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Abstract 

Purpose Primary Sjogren’s syndrome (pSS) is a prevalent autoimmune disease. The immune dysregulation it causes 
often leads to the development of diffuse large B-cell lymphoma (DLBCL) in clinical practice. However, how it con-
tributes to these two disorders at the molecular level is not yet known. This study explored the potential molecular 
mechanisms associated with the differences between DLBCL and pSS.

Patients and methods Gene expression matrices from discovery cohort 1, discovery cohort 2, and the valida-
tion cohort were downloaded from the GEO and TCGA databases. Weighted gene coexpression network analysis 
(WGCNA) was performed to identify the coexpression modules of DLBCL and pSS in discovery cohort 1 and obtain 
shared genes. GO and KEGG enrichment analyses and PPI network analysis were performed on the shared genes. 
Immune-related genes (IRGs) were intersected with shared genes to obtain common genes. Afterward, common 
genes were identified via machine learning methods. The immune infiltration analysis, miRNA-TF-hub gene regulatory 
chart, gene interactions of the hub genes, and gene‒drug target analysis were performed. Finally, STAT1 was identi-
fied as a possible essential gene by the above analysis, and immune infiltration and GSEA pathway analyses were 
performed in the high- and low-expression groups in discovery cohort 2. The diagnostic efficacy of the hub genes 
was assessed in the validation cohort, and clinical samples were collected for validation.

Results By WGCNA, one modular gene in each group was considered highly associated with the disease, and we 
obtained 28 shared genes. Enrichment analysis revealed shared genes involved in the viral response and regulation. 
We obtained four hub genes (ISG20, STAT1, TLR7, and RSAD2) via the algorithm. Hub genes and similar genes are pri-
marily involved in regulating type I IFNs. The construction of a miRNA-TF-hub gene regulatory chart revealed that hsa-
mir-155-5p, hsa-mir-146b-5p, hsa-mir-21-3p, and hsa-mir-126-3p play essential roles in both diseases. Hub genes were 
differentially expressed in B-cell memory according to immune infiltration analysis. Hub genes had a strong diagnos-
tic effect on both diseases. STAT1 plays an essential role in immune cells in both diseases.

Conclusion We identified hub susceptibility genes for DLBCL and pSS and identified hub genes and potential thera-
peutic targets that may act as biomarkers.
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Introduction
pSS is one of the most prevalent autoimmune conditions. 
The disease affects 61 per 100,000 people, is more preva-
lent in females than in males, and occurs more frequently 
after the age of 50 [1]. It primarily affects the exocrine 
glands, such as the salivary and lacrimal glands. Hence, 
the most prominent presentation signs are ocular and 
mouth dryness. pSS may influence nearly every organ 
system in the body and result in tiredness, depression, 
and impaired physical function, all of which harm qual-
ity of life [2]. Interstitial pneumonia, arthritis, vasculitis, 
nervous system involvement, and kidney involvement are 
systemic manifestations of pSS. The most severe compli-
cation of pSS is non-Hodgkin lymphoma (NHL), which 
occurs in 5% of patients [3]. DLBCL has been demon-
strated to be a common NHL in pSS patients [4]. How-
ever, the underlying molecular biological mechanisms 
remain unclear.

Research [5, 6] has shown that excessive B cells in pSS 
patients cause immune complex deposits and increase 
DLBCL risk. Fourteen years from the diagnosis of pSS to 
DLBCL are needed. The five-year survival rate of DLBCL 
patients is 37.5%. pSS resulting from DLBCL is inde-
pendent of prior treatment, and persistent stimulation 
by chronic antigens contributes to this severe complica-
tion [7]. In 75% of patients, DLBCL is the most common 
aggressive NHL [5]. Its histological structural features are 
divided into diffuse growth and structural destruction of 
the lymph nodes. DLBCL can be divided into activated 
B-cell (ABC) and germinal centre B-cell (GCB) subtypes. 
ABC DLBCL is characterized by activation of the NF-κB 
signalling pathway [8]. R-CHOP (rituximab plus cyclo-
phosphamide, doxorubicin, vincristine, and prednisone) 
can be used to treat two-thirds of DLBCL patients in the 
clinic [9]. Approximately 30% to 40% of treated DLBCL 
cases recur, and 10% are primary refractory DLBCLs [10].

