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Abstract. Pancreatic cancer (PC) is associated with high 
mortality rates and poor prognoses. Pancreatic adenocarcinoma 
is the most common type of PC, and almost all cases of pancreatic 
adenocarcinoma are pancreatic ductal adenocarcinoma (PDAC). 
The aim of the current study was to reveal the genes involved 
in the prognosis of PDAC. Five datasets, including GSE71729 
(145 PDAC samples and 46 normal samples), GSE15471 
(39 PDAC samples and 39 normal samples), GSE1542 (24 PDAC 
samples and 25 normal samples), GSE28735 (45 PDAC samples 
and 45 normal samples) and GSE62452 (69 PDAC samples and 
69 normal samples) were downloaded from the Gene Expression 
Omnibus database. Using the MetaDE.ES method in the MetaDE 
package, differentially expressed genes (DEGs) were identified 
from the five datasets. Furthermore, prognosis‑associated genes 
were screened using the Cox regression analysis in the survival 
package, and co-expression network and module analyses were 
performed separately using Cytoscape software and GraphWeb 
tool, respectively. After a prognostic prediction system was 
constructed and validated, enrichment analysis of the signature 
genes was performed using the clusterProfiler package. A 
total of 480 DEGs were identified from the five datasets and 
259 prognosis-associated genes were screened from GSE28735 
and GSE62452. In addition, the prognostic prediction system 
composed of 67 signature genes [including basic transcription 
factor 3 (BTF3), serine/threonine kinase 11 (STK11), throm-
bospondin 1 (THBS1), ribosomal protein L38 (RPL38) and 
secretin receptor (SCTR)] was constructed and validated. The 
signature genes involved in the co-expression network were 
enriched in five pathways. In particular, STK11 was involved 

in three signaling pathways, and THBS1 was enriched in the 
phosphoinositide 3-kinase-Akt signaling pathway. Thus, BTF3, 
STK11, THBS1, RPL38 and SCTR may influence the prognosis 
of PDAC.

Introduction

Pancreatic cancer (PC), which arises when pancreatic cells 
proliferate abnormally, is characterized by yellow skin, weight 
loss, back or abdominal pain, dark urine, light-colored stools, 
and appetite loss (1). The early symptoms of PC are not 
obvious, thus newly diagnosed PC cases have usually reached 
an advanced stage (2). PC is primarily induced by tobacco 
smoking, diabetes, obesity and genetic conditions (3,4). 
Globally, PC is the seventh leading cause of cancer-associated 
mortality, resulting in 330,000 fatalities in 2012 (5). The 
prognosis of PC is usually very poor, with 5% of people 
surviving for five years and 25% surviving just one year 
after diagnosis (5,6). Pancreatic adenocarcinoma is the most 
common type of PC and accounts for 85% of all PC cases (3). 
Almost all cases of pancreatic adenocarcinoma originate from 
the ducts of the pancreas, and are termed pancreatic ductal 
adenocarcinoma (PDAC) (7). Therefore, revealing the under-
lying mechanisms of PDAC is significant for developing novel 
treatments.

Yamazaki et al (8) demonstrated that SMAD family 
member 3 contributes to the malignant potential of PDAC by 
inducing epithelial-mesenchymal transition (EMT) in tumor 
cells and thus presents as a promising biomarker of poor prog-
nosis (8). Masugi et al (9) identified that integrin β4 functions 
in regulating EMT and cancer invasion, and its overexpres-
sion has clinicopathological and prognostic significance in 
PDAC (9). Sex determining region Y-box 9 (SOX9) and phos-
phorylated-v-Akt murine thymoma viral oncogene homolog 1 
(p‑AKT) are reported to be associated with proliferation and 
distant metastasis, indicating that SOX9 and p‑AKT may 
potentially predict the prognosis of PDAC (10). The downregu-
lation of anterior gradient 2 is induced by EMT and serves as a 
novel prognostic marker in patients with PDAC (11). In PDAC 
patients who undergo pancreaticoduodenectomy, high expres-
sion levels of transforming growth factor β-1 may inhibit the 
poorer survival that is associated with high proliferation (12). 
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However, the genes involved in the prognosis of PDAC have 
not been fully reported.

