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Shortcuts to adiabatic passage for 
fast generation of Greenberger-
Horne-Zeilinger states by 
transitionless quantum driving
Ye-Hong Chen1, Yan Xia1, Jie Song2 & Qing-Qin Chen3

Berry’s approach on “transitionless quantum driving” shows how to set a Hamiltonian which 
drives the dynamics of a system along instantaneous eigenstates of a reference Hamiltonian to 
reproduce the same final result of an adiabatic process in a shorter time. In this paper, motivated 
by transitionless quantum driving, we construct shortcuts to adiabatic passage in a three-atom 
system to create the Greenberger-Horne-Zeilinger states with the help of quantum Zeno dynamics 
and of non-resonant lasers. The influence of various decoherence processes is discussed by numerical 
simulation and the result proves that the scheme is fast and robust against decoherence and 
operational imperfection.

“Shortcuts to adiabatic passage (STAP)”1,2 which are a set of techniques to speed up a slow quantum 
adiabatic process usually through a non-adiabatic route, have attracted a great deal of attention in recent 
years. They can overcome the harmful effects caused by decoherence, noise or losses because of a long 
operation time. Quantum science also greatly desires fast and robust theoretical methods since high rep-
etition rates contribute to the achievement of better signal-to-noise ratios and better accuracy. Therefore, 
in the last several years, STAP have been applied in a wide range of systems in theory and experiment3–23. 
Various reliable, fast and robust methods and schemes have been proposed to implement quantum infor-
mation processing (QIP), such as fast population transfer5–7, fast entanglement generation6,8, fast imple-
mentation of quantum phase gates9.

To construct shortcuts to speed up adiabatic processes effectively, two methods which are in fact 
strongly related, and even potentially equivalent to each other24: are invariant-based inverse engineer-
ing based on Lewis-Riesenfeld invariant10,25 and Berry’s approach named “transitionless quantum driv-
ing” (TQD)26–29. Whereas, each of the two methods also has its own characteristics, for example, using 
Lewis-Riesenfeld invariants to construct shortcuts usually does not have to break down the form of 
the original Hamiltonian H0(t), so that the possibility of designing a Hamiltonian H(t) very difficult or 
impossible to implement in practice is avoided5,12. However, the invariants always have fixed forms which 
lead to that shortcut methods based on Lewis-Riesenfeld invariants might be limited or even hopeless 
in some cases to construct shortcuts to implement QIP rapidly5. For example, in the paper8 proposed by 
Chen et al., they had no choice but to make one of the atoms to be a control qubit or use auxiliary levels 
for the atoms to generate entangled states.

There is still plenty to do to make wide applications of STAP for fast QIP in some experimental sys-
tems, for example, the cavity quantum electronic dynamics (QED) systems. It is worth noting that, TQD 
provides a very effective method to construct the “counter-diabatic driving” (CDD) Hamiltonian H(t) 
which accurately drives the instantaneous eigenstatees of H0(t). Nevertheless, it is almost always found 
that the designed CDD Hamiltonian is hard to be directly implemented in practice2,30–34, especially in 
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multiparticle systems. Examples of ways to overcome this problem may be found in refs 34–38. Also, in 
a large detuning limit, Lu et al.6 have found a simplified effective Hamiltonian equivalent to H(t). This 
idea inspires us that finding an alternative physically feasible (APF) Hamiltonian which is effectively 
equivalent to H(t). However, the approximation in ref. 6 is too complex to be generalized to N-qubit 
entanglement cases. It is known to all that, entanglement of more qubits shows more nonclassical effects 
and is more useful for quantum applications. For example, one of the two kinds of three-qubit entangled 
states named the Greenberger-Horne-Zeilinger (GHZ) states provide a possibility for testing quantum 
mechanics against local hidden theory without using Bell’s inequality39,40. Therefore, great interest has 
arisen regarding the significant role of the GHZ states in the foundations of quantum mechanics meas-
urement theory and quantum communication. In view of that we wonder if it is possible to use TQD to 
construct shortcuts for one-step generation of multi-qubit entanglement, i.e., the three-atom GHZ states, 
without abandoning any of the atoms or using auxiliary levels.

