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INTRODUCTION

It is well established that exercise promotes health and reduces the development and progression
of cardiovascular disease (CVD) (1). Traditional risk factors for CVD, such as dyslipidemia,
hypertension, and diabetes mellitus, as well as all-cause mortality, are inversely correlated with
cardiorespiratory fitness (2). With advancing technology and decreasing global trends in physical
activity, physical inactivity is now the fourth leading cause of death worldwide (3). Furthermore,
3 million deaths per year and an estimated $53.8 billion in economic costs are lost due to
insufficient physical activity (4). Although exercise promotes numerous salutary effects on the
cardiovascular system, several human studies have concluded that, after controlling for reductions
in traditional CVD risk factors, the beneficial effects of regular exercise are attributable to a decrease
in chronic inflammation and inflammatory mediator production (1, 5–8). These clinical findings
are complemented by animal studies that report regular moderate intensity exercise decreases
the risk for chronic disease development through modification of the immune system (9, 10).
Despite the immunoregulatory effects of exercise, the underlying cellularmechanisms and signaling
pathways that promote cardiovascular health remain unknown. Identifying key determinants by
which exercise modulates inflammatory responses likely offer new therapeutic targets for the
treatment of cardiovascular disease. Given that the innate immune system is responsible for
initiating most inflammatory responses and causally contributes to cardiac pathology and repair,
we have focused this opinion manuscript on the potential role of neutrophils and macrophages in
mediating the cardioprotective effects afforded by exercise.

EXERCISE-INDUCED CHANGES IN INNATE IMMUNITY

Neutrophils are often referred to as the first responders of the acute inflammatory
response. Following activation of the endothelium and edema formation, neutrophils diapedese
predominantly at postcapillary venules- and emigrate to sites of injury along chemoattractant
gradients of C5a, Il-1β, TNFα, CXC chemokines (e.g., CXCL1, CXCL2, CXCL8), bioactive lipids
such as leukotriene B4 (LTB4), and/or formylated bacteria-derived peptides. Upon phagocytosis
and eradication of the inflammatory stimulus through NADPH oxidase activity, hypochlorous acid
production, and/or neutralizing proteolytic enzymes, neutrophils undergo apoptosis (programmed
cell death). This rapid and robust response is host protective, however in order to avoid secondary
tissue damage and further propagation of the inflammatory response, apoptotic neutrophils are
then cleared from the site of injury. Therefore, magnitude and duration of neutrophilic infiltration,
phagocytic capacity, and subsequent apoptosis are critical factors that contribute to optimal healing.
As such, mediators that prolong neutrophil survival including LPS, CRP, cyclin-dependent kinases,
IL-8, GM-CSF and G-CSF delay neutrophil apoptosis and extend inflammatory responses (11, 12).
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Studies focused on understanding the effects of exercise
training on neutrophil function and survival have produced
differing results depending on exercise intensity and duration.
After a single bout of high intensity exercise, leukocyte
blood counts are dramatically elevated. This rapid response is
attributed to demargination of neutrophils caused by increased
shear stress and the actions of catecholamines in skeletal
muscle vascular pools (13–15). Furthermore, a delayed or
second wave of neutrophilia develops hours later through the
actions of cortisol-induced bone marrow mobilization (16).
This duration and intensity dependent increase in circulating
neutrophils results in increased neutrophil extravasation into
skeletal muscle tissue in response to exercise-induced injury (17).
Interestingly, following a single bout of exercise, unstimulated
neutrophil oxidative burst, phagocytosis, and degranulation are
increased whereas degranulation and oxidative burst following
an inflammatory challenge are decreased (13, 18). These findings
suggests that repeated exercise training alter neutrophilic
function to promote an overall anti-inflammatory effect upon
inflammatory challenge (Figure 1). Given their established role
in propagating the inflammatory cascade during atherogenesis
and myocardial ischemia, anti-inflammatory modification of
neutrophils following exercise trainingmay contribute, in part, to
the exercised-induced reduction in CVD risk. Nonetheless, future
studies are needed to determine the optimal exercise duration
and intensity needed to promote beneficial modifications of
neutrophil survival and function for CVD risk reduction.

