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Carotid atherosclerotic plaque rupture and thrombosis are independent risk

factors for acute ischemic cerebrovascular disease. Timely identification

of vulnerable plaque can help prevent stroke and provide evidence for

clinical treatment. Advanced invasive and non-invasive imaging modalities

such as computed tomography, magnetic resonance imaging, intravascular

ultrasound, optical coherence tomography, and near-infrared spectroscopy

can be employed to image and classify carotid atherosclerotic plaques to

provide clinically relevant predictors used for patient risk stratification. This

study compares existing clinical imaging methods, and the advantages and

limitations of di�erent imaging techniques for identifying vulnerable carotid

plaque are reviewed to e�ectively prevent and treat cerebrovascular diseases.
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Introduction

Stroke has now become the second leading cause of death worldwide and the first

leading cause of death in China (1). Associated with high disability and mortality

rates, stroke is an important public health issue that can significantly and negatively

impact society (1). Atherosclerosis accounts for approximately 25% of all ischemic

strokes, being the plaques of the internal carotid artery the most frequently involved

in stroke pathogenesis (2, 3). It is well known that the degree of stenosis is the

most important and validated vulnerability biomarker to predict the risk of ipsilateral

cerebrovascular events. But with the gradual in-depth research, we realized that the

degree of stenosis alone is not sufficient to decide upon which is the best preventive

treatment in some important subgroups of patients with carotid atherosclerosis, and

that it may be helpful to focus on the characterization of atherosclerotic plaques (2).
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As a result, this review will focus on the techniques employed to

image carotid plaque, describing how somemethods are suitable

for evaluating specific carotid plaque components.

Histopathological characteristics of
vulnerable plaques

Atherosclerosis (AS) is a complex and progressive

inflammatory disease, whose development involves

accumulation of lipids in the arteries, formation of foam cells,

local inflammatory responses, and migration and proliferation

of macrophages, smooth muscle cells, lymphocytes, and

neutrophils (3). AS mainly occurs in the intima of medium

and large arteries and is mostly located at turbulence and shear

stress reduction locations, such as the bend and bifurcation

of vessels (4). Vulnerable carotid plaque refers to AS plaque

with rupture tendency and easy-to-cause thrombosis, making

the patient susceptible to acute cerebrovascular events. This

phenomenon is now well described as thin-cap fibroatheroma

(TCFA), classified by plaques consisting of lipid-rich necrotic

cores (LRNC) and thin fibrous caps (FCs) (<65µm) infiltrating

macrophages and inflammatory cells. As a precursor lesion

of plaque rupture, TCFA may share several plaque features

associated with increased risk of cerebrovascular events,

including inflammation, microcalcification, spot calcification,

bleeding, neovascularization, and extraverted remodeling (5, 6).

Naghavi M et al. proposed the histopathological diagnostic

criteria for vulnerable plaques in (7, 8), which has now reached

a consensus (Table 1). The main diagnostic criteria include

inflammatory activation in plaque (monocyte/macrophage or

with T lymphocyte infiltration), thin FC (thickness < 65µm)

and large lipid core (>40% of the plaque area), vascular

endothelial cell ablation with platelet aggregation on the surface,

fissures or damaged plaques, and severe luminal stenosis

(>90%). Secondary diagnostic criteria include intraplaque

hemorrhage (IPH), endothelial dysfunction, superficial nodules

or calcifications, yellow plaques, and positive remodeling of

vascular walls.

Imaging identification of vulnerable
carotid plaque

Determining plaque characteristics is important for

understanding the pathophysiological process of atherosclerotic

plaque formation, hence providing us with possible methods

for assessing the risk of patient-specific, individual plaques.

Therefore, imaging modalities are required to reliably assess

plaque composition, thus allowing the implantation of

therapeutic strategies to prevent adverse vascular events.

TABLE 1 Histopathological diagnostic criteria for vulnerable plaques.

