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Prematurity affects approximately 10% of all children, resulting in drastically altered 
antigen exposure due to premature confrontation with microbes, nutritional antigens, 
and other environmental factors. During the last trimester of pregnancy, the fetal 
immune system adapts to tolerate maternal and self-antigens, while also preparing 
for postnatal immune defense by acquiring passive immunity from the mother. Since 
the perinatal period is regarded as the most important “window of opportunity” for 
imprinting metabolism and immunity, preterm birth may have long-term consequences 
for the development of immune-mediated diseases. Intriguingly, preterm neonates 
appear to develop bronchial asthma more frequently, but atopic dermatitis less fre-
quently in comparison to term neonates. The longitudinal study of preterm neonates 
could offer important insights into the process of imprinting for immune-mediated 
diseases. On the one hand, preterm birth may interrupt influences of the intrauterine 
environment on the fetus that increase or decrease the risk of later immune disease 
(e.g., maternal antibodies and placenta-derived factors), whereas on the other hand, 
it may lead to the premature exposure to protective or harmful extrauterine factors 
such as microbiota and nutritional antigen. Solving this puzzle may help unravel new 
preventive and therapeutic approaches for immune diseases.

Keywords: preterm neonate, allergy, atopic dermatitis, bronchial asthma, immune imprinting, microbiome, 
bronchitis, bronchopulmonary dysplasia

iNtrODUctiON

Almost 10% of all children are born prematurely (<37 weeks of gestation), and more than 1% of 
all children are born very preterm (<32 weeks) (1). Complications associated with preterm birth 
are the leading cause of death among infants (1). In survivors, the risk of long-term sequelae 
increases with decreasing gestational age (2). Due to the provision of highly sophisticated neonatal 
intensive care, survival rates among children born at 24 weeks of gestation are greater than 50%. 
The children who survive extreme prematurity will have, consequently, spent less than 60% of the 
normal gestation duration (37–41 weeks) in utero (3).

During this time, the fetal immune system is exposed to maternal and self-antigens, which 
should be tolerated. In addition, the fetus is exposed to environmental antigens that are transferred 
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FigUre 1 | Timing of preterm and term birth in relation to the ontogeny of the adaptive immune system. Preterm neonates are exposed to extrauterine antigens 
before the completion of transplacental transmission of maternal IgG.
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in a controlled manner through the placenta and into the fetal 
blood stream and/or into the amniotic fluid (4). Thus, the 
mucosa of the gastrointestinal tract (GIT) is exposed to swal-
lowed environmental antigens that can elicit immune reactions 
(4), although the type and load of antigens and the fetal immune 
response differ quantitatively and qualitatively from postnatal 
immune reactions. Immediately after birth, the preterm neonate 
establishes a dermal and gastrointestinal microbiome, and the 
adaptive immune system starts to generate secondary immune 
responses: in the lymphoid organs, secondary lymph follicles 
give rise to class-switched B cells and affinity-driven maturation 
(5). Since the GIT mucosa of preterm neonates is permeable for 
macromolecules and even bacteria, the exposure to foreign anti-
gens is not limited to the mucosal and skin surfaces; significant 
amounts of antigens may reach the lymph system and the blood 
stream (5). This accounts for the high susceptibility of preterm 
neonates to infection. In addition, the surface microbiome of 
preterm neonates differs from that of term neonates (6). Taken 
together, it must be expected that these dramatic changes in 
antigen confrontation caused by preterm birth, compared with 
the uninterrupted physiological intrauterine development, will 
have long-term effects on the immune system.

In support of this hypothesis, epidemiological studies have 
revealed that the incidence of immune-mediated diseases differ 
between preterm and term neonates. Intriguingly, preterm neo-
nates develop atopic dermatitis less frequently (7, 8) and asthma 
more frequently (9, 10) than term neonates.

Genetic association studies revealed conflicting results regard-
ing the association between atopic diseases in the mother and 
preterm delivery (11, 12): in one study, allergic rhinitis was less 
frequent among mothers of very low birthweight (VLBW) neo-
nates (11), whereas in another study, maternal asthma was associ-
ated with preterm birth (12). It was hypothesized that a Th2 bias 
could protect against preterm delivery (13). Intriguingly, some 

factors are associated with both preterm birth and the absence of 
atopic disease, such as lower socioeconomic status (14, 15).