In this scenario, motivated by refs 5–8, we use TQD to construct STAP to generate the three-atom 
GHZ states effectively and rapidly in one step. It would be a promising idea of applying STAP to realize 
multi-qubit entanglement generation in cavity QED systems. Different from ref. 6, we use the quantum 
Zeno dynamics41,42 to simplify the system first and then under the large detuning conditon, we obtain 
the effective Hamiltonian which is equivalent to the corresponding CDD Hamiltonian to speed up the 
evolution process. Therefore, the adiabatic process for a multi-qubit system is speeded up, and the STAP 
is easy to be achieved in experiment. Comparing with ref. 8, we use TQD in this paper so that the laser 
pulses are not strongly limited and we do not need to use auxiliary levels or multi-step operations to 
generate the three-atom GHZ states. Moreover, we find that any quantum system whose Hamiltonian 
is possible to be simplified into the form in eq. (15), the corresponding APF Hamiltonian can be built 
and the STAP can be constructed with the same approach presented in this paper. The above advantages 
mean the present scheme is much more useful in dealing with the fast and noise-resistant generation of 
multi-qubit entanglement or even other QIP.

Basic theories
Transitionless quantum driving. Consider an arbitrary time-dependent Hamiltonian H0(t), with 
instantaneous eigenstates and energies given by

ϕ ζ ϕ( ) ( ) = ( ) ( ) . ( )H t t t t 1n n n0

When this system satisfies the adiabatic condition, H0(t) will drive the system into

ψ ϕ( ) = ( ) , ( )ϑ ( )t e t 2i t
n

n

where

∫ ∫ϑ ζ ϕ ϕ( ) = − ′ ( ′) + ′ ( ′) ∂ ( ′) . ( )′ħ
t dt t i dt t t1

3n

t

n

t

n t n0 0

To find the Hamiltonian H(t) that drives the eigenstates ϕ| ( )〉t{ }n , we define a unitary operator

∑ ϕ ϕ= ( ) ( ) ,
( )

ϑ ( )U e t 0
4n

i t
n n

n

which obeys

∂ = ( ) ⇒ ( ) = (∂ ) . ( )ħ ħ †i U H t U H t i U U 5t t

Then the Hamiltonian H(t) is obtained

∑ ϕ ϕ ϕ ϕ ϕ ϕ( ) = ( ) + ( ), ( ) = (|∂ 〉〈 | − 〈 ∂ 〉| 〉〈 |).
( )

ħH t H t H t H t i
6n

t n n n t n n n0 1 1

The simplest choice is ζ = 0n , for which the bare states ϕ ( )tn , with no phase factors, are driven by26

∑ ϕ ϕ( ) = ∂ ,
( )

ħH t i
7n

t n n

reflecting

∑ϕ ϕ ϕ ϕ∂ = ∂ .
( )

ħi i
8t n

m
t m m n

Quantum Zeno dynamics. The quantum Zeno dynamics was named by Facchi and Pascazio in 
200242. It is derived from the quantum Zeno effect which describes a phenomenon that the system can 
actually evolve away from its initial state while it still remains in the so-called Zeno subspace determined 



www.nature.com/scientificreports/

3Scientific RepoRts | 5:15616 | DOi: 10.1038/srep15616

by the measurement when frequently projected onto a multidimensional subspace. According to von 
Neumann’s projection postulate, the quantum Zeno dynamics can be achieved via continuous coupling 
between the system and an external system instead of discontinuous measurements42. In general, we 
assume that a dynamical evolution process is governed by the Hamiltonian

= + , ( )H H KH 9Z obs meas

where Hobs is the Hamiltonian of the quantum system investigated, K is a coupling constant, and Hmeas 
is viewed as an additional interaction Hamiltonian performing the measurement. In the “infinitely strong 
measurement” limit → ∞K 41,42, The Hamiltonian for the whole system is nearly equivalent to

∑ ε= ( + ),
( )

H P H P P
10Zeno

n
n obs n n n

whit Pn being the nth orthogonal projection onto the invariant Zeno subspace ∀Pn and the eigenspace of 
KHmeas belonging to the eigenvalue εn, i.e., ε=K H P Pmeas n n n.