Macrophages perform important effector and accessory
immune functions and are critical mediators in the host response

FIGURE 1 | Anti-inflammatory modifications of neutrophils and macrophages may contribute to exercise-enhanced cardioprotection.

to tissue damage and microbial insults. A trademark feature
of macrophages is their ability to engulf foreign and dying
bodies (e.g., macro = big, phage = eater; big eater). Tissue
resident macrophages actively maintain tissue homeostasis by
killing microbial invaders and by non-phlogistic clearance of
millions of apoptotic cells that turnover daily (19). To perform
these functions, macrophages retain phagocytic, cytotoxic and
anti-tumor capabilities, all of which is altered in an exercise
duration and intensity dependent manner. Furthermore, during
an acute inflammatory response, macrophages play a critical
role in initiating the resolution phase through the phagocytosis
and removal of apoptotic neutrophils to prevent collateral tissue
damage caused by secondary neutrophil necrosis (20). Along
these lines, macrophages play a critical role in maintaining tissue
function, regeneration, and homeostasis.

In addition to tissue resident macrophages, bone marrow-
derived circulating monocytes represent an immature form
of macrophages, which can be rapidly recruited to sites of
injury. In humans and mice, differing subsets of circulating
monocytes have been described. One patrolling type of
monocyte is thought to play endothelial supportive functions
while another subset extravasate through the endothelium
in response to inflammatory stimuli (21). This migratory
process is accomplished through chemotactic gradients
whereby monocytes are recruited into tissues in response
to complement products, leukotrienes, IP-10, macrophage
inflammatory protein (MIP), aggregated platelets, CCL2
(MCP-1), and/or CX3CL1 (fractalkine) (22). Following
extravasation, monocytes mature into macrophages and, in
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a broad sense, differentiate into classically (in response to
inflammatory challenge) or alternatively activated (to enhance
pro-resolving and tissue repair) macrophages according to local
tissue micro-environment conditions (23). Pro-inflammatory
stimuli cause macrophages to undergo a metabolic shift away
from oxidative phosphorylation and toward glycolysis (24).
Classically activated macrophages are characterized by the
production of inflammatory cytokines, such as Il-1ß and TNFα.
Interestingly, inhibition of glycolysis using 2-deoxyglucose
decreases LPS-stimulated inflammation in macrophages (25).
Moreover, alternatively activated macrophages that secrete
anti-inflammatory cytokines such as IL-10, rely on oxidative
phosphorylation for energy production and display decreased
expression of glycolytic enzymes (26).

Multiple studies have reported profound alterations in
macrophage activation and function following exercise training.
Consistent with an anti-inflammatory effect, high-fat diet
fed mice subjected to exercise training display an enhanced
proportion of alternatively activated macrophages in comparison
with classically activated inflammatory macrophages in the
adipose tissue (27). Furthermore, the authors report a reduction
in the infiltration of inflammatory adipose tissue macrophages
(27). Consistent with these findings, Kizaki et al. (28) reported
that mice with free access to a running wheel have abrogated high
fat diet-induced MCP-1, F4/80, and TNFα expression in adipose
tissue. Importantly, these findings were recently supported in
a human cohort study. Barry et al. (29) found that in the
absence of weight loss, short-term moderate intensity, but not
high-intensity, exercise training in obese adults resulted in
down regulation of CCR2 and CXCR2 expression on circulating
monocytes. Collectively, these results suggest that exercise
training directly alters circulating monocytes and inhibits the
infiltration of inflammatorymonocyte/macrophages into adipose
tissue. These data are intriguing given that inflammatory
cytokine production from classically activated macrophages
contributes to obesity-induced metabolic dysfunction of adipose
tissue and systemic insulin resistance (30–32). These data
provide one possible explanation by which exercise-induced
changes promote an anti-inflammatory effect, however the
underlying mechanisms remain unclear. Another possibility that
may explain how exercise abrogates inflammation is found in
studies assessing changes in macrophage phagocytic capacity
(Figure 1). We have found that chronically inflamed obese
diabetic mice display dysfunctional macrophage phagocytosis
(33). Interestingly, promoting resolution of inflammation in
these mice by restoring macrophage phagocytosis was associated
with enhanced alternatively activated macrophage content in
adipose tissue and decreased hyperglycemia, (34, 35) suggesting
that dysfunctional macrophage phagocytosis may contribute to
the development of insulin resistance. That exercise stimulates
macrophage phagocytosis was reported several decades ago
by Fehr et al (36, 37). They showed that a single bout of
exhaustive endurance-running increased phagocytic activity of
isolated human connective tissue macrophages and peritoneal
macrophages. Others have documented an enhancement in
rat peritoneal macrophage phagocytosis after just 5min of
exercise, consistent with the release of circulating factors and

not alteration in phenotype (38). How duration, intensity, and
diet impact exercise-induced changes in macrophage metabolic
programming, phenotype, and function remains to be elucidated.