Immunological changes to the feto-maternal unit can contrib-
ute to preterm birth (12). Thus, immunological characteristics of 
children and adolescents born prematurely might represent a 
mixture of individual predispositions, which were the cause of 
preterm birth, as well as some acquired properties, that were the 
consequence of preterm birth.

A better understanding of the long-term effects of preterm birth 
on the immune system might give insight into new therapeutic 
approaches to reduce the risk of immune-mediated diseases.

FActOrs tHAt ALter iNFLAMMAtOrY 
resPONses

Premature exposure to extrauterine 
Antigens
In the fetus, the immune system undergoes a controlled matura-
tional process (Figure 1) (16). In VLBW neonates, the precursors 
of lymph nodes and Peyer plaques are characterized by a radially 
organized medulla without a B  cell-rich cortex (16, 17). After 
birth, preterm neonates rapidly establish a repertoire of class-
switched B  cells, but the expressed IgG and IgA heavy-chain 
repertoire maintains fetal characteristics, such as short CDR-H3 
regions, biased diversity gene usage, and low numbers of somatic 
mutations (18, 19). In congruency with these molecular features, 
preterm neonates produce fewer antibodies with lower antigen 
affinity in response to vaccination (20). The secondary antibody 
repertoire diversifies slower in preterm neonates than in term 
neonates (18). At the expected date of birth, preterm neonates 
express a diverse secondary antibody repertoire whereas class-
switched B  cells are almost absent in term newborns (18, 19). 
The stimulus of birth is thus the trigger for the development of 
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secondary antibody repertoires, which is associated with the pro-
duction of memory cells and plasma cells. Due to the longevity of 
plasma cells, one could hypothesize that this unique “fetal-like” 
low affinity antibody repertoire may persist for years or even 
decades (21, 22).

Fetal antibody production is supplemented by transmission 
of maternal antibodies during the last trimester. It is still under 
debate whether maternal antibodies confer passive immunity 
exclusively or whether they elicit an idiotypic network among 
B cell receptors and/or T cell receptors (23). In VLBW neonates, 
the maternal antibody concentrations have only reached approxi-
mately 10–20% of the level found in term neonates. Possibly, the 
reduced protection from pathogens and the diminished oppor-
tunity to mount an active response to maternal antibodies could 
have consequences that reach beyond the physiological duration 
of maternally derived passive immunity.

The development of antibody repertoires parallels the diversi-
fication of T cell receptors during ontogeny (24) and the transi-
tion from a Th2 bias toward a Th1 bias (25, 26). The hypothesis 
that premature antigen contact in Th2-biased preterm neonates 
could promote allergic sensitization was not supported by clinical 
observation (6, 27).

Fetal and Postnatal stress
Stress contributes to preterm birth, and preterm birth is associ-
ated with postnatal stress. Based on this reciprocal interaction, 
we hypothesize that stress has consequences on the developing 
immune system of preterm infants and their long-term risk 
of developing immune-mediated diseases. This hypothesis is 
derived from several aspects.

Intrauterine stress conditions (i.e., sociodemographic and 
obstetric risk factors, antenatal hospitalization, and nutritional 
abnormalities) contribute to preterm birth (28, 29). Stress can 
even promote epigenetic inheritance of the predisposition to 
preterm birth across generations (30, 31).

The association between intrauterine stress, programming fetal 
responses, and postnatal immunity is well established (32, 33).

The largest longitudinal human prospective study used a 
natural disaster—the Quebec ice storm, which left three million 
people without electricity for 45 days—to explore the effects of 
stress on the offspring of 224 women who were pregnant during 
the crisis. The ICESTORM project found higher rates of preterm 
birth in relation to the objective hardship of maternal stress (days 
without electricity). Notably, immunological dysregulations were 
found in the offspring at 13 years of age, i.e., reduced proportions 
of CD4+ cells and increased levels of pro-inflammatory cytokines 
(TNF-α, IL-1β, and IL-6) and Th2 cytokines such as IL-4 and 
IL-13 (34).