Pathological features

Main criteria Inflammatory activation in plaque (monocyte/macrophage

or with T lymphocyte infiltration)

Thin FC (thickness < 65µm)

Large lipid core (>40% of the plaque area)

Vascular endothelial cell ablation with platelet aggregation

on the surface

Fissures or damaged plaques

Severe luminal stenosis (>90%)

Secondary criteria Intraplaque hemorrhage (IPH)

Endothelial dysfunction

Superficial nodules or calcifications

Yellow plaques

Positive remodeling of vascular walls

Non-invasive imaging

Ultrasound

B-mode ultrasonography and contrast-enhanced

ultrasonography (CEUS) are the two most widely used

techniques for assessing carotid plaques (9). B-mode ultrasound

images are used to evaluate plaque echoes, which are the

ultrasonic equivalent of LRNC. Up to 50% of symptomatic

plaques have echoes, compared to less than 5% of asymptomatic

plaques (10). Additionally, regardless of stenosis, patients with

echogenic plaques were associated with a stroke risk of up to

13%, higher than the risk of stroke in patients with high stenosis

(11). Although B-mode carotid ultrasound has high specificity,

it has only moderate sensitivity in identifying plaque surface

ulcers, and the incidence of detecting symptomatic plaque ulcers

varies greatly (12). Moreover, the sensitivity of patients with

moderate stenosis is particularly poor (13). Another limitations

of B-ultrasound in detecting carotid plaque is the lack of

consistency between operators and poor signal-to-noise ratio.

Recent advances in the characterization of carotid plaques

via ultrasound have also emerged in CEUS field. CEUS

uses intravenous microbubble contrast agents. This contrast

agent does not diffuse into surrounding tissues as other

contrast agents do, so all signals from CEUS examinations

are intravascular, allowing accurate assessment of lumen and

neovascularity within carotid plaques (14). For carotid stenosis,

CEUS can distinguish between complete carotid occlusion and

high stenosis, identify plaque ulcers, and assess carotid plaque

neovascularization (14). Camps-Renom P et al. found that

in patients with an anterior circulation ischaemic stroke and

carotid atherosclerosis, plaque neovascularization detected with

CEUS was an independent predictor of stroke recurrence (15).

This implies that neovascularization is associated with the risk

of recurrent stroke, and CEUS can be used as an intermediate
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TABLE 2 AHA classification criteria for atherosclerotic plaque for MRI.

Lesion type Characters

Type I-II Close to normal wall thickness and no calcification

Type III Diffuse intimal thickening or small eccentric plaques without

calcification

Type IV-V There is a lipid/necrotic core surrounded by fibrous tissue that

may be associated with calcification

Type VI Complex plaques may be associated with surface damage,

bleeding, or thrombosis

Type VII Calcified plaque

Type VIII Fibrous plaques without a necrotic core may be accompanied by

microcalcification

measure. However, there are limitations to CEUS use. This

technique is highly operator dependent and prone to high

inter-observer variability (16). Furthermore, CEUS is prone to

enhanced artifacts. The ultrasonic wave propagates through the

contrast agent, resulting in an increase in the signal of the vessel

wall farthest from the probe, leading to an over-interpretation of

the vessel wall enhancement (14).

Computed tomography angiography

Computed tomography angiography (CTA) is a non-

invasive imaging alternative that can assess vessel wall size, high-

risk plaque load,morphological characteristics, and vulnerability

with relative accuracy (17). CTA allows high-risk plaques to

be classified as calcified, non-calcified, or partially calcified.

However, numerous studies have revealed that CTA has limited

accuracy in distinguishing lipids, fibrotic tissue components,

and intraplaque inflammation due to limited imaging resolution

(18). Plaque calcification, fibrous plaque thickness, IPH, and

LRNC can be characterized on multidetector-row CT (MDCT)

based on voxel Hounsfield units. This technique has also

been highly effective in detecting plaque ulcers and plaque

neovascularization, with sensitivity and specificity exceeding

90% (19). Unfortunately, there is considerable overlap between

the CT densities of LRNC, fibrous tissue, and IPH, resulting

in reduced reliability in pixel by pixel assessment of plaque

composition (9).

High-resolution magnetic resonance imaging

High-resolution magnetic resonance imaging (HRMRI) is

currently considered the most competitive imaging method

for examining the carotid artery wall due to an extremely

high soft-tissue resolution (20). With the application of

3.0T high-field magnetic resonance instruments and the

maturation of black-blood technology and multi-contrast

sequence imaging technology, MRI offers further advantages to

other imaging methods, providing greater aid for identifying

plaque internal components and evaluation of plaque stability.