The aetiology of the onset of pSS is still unknown, and 
numerous variables are believed to contribute to dis-
ease development. Long noncoding RNAs (lncRNAs) 
are RNA transcripts with more than 200 nucleotides 
and no protein coding. LncRNAs are functional units 
that significantly affect the function and behaviour of 
cells [11]. MicroRNAs (miRNAs) are short RNAs con-
sisting of approximately 20 nucleotides that regulate the 
transcription of target genes upon expression [12]. In 
addition, lncRNAs and miRNAs have been linked to the 
pathogenesis of pSS [13, 14]. Lymphocyte abnormali-
ties, such as B-cell hyperactivation, the production of 
serum polyclonal gammaglobulinemia, increased free 

light chains, and increased autoantibodies, such as SSA 
and SSB, are responsible for the development of pSS, and 
patients have an increased risk of B-cell lymphoma [15]. 
 CD4+ T [16], Th17 [17], and Treg cells [18] are associated 
with the development of pSS. Additionally, infections can 
also increase the risk of pSS. Hepatitis C virus (HCV), 
Epstein–Barr virus (EBV), cytomegalovirus (CMV), and 
human T-lymphotropic virus-1 (HTLV-1) may cause sali-
vary gland infections and lead to pSS [19, 20].

This study aimed to identify potential biomolecu-
lar mechanisms involved in the development of pSS 
into DLBCL through transcriptomics. We performed 
WGCNA, identification of hub genes, enrichment analy-
sis, construction of PPI networks, miRNA-TF-hub gene 
regulatory maps, immune cell infiltration evaluation, and 
validation of the hub genes via datasets downloaded from 
public databases. Hub genes affecting both diseases were 
identified, and their molecular mechanisms and func-
tions were investigated. We also speculate that STAT1 
may play a vital role in both diseases. This study provides 
new insights into the analysis of pSS development in 
DLBCL patients at the B-cell level. The study flow chart 
is shown in Fig. 1.

Materials and methods
Data source and processing
The Gene Expression Omnibus (GEO) database con-
tains high-throughput gene expression microarray data 
uploaded by researchers [21]. We designed the following 
search strategy to collect suitable datasets from the GEO 
database: first, the dataset must contain case and control 
groups, and the number of samples in each group must 
be more than ten to minimize errors in the WGCNA; 
second, the samples were derived from B cells, and tran-
scriptomic analysis was performed; third, the dataset 
contained raw data for subsequent analysis. Finally, the 
datasets GSE12195 [22], GSE135809 [23], GSE56315 [24], 
and GSE199868 were adopted for the study. To analyse 
the impact of immune infiltration on both diseases, the 
DLBCL dataset of RNA sequencing (RNA-seq) data down-
loaded from The Cancer Genome Atlas (TCGA) database 
and the GSE154926 dataset were selected for subsequent 
analysis. Datasets with excessive differences in expression 
ranges were log2 normalized. Six datasets were annotated 
with gene symbols through platform information.

Weighted gene coexpression network analysis
Weighted gene coexpression network analysis (WGCNA) 
can divide highly related genes into several gene modules 
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and analyse the module eigengene (ME) in correlation with 
external traits [25]. Absolute median differences were cal-
culated for the GSE12195 and GSE135809 datasets, and the 
top 5000 genes were selected for WGCNA. The R-based 
(version 4.2.2) WGCNA package plots the sample clusters 
and removes outlier samples. There were no outliers in 
the DLBCL group, and two outlier samples were removed 
from the pSS group. Next, a scale-free grid was drawn, and 
a suitable soft threshold (β) was calculated via the pickSoft-
Threshold function, with β = 3 in the DLBCL group and 
β = 16 in the pSS group. Modules with > 75% similarity were 
combined to plot the clustering results. Finally, the clini-
cal traits of the two groups were collated, and correlations 
between ME and clinical traits were calculated.

Identification and analysis of genes common to DLBCL 
and pSS
Based on the results of WGCNA, shared genes were 
identified by plotting Venn diagrams through selected 
MEs with high correlation coefficients. The clusterPro-
filer package in R was used for Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis of the shared genes [26, 27]. p < 0.05 
was considered statistically significant, and the results 
were visualized.

The String database is a database used to study pro-
tein interactions and construct protein‒protein interac-
tion (PPI) networks. PPI networks of the shared genes 
were created via the String database. The genes were 
visualized via Cytoscape software (version 3.9.1), and the 
importance of the common genes was analysed via the 
CytoNCA plugin betweenness (BC) algorithm.