ROLE OF INNATE IMMUNITY IN
CARDIOVASCULAR DISEASE

Acute cardiac ischemic events such as myocardial infarction
(MI), trigger a sterile systemic inflammatory response that
is required for the activation of the tissue healing program
(39–41). For this, increased proliferation of the bone
marrow hematopoietic stem/progenitor cells and activation
of extramedullary hematopoiesis in the spleen generates
a surplus of myeloid cells, mostly neutrophils and monocytes
(42, 43). Secreted homing factors from the infarcted myocardium
results in tissue recruitment of neutrophils and monocytes for
the removal of necrotic tissue, initialization of angiogenesis,
and stimulation of myofibroblasts for collagen synthesis and
wound healing (41). This initial myocardial myeloid response
is imperative for proper healing as interventions that result in a
reduction of neutrophil or monocyte/macrophage infiltration,
either through systemic depletion, splenectomy, or steroid
treatment, impairs optimal post-MI healing and results in
excessive fibrosis and possible cardiac rupture (42, 44). On
the other hand, neutrophils and monocytes/macrophages
secrete pro-inflammatory mediators including proteases and
reactive oxygen species that in excess negatively affect tissue
healing and contribute to myocardial damage. Therefore,
overproduction of myeloid cells and excessive infiltration
into the ischemic myocardium may result in inappropriate
inflammation, compromised tissue integrity, and formation
of a non-contracting scar that alters LV pump function (45).
Conversely, rats subjected to exercise training prior to permanent
coronary occlusion display a reduction in myocardial collagen
deposition, cardiac deterioration, and mortality (46). Chronic
inflammatory diseases, however, including atherosclerosis,
hypertension, diet-induced obesity, and diabetes can further
contribute to overproduction of myeloid cells and cause an
imbalanced myeloid response following MI and sub-optimal
infarct healing (41, 45). These findings illustrate the important
role of innate immunity and proper inflammatory control
following MI for optimal infarct healing.

Following MI and myocyte cell death, the myocardium
is besieged by an intense inflammatory response that results
in the formation of a collagen-based scar (40, 41). A scar
without contracting capabilities in the ischemic myocardium
initiates left ventricular remodeling of the remote non-ischemic
region of the myocardium, promoting hypertrophy, fibrosis,
and progressive failure in pump function and the development
of heart failure. Conversely, supervised exercise training in
both men and women with chronic heart failure improves
quality of life, reverses pathological cardiac remodeling, and
decreases mortality and hospitalization above usual care (47).
One of the hallmarks of patients with heart failure is chronic
systemic inflammation (39–41). Pro-inflammatory cytokine
levels, such as TNFα and IL-6, are closely associated with heart

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 May 2019 | Volume 6 | Article 70

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Chuong et al. Exercise, Innate Immunity, and Cardioprotection

failure status, suggesting that inflammatory cytokine signaling
contributes to progressive pump failure. Likewise, studies in
mouse models of heart failure demonstrate that after MI, there
is a chronically (4–8 weeks) active mononuclear phagocyte
network remodeling that occurs in the spleen and non-ischemic
regions of the heart (48, 49). Continuous accumulation of
macrophages in the myocardium prompts progressive collagen
deposition and impaired myocardial function. Inhibition of
monocyte infiltration via blockade of adhesion molecules or
splenectomy in mice with established heart failure dampens
and improves adverse cardiac remodeling (48, 49). These
findings highlight the detrimental role of an unregulated innate
immune system in chronic heart failure. Interventions aimed
at mitigating chronic inflammatory mediators in the post-MI
myocardium offer improved outcomes in patients with ongoing
pathological remodeling. Future studies are needed to determine
the ideal exercise intensity and duration required for optimal
cardiac remodeling.