In the current study, public databases were searched for 
microarray datasets associated with PDAC in homo sapiens. 
Subsequently, comprehensive bioinformatics analyses 
[including identification of differentially expressed genes 
(DEGs) and prognosis-associated genes, co-expression 
network and module analyses, construction and validation of 
prognostic prediction system, and enrichment analysis] were 
performed successively to investigate the key prognosis-asso-
ciated genes in PDAC. The current study may contribute to 
developing targeted therapeutic strategies for improving the 
prognosis of PDAC.

Data and methods

Expression profile data. Using ‘Pancreatic ductal adeno-
carcinoma’ and ‘homo sapiens’ as keywords, the gene 
expression profiles in the Gene Expression Omnibus (GEO; 
http://www.ncbi.nlm.nih.gov/geo/) database were searched. 
The datasets that met the following criteria were included: 
i) The dataset was associated with PDAC; ii) the dataset 
included PDAC tissue samples and normal control samples. 
Finally, a total of five datasets were included in the current 
study, including GSE71729 (based on the GPL20769 plat-
form, including 145 PDAC samples and 46 normal samples), 
GSE15471 (based on the GPL570 platform, including 
39 PDAC samples and 39 normal samples), GSE1542 (based 
on the GPL96 platform, including 24 PDAC samples and 
25 normal samples), GSE28735 (based on the GPL9644 
platform, including 45 PDAC samples and 45 normal samples) 
and GSE62452 (based on the GPL9644 platform, including 
69 PDAC samples and 69 normal samples).

Data preprocessing. Using the Affy package (http://www.
bioconductor.org/packages/release/bioc/html/affy.html) (13) 
in R language, background correction and normalization of 
raw data of GSE15471 and GSE1542 were conducted. For 
the datasets of GSE71729, GSE28735 and GSE62452, probes 
were corresponded to gene symbols based upon platform 
annotation information. After the unloaded probes were 
removed, the average value of the probes mapped to the 
same gene was obtained as the initial gene expression value. 
Finally, the data were normalized by the linear models for 
microarray data using the limma package (http://www.biocon-
ductor.org/packages/release/bioc/html/limma.html) (14) in R 
language.

Meta‑analysis to screen characteristic factors. Using the 
quality control standards [including external quality control, 
internal quality control, consistency quality control (CQCg 
and CQCp) and accuracy quality control (AQCg and AQCp)] 
in the MetaQC package (15), quality control was performed 
for the datasets. To identify reliable datasets, the datasets were 
further assessed and screened using the two-dimensional 
diagram of principal component analysis (PCA) and standard-
ized mean rank scores. Based on the MetaDE.ES method in 
the MetaDE package (15), homogeneous unbiased genes were 
identified using a heterogeneity test [thresholds: Tau2=0 and 
Qpval (statistical parameter representing heterogeneity of the 

dataset) >0.05] and the DEGs were screened [threshold: False 
discovery rate (FDR) <0.05].

Identification of prognosis‑associated genes. Among the 
included datasets, GSE28735 and GSE62452 were based 
upon the GPL9644 platform and contained sample survival 
information. Thus, the data of the two datasets were merged 
and prognosis‑associated genes were identified using the Cox 
regression analysis in survival package, with P<0.05 set as the 
significant threshold (https://github.com/therneau/survival). 
After significant P‑values were obtained using the log‑rank 
test, Kaplan-Meier (KM) survival analysis was performed on 
the top six genes with higher-logRank (P-values) (16).

Co‑expression network and module analyses. The expression 
values of the prognosis-associated genes were extracted from 
the datasets and the COR function (17) in R language was used to 
calculate their correlation coefficients. The co‑expression pairs 
with correlation coefficient |r|≥0.6 and P<0.05 were selected for 
constructing a co-expression network using Cytoscape software 
(version 3.5.0; http://www.cytoscape.org/) (18). Furthermore, 
module analysis was performed for the co-expression network 
using the GraphWeb tool (http://biit.cs.ut.ee/graphweb/) (19).