Black-blood technology, the core technology of high-resolution

MR examination of carotid plaque, can cover the duration of

blood flow signal in the carotid artery lumen and the adipose

tissue signal outside the carotid wall (21). This allows for clear

visualization of the size and shape of carotid plaque, making

it easier to distinguish different components in the plaque

according to differences in signal intensity, such as LRNC,

calcification, and IPH. Various plaque analysis software can also

be used to further evaluate the status of the FC, quantitatively

analyze plaque composition, and determine whether there

is an active inflammatory response in the plaque (22, 23).

Serfaty et al. have proposed and published an American Heart

Association (AHA) classification of atherosclerotic plaques

specifically for MRI. This classification (Table 2) highlights the

ability of MR imaging to detect plaques based on composition

and morphology. In addition, magnetization-prepared rapid

acquisition with gradient-echo (MPRAGE) can display plaque

bleeding with high specificity (24, 25). Over the past 5

years, a series of studies has demonstrated that 3.0T high-

resolution MR carotid plaque imaging is highly consistent with

histopathological results (24). MRI is excellent at detecting

and distinguishing between LRNC and IPH. It is also sensitive

in detecting plaque ulceration and calcification. Meta-analyses

showed a significant positive relationship between IPH and

the risk of future ischemic events (HR: 5.69, 95% CI: 2.98–

10.87) (26, 27). Over a median follow-up of 19.6 months, the

presence of IPH was associated with a six-fold higher risk for

cerebrovascular ischemic events (27). HRs for LRNC and TRFC

as predictors of subsequent stroke/transient ischemic attack

were (3.00, 95% CI: 1.51–5.95) and (5.93, 95% CI: 2.65–13.20),

respectively (28). These reports demonstrate that MRI can

identify patients at higher (or lower) risk of stroke. However, a

downside to MRI is that it can take longer than other modalities,

and patients with claustrophobia and metallic devices (such as

pacemakers, defibrillators, and certain aneurysm clips) must be

excluded fromMRI procedure.

Positron emission tomography

Positron emission tomography (PET) is a non-invasive

nuclear imaging technique that uses tracers to assess the

biological processes associated with AS, such as intraplaque

inflammation, microcalcification, and intraplaque angiogenesis.
18F-fluorodeoxyglucose (18F-FDG) is a radioactively labeled

glucose analog that can be absorbed by metabolically active

cells, such as macrophages, and is the most commonly used

tracer in PET imaging (29). Several studies on human and

animal models of AS have shown that 18F-FDG can selectively

aggregate in activated macrophages demonstrating plaque

active inflammation, as macrophage density is a histological

indicator of vascular inflammation (29–31). In addition,
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FDG-PET indicates common cardiovascular risk factors, with

significant correlation observed for factors such as obesity,

gender (male), age (>65 years), smoking, hypertension, diabetes,

and hypercholesterolemia. Local arterial inflammation exists

in patients with these risk factors, indicating the significant

predictive value that FDG-PET imaging can have in disease

progression (32). In a multicenter prospective cohort study

of patients with carotid stenosis and recent stroke/transient

ischemic attack, Kelly et al. showed that plaque inflammation

associated 18F-FDG uptake independently predicted future

recurrent stroke after PET (33). Similarly, in a PET study

using 18F-fluorcholine (18F-FCH), histological analysis of

carotid endarterectomy specimens revealed a strong correlation

between the uptake of the tracer and the macrophage infiltration

(34, 35). Other examples of PET include 68Ga-DOTATATE

PET (36), used in the expression of somatostatin receptor

imaging, as the tool of detecting artery inflammation, or

CD80-targeting PET Tracers (37). These techniques offer non-

invasive detection of inflammation at high spatial resolution.

However, PET imaging has its limitations. With a spatial

resolution of approximately 6mm, the direct quantification

of vulnerable plaques in smaller vessels is limited. Moreover,

the cost and availability of PET are limited due to radiation

exposure (3).