Identification and analysis of hub genes
IRGs were downloaded from the ImmPort database to 
explore the immunological aspects of both diseases. 
Shared genes were intersected with IRGs to obtain com-
mon genes. The common genes were analysed via the 
last absolute shrinkage and selection operator (LASSO) 
logistic regression and support vector machine recursive 
feature elimination (SVM-RFE) machine learning meth-
ods. The results of the two methods were combined to 
obtain the hub genes. The Lasso analysis parameters were 
alpha = 1 and nlambda = 100, and lambda.min was cho-
sen as the best lambda.

GeneMANIA is a website that can analyse gene func-
tions and identify similar genes [28]. Related gene analy-
sis of the hub genes was performed via GeneMANIA. 
The DGIdb website [29] can be used to explore drugs that 
act with target genes.

Fig. 1 Flow chart of the experimental design
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Construction of a regulatory chart for miRNA‑TF‑hub genes
The Human microRNA Disease Database (HMDD, Ver-
sion: 3.2) [30] provides access to disease-associated 
miRNAs. The shared miRNAs associated with the two 
diseases were accessed by searching the database above. 
The miRNAs of the hub genes were predicted via the 
TarBase database (V.3.0). The miRNAs obtained from 
both pathways were intersected to obtain key miRNAs 
for diseases affected by the hub genes. NETWORKan-
alyst is an online website that can plot gene regulatory 
networks [31]. The JASPAR database on this website was 
searched for transcription factors (TFs) with a high cor-
relation with hub genes. These miRNAs and TFs were 
selected, and a miRNA-TF-hub gene regulatory network 
was generated.

Immune cell infiltration evaluation
To further analyse the importance of immune cells in 
both diseases, an immune infiltration evaluation was per-
formed via the CIBERSORT package in R. CIBERSORT 
is a deconvolution algorithm that evaluates related genes 
[32]. The discovery cohort 2 was used to calculate the 
ratio of samples to 22 immune cells. The CIBERSORT 
results were retained at P < 0.05. Spearman’s statistical 
approach was used to calculate immune cell–immune 
cell and hub gene–immune cell correlations. The ggplot2 
package was used to visualize the results.

STAT1 evaluation
Differentially expressed gene (DEG) analysis of the vali-
dation cohort was performed via the limma package in 
R. We performed log2 transformation on the microar-
ray datasets and normalized them via the normalize-
BetweenArrays function (Supplementary Fig.  1). A P 
value < 0.05 and ∣log2fold change (log2FC) ∣ > 0.5 were 
considered to be associated with DEGs. The same genes 
were identified in discovery cohort 1 and the validation 
cohort. Taken together, the above data show that STAT1 
plays a crucial role in disease. Single-gene gene set 
enrichment analysis (GSEA) pathway enrichment analy-
sis was performed on STAT1. The dataset’s top quartile of 
STAT1 expression was set as the high-expression group, 
and the remaining quartile was set as the low-expression 
group.

Immunoinfiltration analysis was performed in discov-
ery cohort 2. The samples in each dataset were divided 
into high and low groups based on the median STAT1 
expression cut-off. Analyses of the differences in the 
expression of STAT1 between immune cells in the high 
and low groups and the correlation of STAT1 with 
immune cells were performed. With the GSVA package 
in R, the datasets were subjected to single-sample GSEA 
(ssGSEA) according to the grouping information. The 

high and low groups were analysed for correlations with 
the abundances of 28 immune cells, and p values were 
calculated via the Wilcoxon rank-sum test and Spear-
man’s rank correlation test.

Validation of the hub genes
Validation of hub genes in the validation cohort. The 
diagnostic efficacy of the hub genes in disease was 
assessed by plotting receiver operating characteristic 
(ROC) diagnostic curves. Next, we used the Wilcoxon 
rank-sum test to compare the gene expression of the 
hub genes between DLBCL and pSS patients to com-
pare whether the expression of the hub genes was sig-
nificantly different.