Construction of a prediction and discrimination system for 
prognosis. The PDAC samples in GSE28735 and GSE62452 
had survival information, and thus were taken as the training 
dataset for the prediction and discrimination system of prog-
nosis. Firstly, the samples were divided into alive and deceased 
groups according to their survival states. Secondly, the samples 
were further divided into groups with bad prognosis (deceased 
and alive survival time <15 months) and good prognosis 
(alive and alive survival time ≥15 months). After the genes in 
the co-expression network were sorted in descending order 
according to their-logRank (P-values), Baye's discriminant 
analysis was performed using the discriminant.bayes function 
in the e1071 package (20). Genes were added one by one, and 
the genes affecting discrimination accuracy were removed 
until the highest discrimination accuracy was obtained. Under 
the highest discrimination accuracy, the discrimination coef-
ficient of each sample, gene combination, and discrimination 
system were defined as the prognostic score, signature gene 
and prognostic prediction system, respectively.

Validation of the prognostic prediction system. To detect 
the effect of the prognostic prediction system, KM survival 
analysis (16) was performed for GSE28735 and GSE62452 to 
verify the correlation between the sample types recognized 
by the prognostic prediction system, and the actual survival 
time and states. In addition, the microarray data under 
E-MEXP-2780 (downloaded in January 5, 2017; including 
30 PDAC samples containing survival information) were 
downloaded from the European Bioinformatics Institute 
(http://www.ebi.ac.uk/) database and used as an independent 
validation dataset for the prognostic prediction system. In 
addition, the PDAC dataset (downloaded in January 5, 2017; 
based on Illumina HiSeq 2000 RNA Sequencing platform; 
including 183 PDAC samples, among which 163 samples had 
survival information) in The Cancer Genome Atlas (TCGA; 
https://cancergenome.nih.gov/) database was also downloaded. 
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Subsequently, the expression values of the signature genes 
were extracted from E-MEXP-2780 and the PDAC dataset was 
downloaded from the TCGA database. After prognostic scores 
were obtained based on the prognostic prediction system, the 
samples in E-MEXP-2780 and the PDAC dataset downloaded 
from the TCGA database were divided into groups with bad 
prognosis and good prognosis. Finally, KM survival anal-
ysis (16) was performed to analyze the correlation between the 
sample types recognized by the prognostic prediction system, 
and the actual survival time and states.

Construction of the co‑expression network for the signature 
genes and identification of the key genes. The co-expression 
pairs of the signature genes were identified from the above 
co-expression network, and the co-expression networks 
for the signature genes were visualized. Gene Ontology 
(GO) (21) functional analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway (22) enrichment 
analysis were performed on genes in the co-expression 
network using the clusterProfiler package (http://bioconductor.
org/packages/release/bioc/html/clusterProfiler.html) (23) in R. 
To further identify the key genes associated with PDAC, the 
enriched terms were integrated into the co-expression network 
and the genes involved in multiple terms were selected.

Results

Identification of characteristic factors and prognosis‑asso‑
ciated genes. After the raw data of the five datasets were 
normalized, quality control was further performed for the 
datasets (Fig. 1; Table I). The two-dimensional diagram of 
PCA for the five datasets is presented in Fig. 2. As a result, all 
five datasets were in accordance with the quality control stan-
dards and were included for the subsequent analysis. Based on 
the MetaDE.ES method, a total of 480 DEGs were identified 
from the five datasets.

GSE28735 and GSE62452 were merged and a total of 
259 prognosis-associated genes were screened. Subsequently, 
KM survival analysis was performed with the top six 
prognosis-associated genes, including transketolase (TKT), 
basic transcription factor 3, (BTF3), myomesin 1 (MYOM1), 
neurexophilin 4 (NXPH4); serine/threonine kinase 24 

(STK24), transducin β-like 3 (TBL3) with the highest-logRank 
(P-values). The KM survival curves are presented in Fig. 3.