Model
We consider three Λ -type atoms are trapped in a bimodal-mode cavity as shown in Fig. 1. Atoms 1, 2, 
and 3 have three sets of ground states | 〉 , | 〉f g{ }l1 1

, | 〉 , | 〉g g{ }l r2 2
, and | 〉 , | 〉f g{ }r3 3

, respectively, and each 
of them has an excited state e . The atomic transition ↔f e  is driven resonantly through classical 
laser field with time-dependent Rabi frequency Ω (t), transition | 〉 ↔ | 〉g el  is coupled resonantly to the 
left-circularly polarized mode of the cavity with coupling λ l, and transition | 〉 ↔ | 〉g er  is coupled reso-
nantly to the right-circularly polarized mode of the cavity with coupling λ r. Under the rotating-wave 
approximation (RWA), the interaction Hamiltonian for this system reads ( = )ħ 1 :

∑ ∑

= + ,

= Ω ( )| 〉 〈 | + Ω ( )| 〉 〈 | + . .,

= λ | 〉 〈 | + λ | 〉 〈 | + . .,
( )

β

= , = ,

H H H

H t e f e t e f H c
H a e g a e g H c

11

I AL AC

AL
i

AC
k

l l m l
j

r r n r

1 1 3 3

1 2 2 3

where HAL denotes the coupling between the atoms and the laser pulses, and HAC denotes the coupling 
between the atoms and the cavities, al and ar are the left- and right-circularly annihilation operators of 
the cavity modes, and β means the two Rabi frequencies are β-dephased from each other. If we assume 
the initial state is | , , 〉 | , 〉

, ,
f g g 0 0l r c1 2 3

, the system will evolve within a single-excitation subspace with basis 
states

Figure 1. The cavity-atom combined system and the atomic level configuration for the original 
Hamiltonian. 



www.nature.com/scientificreports/

4Scientific RepoRts | 5:15616 | DOi: 10.1038/srep15616

ψ

ψ

ψ

ψ

ψ

ψ

ψ

| 〉 = | , , 〉 | , 〉 ,

| 〉 = | , , 〉 | , 〉 ,

| 〉 = | , , 〉 | , 〉 ,

| 〉 = | , , 〉 | , 〉 ,

| 〉 = | , , 〉 | , 〉 ,

| 〉 = | , , 〉 | , 〉 ,

| 〉 = | , , 〉 | , 〉 . ( )

, ,

, ,

, ,

, ,

, ,

, ,

, ,

f g g

e g g

g g g

g e g

g g g

g g e

g g f

0 0

0 0

1 0

0 0

0 1

0 0

0 0 12

l r c

l r c

l l r c

l r c

l r r c

l r c

l r c

1 1 2 3

2 1 2 3

3 1 2 3

4 1 2 3

5 1 2 3

6 1 2 3

7 1 2 3

In light of quantum Zeno dynamics, we rewrite the Hamiltonian HI in eq. (11) as Hre through the 
relation ε= ∑ +H P H P Pre n n AL n n n ( →H HAL obs and → )H KHAC meas , where

∑ ψ ψ φ φ φ φ φ= | 〉〈 |, | 〉 ∈ | 〉, | 〉, | 〉, | 〉, | 〉, | 〉, | 〉 .
( )

P m m m { }
13n

m
1 7 0 1 2 3 4

Here φ0 , φ1 , φ2 , φ3 , and φ4  are the eigenvectors of HAC corresponding eigenvalues ε = 00 , 
ε = λ1 , ε = −λ2 , ε = λ33 , and ε = − λ34 , respectively. And we obtain (we set λ = λ = λ)l r

∑ε φ φ

φ φ φ ψ ψ

φ φ ψ ψ

= | 〉〈 | + ,

= | 〉 + (| 〉 + | 〉) (Ω 〈 | + Ω 〈 |)

+ (| 〉 + | 〉)(−Ω 〈 | + Ω 〈 |) + . .. ( )

β

β

=

H H

H e

e H c

1
3

[ 1
2

]

1
2 14

re
k

k k k AL
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AL
re i

i

0

4

0 3 4 1 1 3 7

1 2 1 1 3 7

Through performing the unitary transformation = ε φ φ− ∑U eZ
i tk k k  and neglecting the terms with 

high oscillating frequency by setting the condition Ω / , Ω / λ3 31 3  (the Zeno condition), we 
obtain an effective Hamiltonian