A common cause of MI is rupture of vulnerable
atherosclerotic plaques. Atherosclerosis is a chronic
inflammatory disease characterized by the accumulation of
lipids and leukocytes in the arterial wall. Similar to heart failure,
monocytes are essential contributors to pathogenesis of the
disease (50–54). Mice deficient in apolipoprotein E (ApoE KO)
fed a Western style diet mobilize hematopoietic stem/progenitor
cells from the bone marrow to extramedullary sites in the splenic
red pulp, where they expand and differentiate to monocytes
(50, 54, 55). The surplus of splenic monocytes is released
into the circulation where they adhere to the atherosclerotic
endothelium and extravasate into lesions and differentiate
into macrophages. As a consequence of abundant uptake
of low-density lipoproteins, monocyte-derived macrophages
transition into foam cells. Accumulation of foam cells in arterial
walls is a hallmark of early atherosclerotic lesion formation
(50, 52). Continuous accumulation of monocytes and their
lineage descendant macrophages can contribute to fibrous cap
thickening, hematoma, thrombi, calcification, and degeneration
of plaque integrity. The relative abundance of macrophages in
atherosclerotic plaques is regulated by their exit and/or death, but
also sustained recruitment of monocytes. Efficient macrophage
exit, or reduced monocyte recruitment, results in a reduction
in lesional macrophage number and regression of disease. On
the other hand, factors contributing to increased monocyte
recruitment accelerate atherosclerosis (56, 57). As described
above, acute MI increases bone marrow and splenic myelopoiesis
in response to myocardial damage. However, overproduction
of monocytes due to acute MI in mice with atherosclerosis
results in increased monocyte recruitment, over production
of pro-inflammatory cytokines and proteolytic enzymes in
the atherosclerotic lesions which stimulates growth of arterial
lesions and increased risk of plaque rupture (58). Exercise
promotes cardiovascular health and reduces atherosclerotic
lesion size and vulnerability. In both ApoE knockout and LDL
receptor knockouts fed a western style diet, aerobic exercise
training reduced early lesion size formation and enhanced lesion
regression (59, 60). Moreover, exercise training in diabetic ApoE
knockout animals resulted in improved glucose tolerance, lesion

size, and plaque stability. Interestingly, these findings were
associated with decreased lesional IL-6 levels and macrophage
content (61). These data suggest that the anti-atherogenic effects
of exercise may relate to changes in innate immunity.

Exercise has been a hallmark treatment strategy for
uncontrolled and prolonged hypertension. Recent studies
demonstrate that innate immunity is involved not only in
end-organ damage due to hypertension, but also in the
development of hypertension. Studies in mice with Csf1
gene mutation resulting in deficiency of various subtypes
of macrophages, remain normotensive, and have reduced
endothelial dysfunction and vascular remodeling after Ang II
infusion or DOCA-salt treatment (62, 63). Similarly, systemic
depletion of monocytes using a mouse model of lysozyme
M driven expression of diphtheria toxin receptor results in
resistance to Ang II induced hypertension, vascular dysfunction,
cardiac hypertrophy, and oxidative stress (64, 65). These data
suggest that monocytes/macrophages are involved in the etiology
of hypertension, but the underlying mechanism has not been
fully elucidated. Furthermore, monocytes/macrophages are also
involved in hypertension-induced end-organ damage. Inhibition
of CCR2 receptor in hypertensive mice reduced cardiac
monocyte/macrophage infiltration and attenuated hypertrophy
and fibrosis (63, 65). Thus, exercise-induced changes in innate
immunity may play a protective role against the development of
hypertension and end-organ damage.

POTENTIAL ROLE OF SPECIALIZED
PRO-RESOLVING MEDIATORS

Given their profound anti-inflammatory and pro-resolving
effects on innate immune cell cytokine production and function,
it is intriguing to speculate on the potential role of specialized
pro-resolving lipid mediators (SPMs) in the CVD risk reducing
effect of exercise. We now know that the acute inflammatory
response is composed of a resolution phase that is mediated, in
part, by SPMs such as lipoxins (LX), resolvins (Rv), maresins
(MaR), protectins (PD), and the newly identified conjugates in
tissue regeneration (e.g., RCTR, MCTR, and PCTR). SPMs are
primarily synthesized from the enzymatic conversion (e.g., 5-
lipoxygenase, 12-lipoxygenase, and 15-lipoxygenase) of omega
3-fatty acids and promote the resolution of inflammation by
limiting excessive neutrophil infiltration, promoting apoptotic
cell clearance, and enhancing overall host response (biosynthesis
was recently reviewed (66, 67). Nevertheless, whether exercise
affects resolution or the synthesis and actions of SPMs remains
understudied. Future experiments are needed to evaluate
whether systemic changes in molecular and cellular pro-
resolving pathways contribute to the augmentation of innate
immunity in exercise that contributes to its overall observed
anti-inflammatory effect.

