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Abstract: Based on in-plane anisotropy of black phosphorus (BP), anisotropic photonics topological
transition (PTT) can be achieved by the proposed hyperbolic metamaterials structure, which is
composed of alternating BP/SiO2 multilayer. Through effective medium theory and calculated
iso-frequency contour, PTT can be found by carefully choosing the incident plane and other parameters.
With the finite element method and transfer matrix method, a narrow angular optical transparency
window with angular full width at half maximum of 1.32◦ exists at PTT. By changing the working
wavelength, thickness of SiO2, or electron doping of black phosphorus, the incident plane of realizing
PTT can be modulated, and anisotropic PTT is achieved.

Keywords: black phosphorus; hyperbolic metamaterials; photonic topological transition; anisotropy;
angular optical transparency

1. Introduction

Metamaterials, a kind of artificial structured composites on subwavelength scales,
show unprecedented electromagnetic properties which are never observed in natural materials [1].
With the development of nanofabrication techniques, the researches on metamaterials have attracted
much attention, and many interesting phenomena and applications have been proposed, such as
negative refraction [2,3], sub-diffraction imaging [4–6], metamaterials absorber [7–9], tunable index
metamaterials [10], and biosensors [11,12]. Among the emerging varieties of metamaterials, hyperbolic
metamaterials (HMMs) have rapidly drawn great attention in recent years due to their highly anisotropic
features enabling hyperbolic iso-frequency dispersion and lithography-free ease of fabrication using thin
film deposition methodologies [13,14]. Generally, HMMs can be constructed with metal nanowire arrays or
multilayer structures of alternating metal and dielectric. In contrast to the closed iso-frequency contour (IFC)
of traditional materials, the hyperbolic IFC is open and large wave-vectors can be supported in HMMs [15].
This special feature has been explored for many prospective applications in hyperlens [6], spontaneous
emission enhancement [16,17], Goos–Hänchen effect [18,19], photonic topological transition [20–24],
photonic spin hall effect [25,26], and Casimir force [27,28].

Recently, atomically thin two-dimensional (2D) materials, such as graphene, black phosphorus
(BP), and hexagonal boron nitride (BN), have shown many extraordinary electronic and photonic
properties [29]. As 2D materials have developed into a research hotspot, HMMs based on 2D materials
has gradually attracted wide attention. As one of the most popular 2D materials, graphene can
replace the role of metal in HMMs of the multilayer structure due to negative permittivity in infrared
region [30]. Graphene-based HMMs have been extensively investigated in radiative heat transfer [31],
negative refraction [32], slow light effect [33], and perfect absorber [34]. Compared with graphene,
BP also presents metallic behavior with negative permittivity in mid-infrared region. Differently,
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BP have strongly inherent in-plane anisotropy, and many interesting applications have been widely
explored based on this property, including anisotropic acoustic plasmons [35], polarization sensitive
resonators [36], photonic spin hall effect [37], and chirality [38]. In addition, researches on BP-based
HMMs has also been reported in anisotropic absorber and biaxial HMMs [39,40], but this has yet to be
fully investigated. Particularly, BP-based HMMs have not been used to realize anisotropic photonic
topological transition (PTT).

In this work, we theoretically propose to construct a BP-based HMMs structure consisting of
alternating BP/SiO2 multilayer, which can realize anisotropic PTT thanks to inherent in-plane anisotropy
of BP. The results obtained by finite element method (FEM) simulations and transfer matrix method
(TMM) both demonstrate that a narrow angular optical transparency window can be achieved at PTT.
And the structure’s IFC can transit from open hyperboloid to closed ellipsoid by changing the angle ϕ
of the incidence plane. When the working wavelength λ = 5 µm, the ϕ of incident plane where PTT
appears can be modulated from 0◦ to 61◦ by changing electron doping of BP and can be modulated
from 79◦ to 0◦ by changing the thickness of SiO2. In addition, the angle ϕ for PTT can be modulated
from 30◦ to 56◦ by changing the working wavelength. Our findings pave a new way in anisotropic
angle-dependent optical applications.