φ ψ ψ= | 〉(Ω ( )〈 | + Ω ( )〈 |) + . .,
( )

βH t e t H c1
3 15eff

i
0 1 1 3 7

which can be seen as a simple three-level system with an excited state φ0  and two ground states ψ1  
and ψ7 . For this effective Hamiltonian, its eigenstates are easily obtained

θ

θ

θ

θ

( ) =







( )

− ( )






,

( ) =







( )
±

( )






,

( )

β

β
±

n t
t

e t

n t
t

e t
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0
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1
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sin
1

cos 16

i

i

0

corresponding eigenvalues η = 00 , η = ±Ω/± 3 , respectively, where θ = Ω /Ωtan 1 3 and 
Ω = (Ω + Ω )1

2
3
2 . When the adiabatic condition η∂ ± ±n nt0  is fulfilled, the initial state 

ψ = ( )n 01 0  will follow ( )n t0  closely, and when θ π( ) = /t 4 and β π= /l 2 ( = , ± , ± , )l 0 1 2 , we 
obtain the GHZ states: ψ ψ ψ| ( )〉 = | 〉 = (| 〉 − | 〉)/βt GHZ e 2f

i
1 7 . When β =  π, it shows the most com-

mon form: ψ ψ ψ| ( )〉 = (| 〉 + | 〉)/t 2f 1 7 . However, this process will take quite a long time to obtain the 
target state, which is undesirable.

Using TQD to construct shortcuts to adiabatic passage
The instantaneous eigenstates nk  ( = ,±)k 0  for the effective Hamiltonian ( )H teff  above do not satisfy 
the Schrödinger equation ∂ = ( )i n H t nt k eff k . According to Berry’s general transitionless tracking 
algorithm26, from ( )H teff , one can reverse engineer H(t) which is related to the original Hamiltonian 
( )H teff  but drives the eigenstates exactly. From refs 6,11,12, we learn the simplest Hamiltonian H(t) is 

derived in the form
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∑( ) = ∂ ( ) ( ) .
( )= ,±

H t i n t n t
17k

t k k
0

Substituting eq. (16) in eq. (17), we obtain

θ ψ ψ( ) = + . ., ( )β
H t i e H c 18i

7 1

where θ = Ω ( )Ω ( ) − Ω ( )Ω ( ) /Ω  t t t t[ ]1 3 3 1
2. Similar to ref. 6, for this three-atom system in a real exper-

iment, the Hamiltonian H(t) is hard or even impossible to be implemented in practice. We should find 
an APF Hamiltonian whose effect is equivalent to H(t). The model used for the APF Hamiltonian is 
similar to that in Fig. 1 with three atoms trapped in a cavity, and the atomic level configuration is shown 
in Fig.  2: the transition ↔f e  is non-resonantly driven by classical field with time-dependent Rabi 
frequency Ω̃ and detuning Δ , the transition | 〉 (| 〉) ↔ | 〉g g el r  is coupled non-resonantly to the cavity 
with coupling λ l (λ r) and detuning Δ . The rotating-frame Hamiltonian reads

∑ ∑

∑

′ = ′ + ′ + ,

′ = Ω ( )| 〉 〈 | + Ω ( )| 〉 〈 | + . .,

′ = λ | 〉 〈 | + λ | 〉 〈 | + . .,

= ∆| 〉 〈 |,
( )

β ′

= , = ,

=

˜ ˜
H H H H

H t e f e t e f H c

H a e g a e g H c

H e e
19

I AL AC e
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m

l l m l
n
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e
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1 1 3 3

1 2 2 3

1

3

where β′ is the phase difference between Ω̃1 and Ω̃3. Then similar to the approximation for the Hamiltonian 
from eq. (11) to eq. (15), we also obtain an effective Hamiltonian for the present non-resonant 
system43

φ ψ ψ φ φ′ = | 〉(Ω ( )〈 | + Ω ( )〈 |) + . . + ∆| 〉〈 |.
( )