Co‑expression network and module analyses. Under 
|r|≥0.6 and P<0.05, the co‑expression pairs among the 
prognosis‑associated genes were identified and the co‑expres-
sion network (which had 213 nodes and 1,984 edges) was 
constructed (Fig. 4). Subsequently, a total of six modules 
were identified from the co‑expression network. Furthermore, 
GO functional enrichment analysis was performed for the 
genes involved in each of the modules. Additionally, the 

Table I. Results of quality control measures and SMRs. 

Dataset IQC EQC CQCg CQCp AQCg AQCp SMR

GSE71729 3.85 4.83 264.65 133.86 32.71 82.01 2.42
GSE15471  4.96 3.09 275.15 70.62 39.49 39.38 3.18
GSE1542  4.09 4.34 242.36 103.51 101.54 58.61 3.92
GSE28735  5.11 3.21 310.21 90.31 18.24 29.18 3.17
GSE62452 5.42 3.23 307.54 75.54 19.03 29.94 3.08

IQC, internal quality control; EQC, external quality control; CQCg, 
consistency quality control for genes; CQCp, consistency quality 
control for pathways; AQCg, accuracy quality control for genes; 
AQCp, accuracy quality control for pathways; SMR, standardized 
mean rank.

Figure 2. Two-dimensional diagram of principal component analysis for the 
five datasets. EQC, external quality control; AQCp, accuracy quality control 
for pathways; CQCp, consistency quality control for pathways; IQC, internal 
quality control; AQCg, accuracy quality control for genes; CQCg, consis-
tency quality control for genes.

Figure 1. Data analysis flow diagram.
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most significant GO terms enriched for purple, yellow, cyan, 
blue, green, and red modules separately were cell cycle arrest 

(P=1.45e-03), signaling (P=2.34e-02), regulation of signal 
transduction (P=2.78e-03), signal transduction (P=9.84e-04), 

Figure 3. Kaplan-Meier survival curves for the top six prognosis-associated genes with higher -logRank (P-values): (A) TKT, (B) BTF3, (C) MYOM1, (D) NXPH4, (E) 
STK24 and (F) TBL3. The red and black lines represent samples with high and low expression levels, respectively. HR, hazard ratio; TKT, transketolase; BTF3, 
basic transcription factor 3; MYOM1, myomesin 1; NXPH4, neurexophilin 4; STK24, Serine/threonine-protein kinase 24; TBL3, transducin β-like protein 3.

Figure 4. Co‑expression network constructed for the prognosis‑associated genes. Red and blue lines indicate that correlation coefficients were positive and 
negative, respectively. The sections within the black squares are modules identified from the network, and the most significant Gene Ontology terms enriched 
for it are noted in the diagram.
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cellular process (P=3.57e-04), and developmental growth 
(P=1.36e-03).

Construction and validation of a prognostic prediction 
system. A total of 107 PDAC samples in GSE28735 and 
GSE62452 had survival information, and were divided into 
groups with good (52 samples) and bad (55 samples) prog-
noses. According to the process in Fig. 5A, the prognostic 
prediction system composed of 67 signature genes [including 
BTF3, serine/threonine kinase 11 (STK11), thrombospondin 1 
(THBS1), ribosomal protein L38 (RPL38) and secretin 
receptor, (SCTR)] was finally constructed. The area under the 
receiver operating characteristic (ROC) curve (AUC) demon-
strating the discriminant accuracy of the prognostic prediction 
system is presented in Fig. 5B. In addition, a discriminant 
scoring system was constructed for the prognostic prediction 
system, which was as follows:

KM survival analysis was performed for GSE28735 and 
GSE62452 to detect the effect of the prognostic prediction 
system, identifying that the group with good prognosis had 
a significantly higher survival rate when compared with the 
group with bad prognosis (P=4.21e-12; Fig. 5C). In addition, 
the PDAC dataset downloaded from the TCGA database 
served as an independent validation dataset for the prognostic 
prediction system. The AUC and KM survival curve in Fig. 6A 
demonstrates that the survival rate of the good prognosis 
group was significantly higher than that of the bad prognosis 
group (P=3.17e-08). Furthermore, the microarray data of 
E-MEXP-2780 was used to validate the prognostic predic-
tion system, identifying that the group with good prognosis 
exhibited a significantly higher survival rate when compared 

with the bad prognosis group (P=1.58e-06; Fig. 6B). Therefore, 
the prognostic prediction system could accurately classify the 
samples from prognostic level.