The Second Hospital of Shanxi Medical University 
Ethics Committee approved the experimental proto-
col, and all participants signed informed consent forms 
and agreed to participate in this study. A total of 9 
pSS patients (mean age of 44.67 ± 2.52  years), DLBCL 
patients (mean age of 47.00 ± 3.00  years), and healthy 
controls (mean age of 42.67 ± 2.52 years) were included. 
Patients with symptoms of dry mouth and dry throat 
lasting for more than three months who were posi-
tive for anti-SSA/anti-SSB antibodies were clinically 
diagnosed with pSS and classified into the pSS group. 
Patients confirmed as DLBCL through cellular immu-
nohistochemistry analysis of tissue pathology sections 
were classified into the DLBCL group. The healthy con-
trol group met the following criteria: normal results 
for complete blood count, urinalysis, liver function, 
kidney function, blood glucose, and blood lipid tests; 
and no history of cancer, chronic diseases, acute dis-
eases, recent medication, major surgery, or infectious 
diseases.

Two millilitres of fresh peripheral blood was collected 
from the patients, and the hub genes were detected via 
quantitative real-time PCR (qPCR) via the SYBR Green I 
dye method. Total RNA was extracted from the cell pel-
lets (1 ×  106) via the TRIzol reagent (Ambion) according to 
the manufacturer’s instructions. cDNA synthesis was per-
formed via the PrimeScript II RTase Kit (TAKARA). The 
qPCRs were conducted on a CFX-Connect 96 Real-Time 
PCR Detection System (Bio-Rad). Each 20-µL reaction 
mixture contained 10 µL of SYBR FAST qPCR Master 
Mix (KAPA Biosystems), 0.5  µM forward and reverse 
primers (sequences provided in the supplementary file), 
1 µL of cDNA template, and 8 µL of DNase/RNase-free 
water. The thermal cycling conditions were 95  °C for 
3 min, followed by 40 cycles of 95 °C for 5 s, 56 °C for 10 s, 
and 72  °C for 25  s. Melt curve analysis was performed 
from 65 °C to 95 °C, increasing by 0.5 °C every 5 s. Data 
analysis was conducted via Bio-Rad CFX Manager soft-
ware. The relative expression levels were calculated via the 
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ΔΔCt method, with β-actin serving as the internal control 
gene. All the samples were tested in triplicate. The differ-
ences in the expression of the hub genes between the pSS, 
DLBCL, and control groups were analysed to validate the 
hub genes derived from this study.

Statistical analysis
R software (version 4.2.2) and GraphPad Prism (version 9.5) 
were used for data processing and statistical analysis. The 
differences in the gene expression of the hub genes between 
the DLBCL and pSS samples were compared via the Wil-
coxon signed-rank test. ROC analysis of the hub genes was 
performed via the pROC package of R. In addition, we used 
one-way ANOVA to determine the differences between 
the pSS, DLBCL, and control groups via GraphPad Prism. 
P < 0.05 was considered statistically significant.

Results
Grouping of the datasets
GSE12195 and GSE135809 were used as discovery cohort 
1; TCGA and GSE154926 were used as discovery cohort 
2; and GSE56315 and GSE199868 were used as the vali-
dation cohort. Details of the dataset are displayed in 
Table 1.

Shared genes between DLBCL and pSS patients
WGCNA was used to analyse the datasets for both dis-
eases. The DLBCL group was divided into four colour 
modules, and the pSS group was divided into six colour 
modules (Fig. 2 A, D). A heatmap of correlations between 
traits and modules was then generated, containing corre-
lations and significance values (p values) of module genes 