β ′˜ ˜H t e t H c[ 1
3

]
20eff

i
0 1 1 3 7 0 0

By adiabatically eliminating the state φ0  under the condition ∆ Ω / , Ω /

˜ ˜3 31 3 , we obtain the 
final effective Hamiltonian

ψ ψ ψ ψ

ψ ψ ψ ψ

= −
Ω
∆

−
Ω
∆

−
Ω Ω
∆

−
Ω Ω
∆

. ( )

β β′ − ′

˜ ˜

˜ ˜ ˜ ˜

H

e e
3 3

3 3 21

fe

i i

1
2

1 1
3
2

7 7

1 3
7 1

1 3
1 7

Choosing Ω = Ω = Ω( )˜ ˜ ˜ t1 3 , the first two terms of eq. (21) can be removed, and the Hamiltonian 
becomes

ψ ψ ψ ψ= Ω ( ) + Ω ( ) , ( )
β β′ − ′H̃ e t e t 22eff

i
x

i
x7 1 1 7

where Ω ( ) = −Ω /( ∆)˜t 3x
2 . This effective Hamiltonian is equivalent to the CDD Hamiltonian H(t) in 

eq. (18) when

Figure 2. The atomic level configuration for the APF Hamiltonian. 



www.nature.com/scientificreports/

6Scientific RepoRts | 5:15616 | DOi: 10.1038/srep15616

θΩ = . ( )β β′
e ie 23i

x
i

Hence, the Rabi frequencies for the APF Hamiltonian are designed

θ

β β
π

π

Ω = Ω = − ∆ ,

′ − = + , ( )

˜ ˜

l

3

2
2 24

1 3

where = , ± , ± ,l 0 1 2 .

Fast and noise-resistant generation of the three-atom GHZ states with STAP
We will show that the creation of a three-atom GHZ state governed by ′HI  is much faster than that gov-
erned by HI. To satisfy the boundary condition of the fractional stimulated Raman adiabatic passage 
(STIRAP),

α
Ω ( )
Ω ( )

= ,
Ω ( )
Ω ( )

= ,
( )→−∞ →+∞

t
t

t
t

lim 0 lim tan
25t t

1

3

3

1

the Rabi frequencies Ω ( )t1  and Ω ( )t3  in the original Hamiltonian HI(t) are chosen as

( )
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,
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− + − / 
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t t t
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t t t
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cos exp
2

26

f

c

f

c

f

c

1 0
0

2

2

3 0
0

2

2

0
0

2

2

where Ω 0 is the pulse amplitude, tf is the operation time, and t0, tc are some related parameters. In order 
to create a three-atom GHZ state, the finial state ψ ( )t f  should be ψ ψ ψ( ) = ( − )βt ef

i1
2 1 7  

according to eq. (16). Therefore, we have tanα =  1. By choosing parameters for the laser pulses suitably 
to fulfill the boundary condition in eq. (25), the time-dependent Ω ( )t1  and Ω ( )t3  are gotten as shown in 
Fig. 3 with parameters = .t t0 14 f0  and = .t t0 19c f . For simplicity, we set β =  0 in the following discus-
sion. Fig. 4 shows the relationship between the fidelity of the generated three-atom GHZ state (governed 
by the APF Hamiltonian ′ ( ))H tI  and two parameters Δ  and tf when Ω = . λ0 20  satisfying the Zeno 
condition, where the fidelity for the three-atom GHZ state is given through ρ= |〈 | ( )| 〉 |F GHZ t GHZf  
(ρ ( )t f  is the density operator of the whole system when =t t f ). We find that there is a wide range of 
selectable values for parameters Δ  and tf to get a high fidelity of the three-atom GHZ state. The fidelity 
increases with the increasing of tf while decreases with the increasing of Δ . It is not hard to understand, 
putting eq. (26) into eq. (24) and setting = ′ ×t t t f , we can find

Ω′ ≈
∆
,

( )t
6

27f
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Figure 3. Dependence on t/tf of Ω1/Ω0 and Ω3/Ω0. 
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where Ω′0 is the amplitude of Ω( ′)˜ t . That means, in order to satisfy the Zeno condition Ω λ