2. Design and Theories

As shown in Figure 1a, the proposed BP-based HMMs structure consists of periodic multilayer
of BP and SiO2 layers, which is surrounded by air. The top view of Figure 1a is shown in Figure 1b.
As depicted in Figure 1, a p-polarized light at wavelength λis incident on the side of the proposed
BP-based HMMs structure. Here, incident plane is the p-z plane, and the angle between the p-z and y-z
plane is ϕ. The thickness of SiO2 is td = 300 nm. The thickness of BP is given by tbp = n × az/2, where
n (= 3) is the number of layers of BP and az (= 10.7 Å) is lattice constant in the out-of-plane direction [41].
The permittivity of SiO2 is 1.82. d (= td + tbp) is the thickness of periodic unit of the BP-based HMMs
structure. As shown in the inset of Figure 1a, the atoms in monolayer BP are covalently bonded to form
a puckered honeycomb structure which leads to unique in-plane anisotropic optical property. In our
proposed BP-based HMMs structure, the x and y directions correspond to the zigzag (ZZ) and armchair
(AC) directions of BP, respectively. For BP, translational symmetry is broken in the z direction, and it has a
direct energy gap at the Г point [41]. Thus, a low-energy in-plane Hamiltonian is used to describe the
systematic behavior around the Г point based

Ĥ =

(
Ec + ηck2

x + υck2
y γkx + βk2

y
γkx + βk2

y Eυ − ηυk2
x − υυk2

y

)
(1)

where γ and β describe the effective couplings between the conduction and valence bands. Ec and
Eυ are the first conduction and valence band edge energies in BP. Near the Г point, in-plane effective
electrons masses along the AC and ZZ directions can be obtained by [42]:

mAC =
}2

2γ
2

∆ + ηc

, mZZ =
}2

2υc
(2)

For 3-layer BP, the layer-dependent bandgap ∆ is 1.1 eV [43]. The other parameters used here
are ηc = h̄2/0.4m0, υc = h̄2/0.4m0, and γ = 4a/π eVm. a (= 0.223 nm) is the scale length of the BP and
π/a is the width of the Brillouin zone. m0 = 9.10938 × 10−31 kg is the standard electron rest mass.
The in-plane anisotropic conductivity of BP can be described by a simple semiclassical Drude model.
The conductivity of in-plane BP along the AC and ZZ crystalline directions are given as [44]

σAC,ZZ =
iDAC,ZZ

π(ω+ iη/})
(3)
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where DAC, ZZ = πe2ρ/m AC, ZZ, is the Drude weight, which is dependent on the electron charge. η (= 10
meV) is used to define the BP relaxation rate. ρ (= 5 × 1013 cm−2) is the electron doping. With the angle
ϕ, the conductance matrix connecting the surface current and electric field can be expressed as σ = [σpp,
σps; σsp, σss], where σpp = σACcos2ϕ + σZZsin2ϕ, σss = σACsin2ϕ + σZZcos2ϕ, and σsp = σps = (σZZ −

σAC) sinϕcosϕ [45]. The cross conductivity σsp vanishes for isotropic 2D materials such as graphene.
Hence, the effective permittivity of BP in p-axis and z-axis directions can be derived by εpp = εr +

iσpp
ε0ωtBP

εzz = εr
(4)

where εr ( = 5.76) is the relative permittivity of BP [39] and ε0 is the vacuum permittivity.
Here, the working wavelength is λ = 5 µm. Obviously, the length d of periodic unit of the BP-based

HMMs structure is sufficiently small compared to the working wavelength, so the proposed multilayer
structure can be modeled as an anisotropic effective medium by the effective medium theory (EMT) [46].
In p–z plane, we define the p-axis component of effective permittivity as εp and the z-axis component
of effective permittivity as εz. Based on the EMT, εp and εz can be expressed as follows,{

εp = (tBPεpp + tdεd)/(tBP + td)

εz = (tBP + td)εzzεd/(tBPεd + tdεzz)
(5)