Preterm infants need medical support, which itself is associ-
ated with stress. The improved survival of extremely preterm 
infants is at the cost of over 100 invasive procedures during 
their hospital stay and exposure to disturbing influences such as 
tactile stimulation, light, and noise. The preterm infant responds 
to such exposures with observed changes in vital and behavioral 
parameters and increased metabolic demands. Early-life stress 
and trauma may lead to a long-term dysregulation of immune 
responses, i.e., sustained inflammation in adulthood (34, 35). 

Interestingly, these effects may be mediated by perturbations 
of the delicate immune–microbiota relationship (36, 37). Stress 
reduction, e.g., less-invasive medical treatment, cycled light, and 
single family rooms, reduces the length of stay in hospital and the 
morbidity risk (38–40).

Premature Activation of the 
chemosensory system
The premature exposure to extrauterine antigens, such as micro-
biota, nutrition, and medication, represents a non-physiological 
stimulation of all the senses, including taste and the chemosen-
sory system. Chemosensation is a recently discovered mechanism 
of bacterial pathogen recognition in mammals that is conferred 
by classical taste receptors (T2R). Originally discovered in tongue 
taste buds (41, 42), T2R have been found in many extraoral tissues, 
including the respiratory system (43–45), especially in solitary 
chemosensory cells, brush cells, ciliated cells, and smooth muscle 
cells (46). In the upper and lower airways, detection of bitter 
molecules secreted by bacteria evokes innate immune responses 
to clear the airways of pathogens (46–49).

The developmental trajectory of chemosensory cells in the 
respiratory tract and other tissues is unknown (50). The number 
of chemosensory cells increases upon damage or stimulation of 
the airway epithelium (51, 52). Flavors from the mother’s diet 
are transmitted to the offspring through the amniotic fluid and 
breast milk. After 6 months of gestation, the amniotic fluid is also 
inhaled resulting in likely the first chemosensory experience in 
the lungs (53). Since taste signals undergo dynamic changes in the 
fetus and newborn, we hypothesize that exposure to nutritional 
antigens after preterm birth may influence the development of 
the chemosensory system, potentially with long-term effects. 
Moreover, an immature chemosensory system might contribute 
to the altered immune responses in the preterm neonate.

It is currently unclear how the normal, “healthy” microbiota 
influence the development and function of the chemosensory 
system in the respiratory tract. Many medications commonly 
given to preterm neonates, e.g., antibiotics, alter the classical che-
mosenses, taste, and smell (53, 54). In addition, preterm neonates 
are exposed to various olfactory and gustatory stimuli such as 
disinfectants and gastroesophageal reflux. All these factors might 
lead to an inadequate stimulation of the chemosensory system 
in preterm neonates. Future studies should clarify whether the 
premature exposure with extrauterine stimuli alters the matura-
tion of the chemosensory system and/or the mucosal immune 
response.

LONg-terM eFFects OF PreterM 
BirtH ON cHrONic iNFLAMMAtOrY 
DiseAses

increased risk of Asthma in Preterm 
infants
A meta-analysis of 31 birth cohorts showed that preterm birth is 
associated with an increased risk of wheezing (OR, 1.34 [95% CI, 
1.25–1.43]) and school-age asthma (OR, 1.40 [95% CI, 1.18–1.67]) 
(9). Asthma and wheezing are considered a syndrome comprising 
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multiple phenotypes rather than a single disease (55). The clini-
cal presentations of bronchopulmonary dysplasia (BPD), which 
affects approximately 10–24% of all VLBW infants in Europe (56) 
and bronchial asthma overlap. Thus, bronchial hyperreactivity 
observed in preterm children may be caused by pathophysi-
ological mechanisms other than atopic asthma. This hypothesis 
is supported by the findings of Siltanen et al., who observed that 
the incidence of atopy, defined as a positive skin prick test and/
or elevated levels of serum IgE, specific IgE, eosinophil cationic 
protein or eosinophil count, was lower in 10-year-old children 
who were born as VLBW infants than in term children (25, 57). 
Moreover, Rosas-Salazar et  al. reported that bronchial asthma 
was frequent in atopic preterm children, but not in non-atopic 
preterm children (57). The airway hyperresponsiveness was 
only associated with airway inflammation (defined as elevated 
fractionated exhaled NO) in atopic preterm children, but not in 
non-atopic individuals (58).