Construction of co‑expression network for the signature genes 
and identification of the key genes. The co-expression network 
constructed for the signature genes included 56 signature genes 
and 237 edges (Fig. 7). A total of 14 GO_biological process 
(BP) terms and five KEGG signaling pathways were enriched 
for the genes involved in the co-expression network (Table II). 
Meanwhile, the five signaling pathways were merged into the 
co-expression network for the signature genes. As presented 
in Fig. 7, phosphoenolpyruvate carboxykinase 1 (PCK1) 
was enriched in all five signaling pathways, and STK11 was 
involved in three signaling pathways. In addition, THBS1 
was enriched in the phosphoinositide 3-kinase (PI3K)-Akt 
signaling pathway (P=0.017456). In addition, KM survival 
analysis was performed for STK11 (Fig. 8A) and PCK1 
(Fig. 8B) based on the GSE28735 and GSE62452 datasets.

Discussion

In the current study, a total of 480 DEGs were identified from 
five datasets. In addition, 259 prognosis‑associated genes were 
screened from GSE28735 and GSE62452, and BTF3 was 
among the top six prognosis-associated genes. Furthermore, 
a total of six modules were identified from the co‑expression 
network for the prognosis-associated genes. A prognostic 
prediction system composed of 67 signature genes, which 
included BTF3, STK11, THBS1, RPL38 and SCTR, was finally 
constructed and validated. Finally, the co-expression network 
for the signature genes was constructed and the signature 
genes involved in the co-expression network were enriched in 

Figure 5. (A) Process for constructing a prognostic prediction system based upon the GSE28735 and GSE62452 datasets. (B) AUC showing the discriminant 
accuracy of the prognostic prediction system. (C) The Kaplan-Meier survival curve for detecting the effect of the prognostic prediction system based upon 
GSE28735 and GSE62452. AUC, area under the receiver operating characteristic curve.
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Figure 7. Co-expression network constructed for the signature genes. The signaling pathways enriched for the signature genes were merged into the network 
and the genes within the same circle were enriched in the same signaling pathway. AMPK, AMP-activated protein kinase; PI3K, phosphoinositide 3-kinase; 
PPAR, peroxisome proliferator-activated receptor.

Figure 6. AUC and Kaplan-Meier survival curves for the pancreatic ductal adenocarcinoma dataset downloaded from (A) The Cancer Genome Atlas database 
and (B) the microarray data of E-MEXP-2780. AUC, area under the receiver operating characteristic curve.
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five signaling pathways. In particular, STK11 was involved in 
three of the signaling pathways.

STK11/LKB1 causes somatic mutations in intraductal 
papillary mucinous neoplasms (IPMNs), sporadic pancreatic 
adenocarcinomas and biliary adenocarcinomas, and its expres-
sion is abrogated in pancreatic and biliary neoplasms (24,25). 
Sato et al (26) identified that the STK11/LKB1 gene is 
associated with the development and progression of certain 
IPMNs (26). The LKB1-p21 axis cooperates with the Kirsten 
rat sarcoma viral oncogene homolog (Kras) mutation to inhibit 
PDAC in vivo, and downregulated LKB1 may function in 

promoting PC by replacing the p53 mutation (27,28). As a 
Peutz-Jeghers syndrome gene, LKB1 induces apoptosis of PC 
cells in a p73-dependent manner (29). These studies indicate 
that STK11 is implicated in the prognosis of PDAC.

Stromal expression levels of THBS1 are a prognostic marker 
and invasive indicator in IPMN (30). By upregulating THBS1 
and caveolin-1 and downregulating cyclin D1, metronomic C2 
and AL6 analogs perform antiangiogenic and antitumor 
roles in PC (31). THBS1 is implicated in cell growth and 
metastasis of PC cells, and stromal THBS1 immunoreactivity 
may be used for predicting the prognosis of PC patients (32). 