In k space, the IFC of BP-based HMMs for p-polarized light is given by

k2
p

εz
+

k2
z
εp

= k2
0 (6)

where kp and kz are the components of the wavevector along p- and z-directions respectively, k0 (= ω/c)
is the wavevector of light in the vacuum.
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Figure 1. (a) Schematic of the proposed BP-based HMMs structure consisting of alternating BP/SiO2 
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Figure 1. (a) Schematic of the proposed BP-based HMMs structure consisting of alternating BP/SiO2

multilayer. The thickness of the SiO2 and BP layer are td and tbp, respectively. The thickness of periodic
unit of the BP-based HMMs structure is d (= td + tbp). (b) The top view of (a). A p-polarized light in
p-z plane is incident on the side of the proposed BP-based HMMs structure from air. ϕ is the angle
between the incident p-z plane and y-z plane.

According to Equation (5), we calculate the p-axis and z-axis components of effective permittivity
under different ϕ when the working wavelength λ is 5 µm. We find that εz (= 1.885) is a constant
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positive value and εp is a variable with ϕ. As shown in Figure 2a, Re (εp) changes from negative
to positive values as ϕ increases from 0◦ to 90◦, and Im (εp) is always near 0. In addition, when Re
(εp) = 0, we can regard it as PTT point. Here, the PTT refers to the optical topological transition
of HMMs’ IFC instead of the topological phase transition. When the IFC of structure transitions
between open hyperboloid and closed ellipsoid, PTT point will exist. The regime, which is very close
to PTT point, is also known as the epsilon-near-zero (ENZ) regime [21]. At PTT point, HMMs can
significantly suppress the diffraction and scattering of incident light, which can provide a new way for
efficiently manipulating light-matter interactions at nanoscales. For our proposed BP-based HMMs
structure, it will change from Type II HMM to elliptic dispersion near PTT point. Based on Equation
(6), we calculate the complex wavevector kp/k0 of BP-based HMMs’ IFC at ϕ = 46◦, as shown in
Figure 2b,c. For an ideal lossless medium, HMMs’ IFC will degenerate to two points at PTT point [23],
which means that only the light with pure wavevectors along p-axis is through metamaterials and an
angular transparency window is achieved along the p-axis direction. Here, for our BP-based HMMs,
the topology of IFC at PTT point maintains a narrow hyperboloid as shown Figure 2b. Thus, the
light with very small kz wavevectors are allowed to propagate inside the metamaterials. As shown in
Figure 2c, Im (kp/k0) as function of kz/k0 exhibits a conical dispersion. The inset of Figure 2c shows that
the conical dispersion achieves a degenerate state at the origin and the light with wavevector along
p-axis has Im(kp/k0) = 0. This indicates that the light with wavevector along p-axis will not be affected
by absorption losses. However, for the light with small kz wavevectors, the intrinsic loss of materials
will continue to exist due to Im(kp/k0) is not close to zero in this moment. In general, even though the
light with small kz wavevectors can propagate inside the metamaterial, the existence of intrinsic loss
makes it possible to suppress the light propagation away from p-axis direction, which is helpful for
maintaining a narrow angular optical transparency window. Based on the above theoretical analysis,
our proposed HMMs provides a possible way to realize a narrow angular optical transparency window
when the incident p-polarized light in p-z plane due to PTT.
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Figure 2. (a) Re(εp)-ϕ (black line) and Im(εp)-ϕ (blue line) curves. Calculated IFC for (b) Re(kp/k0)
and (c) Im(kp/k0) as a function of kz/k0. The other parameters are λ = 5 µm, ρ = 5 × 1013 cm−2, and
td = 300 nm.
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3. Results and Discussion

As shown in Figure 3a, a p-polarized light is incident on the BP-based HMMs structure at an
incident angle θ in the p-z plane. Here, the angle between the p-z and y-z plane is ϕ = 46◦ and working
wavelength λ = 5 µm. We simulate the transmission, reflection, and absorption of the multilayer
structure with 138 µm width along the p-axis. In this work, all numerical simulation results are
obtained by the commercial software COMSOL Multiphysics (COMSOL Multiphysics 5.4, Stockholm,
Sweden) based on FEM. In our work, periodic boundary conditions are adopted in the z-axis direction.
We verify the position of PTT point by EMT. In addition, we theoretically analyze the propagation
features of the proposed BP-based HMMs structure by using transfer matrix method (TMM) under
p-polarized light. Based on Maxwell’s equations and boundary conditions, the magnetic field between
adjacent layers can be related via a transfer matrix, which can be obtained as follows [47]