Preterm neonates are exposed to multiple risk factors for 
asthma development, for example, cesarean delivery (CD), 
antibiotic use, and viral infections. Long-term studies are neces-
sary to disentangle the impact of prematurity and the multiple 
postnatal factors on the risk of asthma development.

There has been a global rise in CD rates from 6.7% in 1990 to 
19.1% in 2014 (59). CD significantly alters the immune–micro-
biota interplay of the newborn and shapes the immunological 
development.

Cesarean delivery is associated with asthma later in life. A 
meta-analysis of 23 studies revealed that children born by CD had 
a 20% higher risk of developing asthma compared with those born 
vaginally (60). This association was independent of confounding 
factors such as duration of breast feeding, maternal smoking and 
low birthweight. In a recent population-based data-linkage study 
of 321,287 term singleton infants, offspring born by planned CD 
were at increased risk of asthma (OR, 1.22 [95% CI, 1.11–1.34]) 
and salbutamol inhaler prescription at age 5 years (OR, 1.13 [95% 
CI, 1.01–1.26]) as compared with infants born vaginally (61).

Cesarean delivery increases the risk of obesity later in life. 
Obesity is also a risk factor for asthma. In the US Growing-Up-
Today-Study (n =  22.068 individuals, 22.3% CD), planned CD 
was associated with an increased risk of obesity (OR, 1.30 [95% 
CI, 1.09–1.54]) (62). Pathophysiological links between obesity 
and asthma are complex and include reduced lung function, 
increased risk of gastrointestinal reflux, and a common pro-
inflammatory state.

Cesarean delivery is associated with gut dysbiosis as a potential 
mediator for asthma risk (63). Infants born after CD, specifically 
those born before rupture of the membranes, are colonized with 
bacteria typical for the skin flora. By contrast, vaginal delivery 
leads to colonization with bacteria resembling the mother’s rec-
tovaginal flora with predominance of Lactobacilli and a higher 
flora/microbiological diversity (64). In addition, breast milk feed-
ing is often delayed in CD infants hampering the physiological 
establishment of the microbiome. A pilot study in which infants 
delivered by CD were exposed to maternal vaginal fluids at birth 
showed that vaginal microbes can be artificially introduced into 
the infant’s gut (64). The long-term effects of this approach need 
to be evaluated.

Cesarean delivery may also have a direct impact on the 
systemic immune function of neonates. However, assigning a 
molecular cause–effect relationship is difficult. A piglet model on 
pre-labor CD showed reduced expression of IFN-γ and a trend 
toward higher levels of TNF-α as compared with those born vagi-
nally (65). Moreover, CD is associated with decreased monocyte 
receptor expression (TLR-2 and TLR-4), which is an essential part 
of innate immunity (66).

These aspects emphasize the idea that early immune–micro-
biota interaction is a “window of opportunity” in the promotion 
of long-term health.

Preterm neonates suffer from more viral infections. Respiratory-
syncytial virus and rhinovirus, in particular, are associated with 
a greater risk of recurrent wheeze and asthma (67–69). BPD is 
an inflammatory disease of the lungs that develops in preterm 
neonates under the influence of barotrauma, volutrauma, and 
oxygen toxicity. As a result, the lung develops fibrosis, bronchial 
hyperreactivity, and an altered microbiome (70). These factors 
are likely to contribute to the increased susceptibility to viral 
bronchitis and bronchiolitis (67–69).