Developing novel PET tracers is an active area of in-

depth research. These novel tracers include 18F-FMISO,
68GA-NOTA-RGD, and 18F-NAF (38, 39). 18F-NAF,

in particular, is a tracer for active microcalcification in

atherosclerotic plaques, which could be useful in identifying

vulnerable carotid plaques. Clinical trials conducted by

Bekaert L et al. and Thureau S et al. demonstrated that
18F-FMISo is associated with angiogenesis and can be

used as a marker of angiogenesis (40, 41). Furthermore,

Kim et al. demonstrated that 68GA-NOTA-RGD is a

reliable tracer in angiogenic imaging (42). Nevertheless,

these radioactive tracers must be validated in more large

clinical studies.

Invasive imaging

Intravascular ultrasound

Intravascular ultrasound (IVUS) is a catheter-based

imaging method delivering acoustic waves into the patient

via a transducer or probe. In gray-scale IVUS, the signal

from these acoustic waves is backscattered and processed

into a two-dimensional video image in real-time, displaying

different components such as fibers, calcification, and lipid

nucleus. With IVUS, it is also possible to determine the

size and distribution of vascular walls and the severity of

atherosclerotic plaque present (3). An even more innovative

approach to IVUS is virtual histology-intravascular ultrasound

(VH-IVUS), an analysis technology allowing for real-

time cross-sectional and longitudinal three-dimensional

visualization of the vessel. The technology benefits from

advanced radiofrequency analysis of reflected echo signals to

generate multiple spectral parameters, using mathematical

operations to convert the signals into color histograms for

analyzing different plaque components (43). Using these

techniques, VH-IVUS can then classify plaque into the four

groups of fibrous plaque, fibrolipid plaque, necrotic core,

and dense calcium, providing a morphological evaluation

of lesion evolution (44, 45). In a prospective multicenter

registry (VICTORY) study, IVUS and IVUS-VH examinations

during carotid artery interventional therapy were determined

both feasible and safe, providing important insights into

the qualitative and quantitative composition of carotid

plaques (46). In a study conducted by Diethrich et al., it

was found that a strong correlation between VH IVUS

plaque characterization and the true histological examination

of the plaque following endarterectomy, particularly in

“vulnerable” plaque types. And the diagnostic accuracy of

VH IVUS to agree with true histology in different carotid

plaque types was 99.4% in TCFA, 96.1% for calcified TCFA,

85.9% in fibroatheroma, 85.5% for fibrocalcific, 83.4% in

pathological intimal thickening, and 72.4% for calcified

fibroatheroma (47).

Despite the increased use of VH-IVUS in clinical studies

to identify vulnerable plaque features, its ability to identify

and quantify TCFA has been challenged. PROSPECT

(NCT00180466) (Providing Regional Observations to

Study Predictors of Coronary Tree) study reported that

697 patients with acute coronary syndrome underwent

conventional angiography, grayscale IVUS, and VH-IVUS,

IVUS was unable to visualize the entire coronary tree. It

was also reported that only 53% of the lesions leading

to adverse cardiovascular events were assessed during

a median follow-up of 3.4 years (48). In addition, the

multifactorial analysis revealed only 18.2% positive predictive

values for detecting susceptibility to major acute coronary

events (MACE) during follow-up, with positive defined

variables including plaque load >70%, minimum cavity area

<4 mm2, or, according to VH-IVUS, classified as TCFA

(lesions with necrotic core ≥10%, no obvious fibrous tissue

covered, and atherosclerotic plaque volume percentage

≥40%) (48).

IVUS-based mode deficiencies may depend on technical

constraints, such as operator-related parameters and spatial

resolution. VH-IVUS has limited axial resolution (100–200µm),

which hinders the identification of FC thickness (TCFA

thickness is less than the spatial resolution of the system), plaque

destruction, macrophage infiltration, and thrombosis in plaques

(3, 49). Furthermore, microcalcification is a good indicator of

rupture susceptibility; however, IVUS only has high sensitivity

and specificity for identifying large dense calcified plaques
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or spot calcifications (49). In summary, IVUS is complex,

innovative, and expensive and currently suffers from a low

penetration rate.