Mi(θ, di) =

 cos(kipdi) − jqip sin(kipdi)

− j 1
qip

sin(kipdi) cos(kipdi)

 (7)
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Figure 3. (a) The p-z view of the proposed BP-based HMMs structure and a p-polarized light is incident
on the structure at an incident angle θ. (b) Transmission (T), reflection (R), and absorption (A) of
BP-based HMMs structure under λ = 5 µm, ρ = 5 × 1013 cm−2, and td = 300 nm. The curve (dots) are
numerical (theoretical) results obtained by the FEM (TMM).

Here, we divide BP-based HMMs structure into k layers along the p-axis direction. The subscript
i corresponds to the propagation of light in the i-th layer with a thickness of di and qp = kp/(k0)εz.

According to Equation (6), we can get kp =
√
εzk2

0 − (εz/εp)k2
z . Here, kz (= k0sinθ) is the z component

of incident light wavevector. The total transfer matrix (M(θ)) connecting the fields at the incident end
and the exit end can be expressed as[

M11(θ) M12(θ)
M21(θ) M22(θ)

]
=

n∏
i = 1

Mi(θ, di) (8)

By means of the TMM, the reflection and transmission coefficients can be calculated as

r(θ) =
q0(M11(θ) −M22(θ)) + q2

0M12(θ) −M21(θ)

q0(M11(θ) + M22(θ)) + q2
0M12(θ) + M21(θ)

(9)

t(θ) =
2

M11(θ) + M22(θ) + q0M12(θ) + (1/q0)M21(θ)
(10)
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where q0 = cosθ, the reflection (R(θ)) and transmission (T(θ)) of the structure can be obtained by |r(θ)|2

and |t(θ)|2, respectively. Further, the absorption can be written as A(θ) = 1−R(θ)−T(θ).
Figure 3b depicts the FEM-simulated and TMM-calculated optical transmission (T), reflection (R)

and absorption (A) of p-polarized light as a function of incident angle (θ) for the proposed BP-based
HMMs structure when ϕ = 46◦. Obviously, the results obtained by numerical simulation (FEM) are in
good agreement with the theoretical calculation (TMM). The results indicate that a narrow angular
optical transparency window with angular full width at half maximum (FWHM) of 1.32◦ appears.
The transmittance can reach 99.7% at θ = 0◦, but the transmittance is only 0.1% at θ = 2◦. The reason is
that the incident light will be affected by the material’s inherent losses and the energy will be attenuated
with further propagation in the medium except for the wavevector of light along p-axis direction.
Moreover, the absorption in the Figure 3b drops to almost zero when θ = 0◦, which can also verify the
results obtained in Figure 2c. So, the PTT point of proposed BP-based HMMs structure happens when
ϕ = 46◦, working wavelength λ = 5 µm, electron doping ρ = 5 × 1013 cm−2, and the thickness of SiO2

td = 300 nm.
Then, the influence of electron doping of BP on the position of PTT point for the proposed BP-based

HMMs structure will be discussed. Figure 4a shows numerically simulated optical transmission as
a function of the angle ϕ between the incidence plane (p-z plane) and y-z plane, and incident angle
θ when the electron doping of BP is 2.42 × 1013, 3 × 1013, 4 × 1013, and 10 × 1013 cm−2, respectively.
PPT happens when the narrowest angular optical transparency window is achieved. Obviously, the
angle ϕ, which is corresponding to the PTT, is increasing from 0◦ to 61◦ as the electron doping of BP
increases from 2.42 × 1013 to 10 × 1013 cm−2 when the other parameters unchanged. The FWHMs for
narrowest angular optical transparency window are all smaller than 1.328◦ in Figure 4a. Figure 4b,c
show Re(εp) and Im(εp) as a function of electron doping ρ of BP and angle ϕ based on Equation (5),
respectively. Here, the purple dots represent the position of the PTT point obtained by simulation
calculation. The cyan solid line in the Figure 4b represents Re (εp) = 0, and the cyan dashed line in the
Figure 4c represents Im (εp) = 0.1. We find that these purple dots which are obtained by simulation
satisfy Re (εp) ≈ 0 and Im (εp) < 0.1. It means that the PTT point obtained by simulation calculation is
consistent with that obtained by theoretical calculation. Besides, as shown in the inset of Figure 4a,
we can also achieve a wide range of narrow angular optical transparency window from ϕ = 0◦ to
ϕ = 10◦ due to the existence of ENZ regime when ρ = 2.42 × 1013 cm−2, and the FWHM of the angular
optical transparency window stays around 1.3◦.

