1:19RNA15*) were incubated with recombinant FEN1

variants in the presence of MgCl2 (10 mM) at 37uC for 30 min.

Schematics of the substrates and products are indicated to the left

of the gel images. (C) Gel shift analysis was used to measure

binding of 1 nM and 5 nM of recombinant WT FEN11.His (lane

3 and 4), D181A mutant (lane 5 and 6), and FENMIT.His (lane 7

and 8) to 0.2 nM of a radiolabeled 59 RNA flap (with a 1 nt 39

equilibrating flap) (U2:T2:RNA44*). FENMIT was purified by

two separate methods, indicated above the gel images. (D)

Recombinant FENMIT was incubated with radioactive substrate

and 5 mg of isotype IgG, FEN1 (Genetex), or FEN1 (Bethyl)

antibodies for 1 h on ice and analyzed by non-denaturing 10%

PAGE. (E) Nuclease activity of FEN1.His was assessed by

incubation with T1:U1:19DNA* (lanes 3–6), U2:T2:RNA44*

(lanes 7–10), and a 59 flap with a 20 nt 39 equilibrating flap

(U3:T2:RNA44*, lanes 11–14). DNA and RNA (lanes 1 and 2)

refer to single-stranded, radiolabeled oligos released from flap

substrates after boiling. Substrate and cleavage products are

indicated with arrows. (F) Gel shift analysis was used to measure

binding of FENMIT (1–50 nM) to 0.2 nM of a radiolabeled

ssRNA (RNA44*, lanes 1–4 and 13–16), U2:T2:RNA44* (lanes 5–

8 and 17–20), and U3:T2:RNA44* (lanes 9–12 and 21–24).

Protein concentrations, and schematic representation of substrates

used are indicated above the gel images. Combined data from two

independent experiments appear in Fig. 3F. (G) The ability of

increasing concentrations (0, 0.2, 0.5, 1, 2, and 5 nM) of non-

radioactive (cold) ssRNA (RNA44) to compete with 0.2 nM

radiolabeled RNA44, U2:T2:RNA44, or U3:T2:RNA44 for

binding of 25 nM FENMIT.His. Combined data from two

independent experiments appear in Fig. 3G.

(EPS)

Figure S5 The majority of FENMIT remains free of
mtDNA in the presence of oxidative stress and DNA
damaging agents. (A) Cells were treated with 200 mM of H2O2

for 1 h followed by mitochondrial extraction or (B) exposed to 20

Joules/m2 of UV and then allowed to recover for 18 h prior to

mitochondrial extraction. Mitochondrial lysates were centrifuged

through Iodixanol gradients. Fractions were collected from the

base of the gradient tube and are indicated at the top of the

figure (5–18). Proteins were detected by immunoblotting. TFAM

was used to detect the migration of a known mtDNA-binding

protein.

(EPS)

Figure S6 Immunoblotting following immunoprecipita-
tion of FENMIT.F from mitochondria of cells treated
with and without EB. Immunoblots detecting transgenic

FENMIT.F, and endogenous proteins (TFAM and mtRNAP)

after immunoprecipitation with Anti-FlagH M2 Affinity gel (Sigma)

from purified mitochondrial lysates. Control and ethidium

bromide (EB) samples were also treated with (+) or without (-)

RNase T1 (1000 Units) during FLAG immunoprecipitation.

(EPS)

Figure S7 Model of FENMIT binding to mitochondrial
DNA at the origin of replication. The mitochondrial RNA

Polymerase (mtRNAP) transcribes an RNA (red line) molecule

from the light strand promoter (LSP) that can serve as a primer for

H-strand DNA (blue line) synthesis by DNA polymerase c
(POLG). The RNA primer must minimally be in the form of an

RNA/DNA hybrid at the RNA-DNA transition point, and so

there is expected to be an R-loop in this region, to which FENMIT

can bind (A). Partial dissociation of the RNA/DNA hybrid to

produce a RNA tail (B), or the formation of a G-quadruplex (C)

(35) would further facilitating FENMIT recruitment in the vicinity

of the H-strand DNA initiation site. Hence, FENMIT might bind

to and stabilize the primer RNA to regulate the initiation of

mtDNA replication.

(TIF)

Text S1 This file includes supplementary materials and methods

and the in silico predicted DNA and RNA binding properties of

FEN1 and FENMIT.

(DOCX)
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