Optical coherence tomography

Optical coherence tomography (OCT) can be considered the

optical analog of IVUS. Instead of the acoustic waves used in

the ultrasonic examination, OCT works via the optical echo of

near-infrared light, which has a spatial resolution approximately

ten times higher than that of IVUS (10–15µm) (50). Due

to the strong light attenuation of blood, the blood vessels

must be cleared by injection of a contrast agent to obtain

an accurate image. Due to its high spatial resolution, OCT

allows quantification of FC thickness (51). However, limited

tissue penetration depth (1–2.5mm) precludes visualization of

large plaques or use in large vessels (49). Other vulnerable

plaque features seen on OCT include neovascularization, IPH,

calcification, and cholesterol crystallization (52). Inflammation

of vulnerable plaques can be observed and quantified by

measuring macrophage infiltration in the FC (53). Feng et al.

found that the ruptured plaque contained more macrophages

than the unruptured plaque (6.95 vs. 5.29%, p = 0.002)

(54). It has also been reported that OCT has high sensitivity

and specificity in detecting lipid-rich plaques, verified by

autopsy specimens (90–94% and 90–92%, respectively) (55).

Another study demonstrated a significant correlation between

FC thickness, lipid core size, and the proportion of lipid

content between groups through OCT measurement (56),

confirming the high efficiency of OCT. Moreover, OCT cap

thickness measurements were associated with the prevalence of

plaque rupture (57). Unlike IVUS, OCT can penetrate plaque

calcification and describe it in detail in terms of thickness, area,

and volume (3). It is well known that extensive calcification

is associated with stable plaques. Conversely, in contrast to

large calcifications, the presence of microcalcifications detected

by IVUS or OCT corresponds to plaque instability. Recent

OCT findings suggest that the co-location of macrophages and

microcalcifications within the same plaque is associated with

a higher degree of plaque vulnerability. In such cases, the

same patients showed less advanced arterial stenosis, indicating

that the co-location of macrophages and microcalcifications

suggests an early stage of the atherosclerotic process, which

may progress to further calcification and inflammation (58, 59).

These observations suggest that OCT can ensure the assessment

of morphological features and atherosclerotic disease activity.

To visualize the microstructure, micro-OCT (µOCT), which

can achieve an axial resolution of ≤1µm, was developed

(60). Using µOCT enables a deeper understanding of the

underlying biological processes of AS by visualizing cellular

components and can thus refine and expand the definition of

vulnerable plaques.

Near-infrared spectroscopy

Near-infrared spectroscopy (NIRS) is another intravascular

imaging mode, which absorbs and scatters NIR light

(wavelengths from 800 to 2,500 nm) at different intensities,

depending on the properties of substances as a function of

the wavelength (61). NIRS technology was first applied in

animal experiments by Cassis and Lodder in 1993, who proved

that this model could visualize lipid deposition in the aorta

of hypercholesterolemia rabbits (62). In 2002, Moreno et al.

first reported NIRS application for detecting LRNC in human

aortic specimens (63). Histologically, the authors found that

the sensitivity and specificity of lipid pools were 90 and 93%,

respectively, and 77 and 93% for thin caps.

Although NIRS can provide a reliable and quantitative

assessment of lipinuclear plaques, several significant limitations

have prevented NIRS from dominating as an independent

method in the wider clinical setting. First, NIRS can only

provide lipid composition characteristics; however, it does

not support a complete morphological assessment of plaques.

Second, visualization and assessment of lumen, external vessel

wall size, and plaque load are not achievable with NIRS. Third,

it lacks image depth resolution to locate the necrotic core within

the plaque and distinguish TCFA from thick hat fibroma.

Multimodal imaging

To overcome the limitations of the above techniques

and enhance their reliability, an intravascular hybrid imaging

method combining two different modes has been proposed

to assess plaque morphology and comprehensively predict

disease progression. Studies have revealed that IVUS-NIRS

combined imaging is particularly beneficial for simultaneously

identifying the distribution of lipid core plaques and studying

the relationship between vascular geometry, shear stress, and

plaque composition (64). For example, IVUS alone can detect

fibrous atherosclerotic plaques, whose components are often

obscured by the presence of calcification. NIRS can detect

lipids, regardless of whether they contain several calcifications

(65). Several other IVUS-NIRS studies have also demonstrated

improvements in IVUS-NIRS fusion efficacy (65). In PACMAN-

AMI randomized clinical trial (NCT03067844), the combination

of IVUS and NIRS was successfully used to evaluate the

effect of statins on plaque burden and composition (66).