The influence of the thickness td of SiO2 on the position of PTT point is also discussed in detail.
Figure 5a shows numerically simulated optical transmission as a function of the angle ϕ between
the incidence plane (p-z plane) and y-z plane, and incident angle θ when the thickness of SiO2 is
30, 170, 480, and 620 nm, respectively. The FWHMs for narrowest angular optical transparency
window are all smaller than 1.334◦ in Figure 5a. The angle ϕ, which is corresponding to the PTT
point, is decreasing from 79◦ to 0◦ as the thickness of SiO2 increases from 30 to 620 nm when the other
parameters unchanged. Figure 5b,c show Re(εp) and Im(εp) as a function of td and angle ϕ based on
Equation (5), respectively. Here, the purple dots represent the position of the PTT point obtained by
simulation calculation. The cyan solid line in the Figure 5b represents Re (εp) = 0, and the cyan dashed
line in the Figure 5c represents Im (εp) = 0.1. It is found that these purple dots obtained by simulation
satisfy Re (εp) ≈ 0 and Im (εp) < 0.1. It means that the PTT point obtained by simulation calculation
agrees with that obtained by theoretical calculation. Besides, as shown in the inset of Figure 5a, a wide
range of narrow angular optical transparency window is also achieved from ϕ = 0◦ to ϕ = 10◦ due to
the existence of ENZ regime when td = 620 nm.
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θ when ρ = 2.42 × 1013, 3 × 1013, 4 × 1013, and 10 × 1013 cm−2, respectively. (b) Re(εp) and (c) Im(εp) as
function of ρ and ϕ.
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Finally, we discuss the influence of working wavelength λ on the position of PTT point for the
proposed BP-based HMMs structure. Figure 6a shows numerically simulated optical transmission as a
function of the angle ϕ between the incidence plane (p-z plane) and y-z plane, and incident angle θ
when working wavelength λ is 4, 4.5, 5, and 6 µm, respectively. The FWHM for narrowest angular
optical transparency window is approximately 1.3◦ in Figure 6a. Obviously, the angle ϕ, which is
corresponding to the PTT point, is increasing from 30◦ to 56◦ as λ increases from 4 to 6 µm when the
other parameters unchanged. Figure 6b,c show Re(εp) and Im(εp) as a function of λ and angle ϕ based
on Equation (5), respectively. Here, the purple dots represent the position of the PTT point obtained
by simulation calculation. The cyan solid line in the Figure 6b represents Re (εp) = 0, and the cyan
dashed line in the Figure 6c represents Im (εp) = 0.1. These purple dots obtained by simulation satisfy
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Re (εp) ≈ 0 and Im (εp) < 0.1. Thus, the PTT point obtained by simulation calculation is consistent with
that obtained by theoretical calculation.Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 11 
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4. Conclusions

In summary, anisotropic PTT is theoretically and numerically investigated based on the proposed
BP-based HMMs structure consisting of alternating BP/SiO2 multilayer. By tailoring the IFC of BP-based
HMMs from open hyperboloid to closed ellipsoid, both the theoretical calculations and numerical
simulations show that a narrow angular transparency window appears at PTT point for p-polarized
light. Moreover, we find that the angleϕ, at which PTT appears, can be affected by working wavelength
λ, thickness td of SiO2, or electron doping ρ of BP. It is believed that our work provides a new way in
various angle-dependent optical applications, such as privacy protection and detectors with ultra-high
signal-to-noise ratios.
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