˜ 3  and 
the large detuning condition Ω ∆

˜ 3 , the ratio Δ /tf should be small enough. Moreover, this relation-
ship also explains the phenomenon in Fig. 4 that to achieve a high fidelity with a larger detuning Δ , a 
longer interaction time tf is required. Then to prove the operation time required for the creation of the 
three-atom GHZ state governed by ′HI  is much shorter than that governed by HI, we contrast the per-
formances of population transfer from the initial state ψ1  governed by the APF Hamiltonian ′HI  and 
that governed by the original Hamiltonian HI in Fig. 5 with = /λ, Ω = . λ, ∆ = . λt{ 35 0 2 2 2 }f 0 . The 
time-dependent population for any state ψ  is given by the relationship ψ ρ ψ= ( )P t , where ρ(t) is 
the corresponding time-dependent density operator. The comparison of Fig. 5(a,b) shows that with this 
set of parameters, the APF Hamiltonian ′ ( )H tI  can govern the evolution to achieve a near-perfect 
three-atom GHZ state from state ψ1  in short interaction time while the original Hamiltonian ( )H tI  can 
not. In fact, through solving the adiabatic condition η∂ ± ±n nt0 , we obtain

θ Ω
⇒

( )
Ω,

( )

�
� �

f t
t2 3 28f

where f(t) is a wave function whose amplitude is irrelevant to tf. The result shows when Ω 0 is a constant, 
the longer the operation time tf is, the better the adiabatic condition is satisfied. This is proved in Fig. 6. 
Figure 6 reveals the relationship between G(tf) and λ tf, where ( ) = θ

Ω
= .



G tf
t t

3
2

0 5 f

. From this figure, we 

discover that even with Ω = . λ0 50  which does not meet the Zeno condition, the operation time required 
for the three-atom GHZ state generation in an adiabatic system is longer than 100/λ  (when = /λt 100f , 
( ) ≈ .G t 0 08f ). We also plot the fidelities of the evolved states governed by ′ ( )H tI  and ( )H tI  (in different 

cases) in Fig. 7, with respect to the target three-atom GHZ state. Shown in the figure, even with a large 
laser intensity, say, Ω = . λ0 50 , the interaction time required for creation of the three-atom GHZ state via 
adiabatic passage is still much longer than that via STAP. Generally speaking, the adiabatic condition is 
satisfied much better with a relatively larger laser intensity, while, the system would be very sensitive to 
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the decoherence caused by the cavity decay with a relatively large laser intensity. This will be proved in 
the following.

Once the dissipation is considered, the evolution of the system can be modeled by a master equation 
in Lindblad form,

∑ρ ρ ρ ρ ρ= , + − ( + ) ,
( )



† † †i H L L L L L L[ ] [ 1
2

]
29k

k k k k k k

where Lk’s are the Lindblad operators. For both the resonant and non-resonant systems, there are eight 
Lindblad operators governing the dissipation:

κ κ

γ γ

γ γ

γ γ

= , = ,

= | 〉 〈 |, = | 〉 〈 |,

= | 〉 〈 |, = | 〉 〈 |,

= | 〉 〈 |, = | 〉 〈 |, ( )

κ κ

γ γ

γ γ

γ γ

L a L a
L f e L g e

L g e L g e

L f e L g e 30

l l r r

l

l r

r

1 2

3 1 1 4 2 1

5 3 2 6 4 2

7 5 3 8 6 3

where κl and κr are the decays of the cavity modes, and γn ( = , , , )n 1 2 6  are the spontaneous emissions 
of atoms. For simplicity, we assume κ κ κ= =l r , and γ γ= /2n . Figure  8(a) shows the fidelity of the 
three-atom GHZ state governed by the APF Hamiltonian ′HI  versus these two noise resources with 
Ω = . λ0 20 , ∆ = . λ2 2 , and = /λt 35f . It turns out that the present shortcut scheme with this set of 
parameters is much more sensitive to the cavity decays than the spontaneous emissions. Ref. 5 contrib-
utes to understanding this phenomenon, in fact, with this set of parameters, the Zeno condition for the 
non-resonant system is not ideally fulfilled because shortening the time implies an energy cost12,24 (in 
this system, the energy cost denotes requiring relative-large laser intensities). Known from ref. 5, destroy-
ing the Zeno condition slightly is also helpful to achieve the target state in a much shorter interaction 
time. However, if the Zeno condition has not been satisfied very well, the intermediate states including 
the cavity-excited states would be populated during the evolution, which causes that the system is sensi-
tive to the cavity decays. However, we can find in Fig. 8(b) which shows fidelity of the three-atom GHZ 
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state governed by original Hamiltonian HI with Ω = . λ0 50  and = /λt 100f  in the presence of decoher-
ence, with large laser intensities, the adiabatic scheme is also sensitive to the cavity decays as we men-
tioned above. The comparison of these two figures drops a result that the present shortcut scheme is 
almost the same with the adiabatic one in restraining the decoherence.