The ATHEROREMO-IVUS study (NCT01789411) and other

recent prospective studies suggest that IVUS-NIRS can be used

as a diagnostic tool in clinical practice to detect vulnerable

plaques (especially fatty plaques) and patients at high risk for

subsequent MACE (67–69). IVUS-NIRS is the only hybrid

endovascular imaging technique approved by the US Food and

Drug Administration for clinical use due to its great efficacy

and availability. However, in addition to the loss of IVUS
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signals behind calcified tissues described above, limitations of

IVUS-NIRS include the low resolution of IVUS, limiting the

evaluation of cap thickness, and luminal boundary definitions

in the presence of thrombosis or severe intraplaque bleeding.

Alternatively, it has also been recommended to integrate

the two approaches of IVUS and OCT, combining the deep

penetration of IVUSwith the high resolution of OCT. Therefore,

a dual-mode IVUS-OCT catheter capable of obtaining OCT and

IVUS images was introduced, allowing more precise real-time

measurements of FC thickness, necrotic core, and plaque load

to be obtained in the in vitro specimens and animal models

(46, 70). IVUS-OCT application has reportedly demonstrated

improved imaging characteristics, providing supplementary

information for TCFA detection (71). A prospective cohort

study (NCT00617084 NCT00962416) in humans revealed that

IVUS-OCT combination is feasible in most patients, with

no differences observed in the incidence of MACE between

percutaneous coronary intervention patients with and without

endovascular imaging during the 2-year follow-up period,

confirming the long-term safety of the approach (72).

OCT-NIRS catheters have also been developed to provide

OCT and NIRS data in a pull-back, combining NIRS advantage

of identifying lipid core components with OCT advantage of

determining FC thickness on lipid pools (73). Additionally,

further innovative multimodal imaging techniques, such as

OCT-near-infrared fluorescence (NIRF) (74), IVUS-NIRF (75),

IVUS-intravascular photoacoustic imaging (IVPA) (76), and

IVUS-fluorescence lifetime imagingmicroscopy (FLIM) (77) are

currently undergoing preclinical evaluation.

Future speculation and overall
conclusions

Rapid advances in carotid imaging have provided important

pathophysiological insights. A growing body of evidence

supports using carotid artery imaging to characterize carotid

plaque characteristics, including carotid plaque load, plaque

composition, endoluminal surface condition, and plaque

inflammation and neovascularization. Although none of the

above imaging modalities can provide a complete and

comprehensive assessment of all plaque vulnerability signs

and the mechanisms underlying atherosclerotic progression,

advances in invasive and non-invasive imaging techniques

have demonstrated noteworthy diagnostic and prognostic value.

Extensive imaging and pathology studies are required to observe

plaque composition and demonstrate how current technological

advances can be transformed from attractive images into

imaging strategies that can be widely adopted in clinical settings.

As previously observed, multimodal imaging can optimize

the limitations of a single imaging mode in invasive imaging,

more comprehensively assess plaque morphology, and

predict disease progression. Novel imaging modalities such as

OCT-NIRS, OCT-NIRF, IVUS-NIRF, IVPA, and FLIM are

currently undergoing preclinical evaluation. We, therefore, look

forward to further advances in these studies to more accurately

assess carotid vulnerable plaques. In non-invasive imaging, it

has been proposed that molecular imaging using novel, targeted

nanoparticles may assist in detecting high-risk plaques and even

provide non-invasive treatment strategies (78). However, none

of these imaging methods can detect vulnerable plaques, nor

have they been shown to predict outcomes definitively. Further

trials are needed to provide more information regarding high-

risk plaques and refine future plaque stabilization strategies. As

deep learning technology develops, artificial intelligence (AI)

has also been proposed to automatically identify, classify, and

quantify the composition of carotid plaques (79). Many studies

have applied AI to image acquisition or optimization using

post-processing tools, particularly in MRI field (80). Applying

AI methods in carotid plaque imaging remains in its infancy,

and many innovations in this field are expected in the coming

years (81).
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