Irrespective of any underlying BPD, viral infections are associ-
ated with higher morbidity and mortality in premature infants. 
In retrospectively collected clinical data, Perez et al. showed that 
very premature children (<32 weeks) had a higher probability of 
wheezing and a higher frequency of rhinovirus and respiratory-
syncytial virus infections in the first 3  years of life, relative to 
preterm (32–37 weeks) or full-term (>37 weeks) children (71). 
Moreover, rhinovirus infection in severely premature children 
was associated with elevated Th2 (IL-4 and IL-13) and Th17 (IL-
17) cytokines (72), a pattern that can be also observed in atopic 
asthma (73).

reduced risk of Atopic Dermatitis  
in Preterm Neonates
Atopic dermatitis affects 20% of all children in industrialized 
countries (74). The risk of atopic dermatitis is significantly 
reduced in preterm neonates (7, 8, 27). Atopic dermatitis is a mul-
tifactorial disease, thus the incidence may be lower in preterm 
neonates for a number of local and systemic reasons.

After birth, transepidermal water loss, stratum corneum 
hydration, and skin-pH are differentially regulated in various 
anatomical regions based on the environmental surroundings, 
which differ from the relatively constant intrauterine exposure 
to amniotic fluid (75). Moreover, the stratum corneum is formed 
only weeks after birth (76), and skin surface cytokine levels differ 
between preterm and term neonates (77). Little is known about 
the cutaneous immune system in preterm neonates, but it can 
be hypothesized from studies with disinfectants (78) that tran-
sepidermal penetration of environmental antigens is increased 
in preterm neonates. These factors influence the growth of skin 
commensals, and consequently, the skin microbiome differs 
between preterm and term neonates (79, 80).

In addition, systemic factors such as nutrition may influence 
the risk of atopic dermatitis. Many preterm neonates are not 
exclusively breast-fed. Prolonged exclusive breast feeding is 
associated with a higher incidence of atopic dermatitis (81–83). 
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It remains unclear whether partial breast feeding, which is fre-
quently used for preterm neonates, could lower the risk of atopic 
dermatitis (83).

In summary, preterm birth and early weaning from breast milk 
are both factors that increase the exposure to a greater variety of 
antigens, thus reducing the risk of developing atopic dermatitis. 
Possibly, the premature exposure to a skin microbiome, which 
differs from mature-born infants, can trigger local immune reac-
tions in preterm neonates that prevent the later development of 
atopic dermatitis in conjunction with systemic factors.

cONcLUsiON AND FUtUre DirectiONs

Due to care under highly controlled conditions, preterm neonates 
are a distinct group of patients that can be used as a model to 
discern (epi-) genetic factors from environmental changes and 
from maturation-dependent changes in the immune system. 
Short-term and long-term influences of preterm birth can be 
measured by comparison to term born children. The influence of 
preterm birth on the developing immune system is poorly under-
stood but may imprint the risk for immune-mediated diseases 
later in life (84). Future research should systematically address 
immunological pathways in the fetus (prenatal), in the preterm 
neonate and in the mature-born neonate to discern changes that 
were caused by maturational programs from those that were trig-
gered by premature exposure to the extrauterine environment. 
The clinical outcome in relation to immune diseases should be 
assessed, furthering our understanding of the perinatal influ-
ences that have a long-term effect on the inflammatory response.

It remains unclear why preterm neonates have a reduced risk 
of atopic dermatitis and atopy defined as elevated serum IgE, 
specific IgE, and skin prick test (27). However the increased risk 
of asthma in preterm neonates is most likely not mediated by an 
atopic pathophysiology.

The following questions should be addressed in future studies:

 (1) Which factors are responsible for the epidemiological dif-
ferences between asthma and atopic dermatitis in preterm 
children? In addition to thorough clinical phenotyping and 
lung function testing, it is essential to include objective 
analyses for sensitization such as serum IgE, specific IgE, and 
a skin prick test.

 (2) How are the various asthma and atopic dermatitis pheno-
types distributed in preterm children?

 (3) Is the incidence of autoimmune disease altered in individuals 
that were born prematurely?

 (4) What effect do the microbiome, epigenetics, and other 
mechanisms have in imprinting the immune system of 
preterm neonates?

These studies could provide important insights into the mech-
anisms of immunological imprinting and potential therapeutic 
interventions to lower the risk of immune-mediated diseases not 
just in preterm neonates but in the wider population.
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