The robustness against operational imperfection is also a main factor for the feasibility of the scheme 
because most of the parameters are hard to accurately achieve in experiment. Therefore, we define 
δ = ′ −x x x as the deviation of any parameter x, where ′x  is the actual value and x is the ideal value. 
Then in Fig.  9(a) we plot the fidelity of the GHZ state versus the variations in total operation time T 
( = . )T t1 2 f  and laser amplitude Ω′0, and in Fig  9(b) we plot the fidelity of the GHZ state versus the 
variations in coupling λ  and detuning Δ . As shown in the figures, the scheme is robust against all of 
these variations. Any deviation δ / = %x x 10  ( ∈ , Ω′ , λ, ∆ )x T{ }0  causes a reduction less than 3% in the 
fidelity.

In a real experiment, the cesium atoms which have been cooled and trapped in a small optical cavity 
in the strong-coupling regime44,45 can be used in this scheme. We take the hyperfine states of /P62

1 2 as 
the excited sates and the hyperfine states of /S62

1 2 as the ground sates. With a set of cavity QED param-
eters πλ = ×750 2  MHz, κ π= . ×3 5 2  MHz, and γ π= . ×2 62 2  MHz in strong-coupling regime46–48, 
the fidelity of the three-atom GHZ state in this paper is 98.24%. Thus, the scheme is robust and might 
be promising within the limits of current technology.
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Conclusion
We have presented a promising method to construct shortcuts to adiabatic passage (STAP) for a 
three-atom system to generate GHZ states in the cavity QED system. Through using quantum Zeno 
dynamics and “transitionless quantum driving”, we are free to simplify a complicated Hamiltonian and 
choose the laser pulses to construct shortcuts in multi-qubit system to implement the fast quantum 
information processing. Numerical simulation demonstrates that the scheme is fast and robust against 
the decoherence caused by both atomic spontaneous emission, photon leakage and operational imper-
fection. The deficiency is that the present scheme might be sensitive to the cavity decays because of some 
inevitable factors. Compared with the previous shortcut methods, this method obviously works better at 
entanglement generation in multi-qubit systems. In fact, any quantum system whose Hamiltonian is 
possible to be simplified into the form in eq. (15), the shortcut can be constructed with the same method 
presented in this paper. For example, similar to refs 49,50 for the generation of the multiparticle GHZ 
states in an atom-fiber-cavity combined system, we can shorten the operation time using the same 
method in the following steps: (1) We consider the Hamiltonian HAL (the Hamiltonian describing the 
interaction between atoms and lasers) as Hobs in eq. (9), and the rest of the total Hamiltonian (the inter-
action between atoms and cavities, and the interaction between cavities and fibers) as KHmeas in eq. (9). 
Then, choosing the “dark Zeno subspace”, that means ε = 0n  in eq. (10), we can obtain an effective 
Hamiltonian named the Zeno Hamiltonian = ∑H P H PZeno n n obs n. (2) For this effective Hamiltonian, by 
using TQD, we construct the CDD Hamiltonian H(t) that speeds up the adiabatic process. (3) Similar to 
the GHZ state generation, we find out the corresponding non-resonant system (the APF Hamiltonian) 
whose effective Hamiltonian ( )H̃ teff  has the form in eq. (22). (4) Making ( ) = ( )H̃ t H teff , the parameters 
for the APF Hamiltonian are determined and the shortcut is constructed. Then the APF Hamiltonian 
would govern the system to achieve the same final result as the adiabatic process governed by the original 
Hamiltonian with a much shorter operation time. Similar idea can be generalized to generate other 
multi-qubit quantum entangled states, for example, Bell states, W states, singlet states, and so on. This 
might lead to a useful step toward realizing fast and noise-resistant quantum information processing for 
multi-qubit systems in current technology.
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