Figure 8. Kaplan-Meier survival curves for (A) STK11 and (B) PCK1. HR, hazard ratio; STK1, serine/threonine kinase 11; PCK1, phosphoenolpyruvate 
carboxykinase 1.

Table II. GO_ BP terms and signaling pathways enriched for the signature genes involved in the co-expression network.

Category Description Gene no. P-value Gene symbol

GO_BP GO:0010565~regulation of cellular ketone metabolic process 3 0.02095 APOA4, MLYCD, STK11
 GO:0030300~regulation of intestinal cholesterol absorption 2 0.023282 APOA4, APOA1
 GO:0046486~glycerolipid metabolic process 4 0.02552 APOA4, GPD1, APOA1, PCK1
 GO:0010873~positive regulation of cholesterol esterification 2 0.02711 APOA4, APOA1
 GO:0046782~regulation of viral transcription 2 0.02711 TARBP2, MDFIC
 GO:0010872~regulation of cholesterol esterification 2 0.030924 APOA4, APOA1
 GO:0048524~positive regulation of viral reproduction 2 0.038507 TARBP2, MDFIC
 GO:0033700~phospholipid efflux 2 0.038507 APOA4, APOA1
 GO:0051186~cofactor metabolic process 4 0.040832 AMBP, GPD1, BAAT, MLYCD
 GO:0002683~negative regulation of immune system process 3 0.04189 AMBP, TARBP2, THBS1
 GO:0044058~regulation of digestive system process 2 0.042277 APOA4, APOA1
 GO:0034377~plasma lipoprotein particle assembly 2 0.046032 APOA4, APOA1
 GO:0065005~protein-lipid complex assembly 2 0.046032 APOA4, APOA1
 GO:0007586~digestion 3 0.049426 APOA4, BAAT, SCTR
Pathway AMP-activated protein kinase signaling pathway 3 0.001119 STK11, MLYCD, PCK1
 Peroxisome proliferator-activated receptor signaling pathway 2 0.006183 APOA1, PCK1
 Metabolic pathways 5 0.013991 ACSM3, PNMT, MLYCD, 
    PCK1, STK11
 Phosphoinositide 3-kinase-Akt signaling pathway 3 0.017456 STK11, THBS1, PCK1
 Insulin signaling pathway 2 0.021115 SHC3, PCK1

GO, Gene Ontology; BP, biological process.
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By promoting the expression of matrix metalloproteinase-9, 
THBS1 is important in mediating matrix remodeling in the 
invasion of pancreatic adenocarcinoma (33,34). The signature 
gene, THBS1 was enriched in the PI3K-Akt signaling pathway, 
indicating that THBS1 may be involved in the prognosis of 
PDAC via the PI3K-Akt signaling pathway.

Overexpressed BTF3 functions as a transcriptional 
regulator by mediating the transcription of tumor-associated 
genes in PDAC (35). RPL38, FOS-like antigen-1 and uridine 
phosphorylase are highly expressed in PC cell lines; therefore, 
they have the potential to serve as tumor markers or in tumor 
targeting (36). SCTR are key in regulating healthy pancreatic 
ductal epithelial cells, and its silence may contribute to tumor 
growth and progression of PC (37). SCTR is overexpressed 
in non-neoplastic pancreas ducts and its isoforms may be 
correlated with decreased secretin binding in pancreatic 
ductal tumors, indicating that SCTRs may represent promising 
clinical targets in pancreatic tumors (38). Therefore, BTF3, 
RPL38, and SCTR may be important in the prognosis of PDAC.

There were certain limitations of the present study. The 
findings obtained from bioinformatics analysis require further 
validation via experimental studies. However, the validation 
experiment could not be performed in the current study due to 
being limited by experimental conditions and sample sources. 
The present results may provide valuable data for future 
investigations.

In conclusion, a total of 480 DEGs were identified from five 
datasets, and 259 prognosis-associated genes were screened 
from GSE28735 and GSE62452. Furthermore, the prognostic 
prediction system composed of 67 signature genes was 
constructed and validated. Notably, signature genes, including 
BTF3, STK11, THBS1, RPL38 and SCTR may function in the 
prognosis of PDAC.
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