Produced largely by leukocytes, SPMs have been shown to
have cardiovascular protective and reparative properties. Derived
from EPA, RvE1 has been shown to have protective effects on
cardiomyocytes and reduce infarct size in a dose dependent
manner in a rat ischemia-reperfusion model (68). Additionally,
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RvD1 treatment reduced post-MI macrophage numbers and
fibrosis resulting in a reduction in left ventricular dysfunction
in mice (69). Moreover, SPMs RvE1, RvD1, RvD2, Mar1, and
AT-LXA4 have all been shown to prevent atheroprogression and
enhance lesion stability in mouse models of atherosclerosis (70–
74). This exciting area of research will continue to uncover
previously unknown basic mechanisms of sustained vascular
inflammation and develop new therapeutic treatment options
for atherosclerosis.

A limited amount of data does already exist that suggests
exercise may stimulate the production of SPMs. Gangemi
et al. (75) reported that urinary immunoreactive LXA4 levels
were elevated immediately and 24 h following a single bout of
strenuous maximum intensity exercise in a small healthy human
cohort. These were the only data until recently when Markworth
et al. (76) using targeted metabololipidomics, reported peak
serum levels of LXA4 and LXB4 1 h post-exercise, with a
transient elevation in RvE1. Interestingly, the authors further
reported a sustained elevation of RvD1 and PDx, a PD1 isomer,
24 h post-exercise training in humans. Consistent with these
observations, Dalli et al. (77) also reported elevated plasma levels
of RvD1, RvD2, and all four members of the newly identified
13-series n-3 DPA-derived resolvins, termed RvTs, in human
peripheral blood samples following 30–45min of vigorous
intensity exercise.Moreover, DHA supplementation and exercise,
stimulated human PBMCs to produce elevated levels of RvD1 in
response to LPS. That RvD1 production is elevated in response
to LPS above basal conditions following exercise was noted
by the authors as a possible explanation for the overall anti-
inflammatory effect of exercise (78). Collectively, these results are
consistent with the idea that exercise training represents a model
of self-limited sterile inflammation that requires endogenous
resolution programs for repair, however whether and if exercise
training alters the magnitude and duration of inflammation
resolution and SPM biosynthesis is unknown.

FUTURE DIRECTION

Several studies have evaluated the impact of exercise on
circulating immune cell levels. Clinical studies have focused

on understanding how exercise improves CVD outcomes
by assessing changes in known inflammatory correlates of
disease risk, including white blood cell count, IL-6, CRP, and
other markers of haemostasis (e.g., fibrinogen) (1, 5, 7, 8, 79).
Furthermore, preclinical investigations have uncovered basic
mechanisms by which regular exercise promotes an anti-
inflammatory immune response (9). Collectively, these studies
have revealed that exercise reduces chronic inflammation and
CVD by altering immune cell function and production of
anti-inflammatory cytokines (80, 81). By describing changes
in the abundance and inflammatory mediator production in
circulating immune cell populations, these studies have advanced
our knowledge by characterizing the anti-inflammatory
effect of exercise; however questions regarding how diet and
exercise intensity interact with beneficial changes in immunity
remain largely unanswered. Mounting evidence suggests a
critical role for SPMs in preventing or attenuating chronic
cardiovascular inflammation [reviewed in (82)], however data
regarding how exercise affects resolution biology is limited.
We believe that future studies should continue to study
changes in innate immune cell populations but that these
investigations should be further expanded to incorporate
assessments in cell function. A deeper understanding of how
exercise alters immune cell function and the development
and progression of CVD holds great therapeutic potential,
especially for individuals who are often recalcitrant to
exercise programs or those who could most benefit from
exercise, but cannot, e.g., patients with advanced diabetes or
heart failure (83–90).
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