Table 1 Data details

ID Database GSE number Platform Cases Controls Disease Tissue Group

1 GEO GSE12195 GPL570 73 20 DLBCL Tumour tissue Discovery cohort 1

2 GEO GSE135809 GPL570 24 24 pSS Peripheral blood Discovery cohort 1

3 TCGA 48 0 DLBCL Tumour tissue Discovery cohort 2

4 GEO GSE154926 GPL18673 43 7 pSS Minor salivary glands Discovery cohort 2

5 GEO GSE56315 GPL570 55 33 DLBCL Tumour tissue Validation cohort

6 GEO GSE199868 GPL20301 14 13 pSS Peripheral blood Validation cohort

Fig. 2 Weighted gene coexpression network analysis. A Cluster dendrogram of coexpressed genes in DLBCL; one colour block represents a class 
of genes. B Module–trait relationships in DLBCL that contain the corresponding correlation and p value. Red indicates a high correlation, and blue 
indicates a low correlation. C Scatterplot describing the relationship between gene significance and module membership in the turquoise module 
of DLBCL. D Cluster dendrogram of coexpressed genes in pSS; one colour block represents a class of genes. E Module–trait relationships in pSS 
that contain the corresponding correlation and p value. Red indicates high correlation, and blue indicates low correlation. F Scatterplot describing 
the relationship between gene significance and module membership in the black module of pSS. G Genes shared between the turquoise ME 
of DLBCL and the black ME of pSS
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with traits (Fig. 2 B, E). A total of 2945 MEs were selected 
for the turquoise modules in DLBCL patients, and 130 
MEs were selected for the black modules in pSS patients 
(Fig. 2 C, F). Both groups of MEs were positively corre-
lated with disease and negatively correlated with con-
trols, and both were significantly different. The two ME 
groups were intersected to obtain 28 shared genes affect-
ing both diseases (Fig. 2 G).

GO and KEGG enrichment analysis; construction of the PPI 
network
GO and KEGG analyses were performed on the shared 
genes. GO analysis revealed that these genes are involved 
mainly in viral defence, regulation, and interferon 
(IFN) production (Fig.  3 A, B). KEGG pathway analy-
sis revealed that these genes are associated with several 
viruses (Fig. 3 C, D). According to related studies [19, 20], 
these viruses are involved in the disease development of 
pSS and DLBCL.

The STRING database results were imported into 
Cytoscape after satisfying the enrichment p value: < 1.0e-
16, interaction score > 0.4, and exclusion of individual 
genes. The result of the PPI network, which included 16 
nodes with 96 edges, was obtained (Fig. 4 A).

Identification of hub genes
Seven common genes were obtained by intersecting 
shared genes with IRGs (Fig. 4 B). All seven genes were 
involved in related immune responses. The hub genes 
were screened via LASSO logistic regression and SVM-
RFE analyses (Supplementary Fig. 2), and four hub genes 
were ultimately obtained: ISG20, STAT1, TLR7, and 
RSAD2 (Fig. 5 A).

Gene interactions of hub genes and gene‒drug target 
analysis
We used the GeneMANIA website to search for similar 
genes among the hub genes and to analyse their func-
tions (Fig.  5 B). The results revealed that 77.64% of the 

Fig. 3 GO and KEGG enrichment analyses of the shared genes. A, B GO enrichment analysis of the shared genes. The dotted area represents 
the number of paths. Red indicates a low P value, and blue indicates a high P value. C, D KEGG enrichment analysis of the shared genes. The dotted 
area represents the number of paths. Red indicates a low P value, and blue indicates a high P value
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hub genes physically interacted with each other, and the 
main functions of the genes were type I IFN response 
and virus regulation. A total of 6 drugs associated with 
STAT1 and 12 drugs associated with TLR7 were obtained 
from DGIdb (Table 2).

Construction of the regulatory map of the miRNA‑TF‑hub 
genes
A total of 54 miRNAs associated with DLBCL and 16 
miRNAs associated with pSS were obtained from the 
HMDD. Eight miRNAs jointly affected both diseases. 
We then used the TarBase database (V.3.0) to pre-
dict miRNAs via the use of hub genes and obtained a 
total of 76 miRNAs associated with the hub genes. The 
above miRNAs were intersected to obtain four miRNAs 
that affect both diseases through hub genes, includ-
ing hsa-mir-155-5p, hsa-mir-146b-5p, hsa-mir-21-3p, 

and hsa-mir-126-3p. A review of the relevant litera-
ture revealed that hsa-mir-155-5p did not significantly 
change in pSS but was elevated in DLBCL. The other 
three miRNAs are elevated in both diseases. Nine 
highly associated TFs with hub genes were identified 
via the NetworkAnalyst website, and miRNA-TF-hub 
gene regulatory charts were generated (Fig. 5 C).

Immune cell infiltration evaluation
The changes in immune cells in DLBCL and pSS patients 
were analysed via the CIBERSORT algorithm to explore 
the level of immune cell infiltration in both diseases. In 
DLBCL, B-cell memory accounted for a large proportion, 
and plasma cells accounted for the largest proportion in 
pSS (Fig. 6 A, D). An examination of immune cell correla-
tions revealed a significant association between immune 
cells in both disorders (Fig. 6 B, E). STAT1 expression in 

Fig. 4 Analysis of shared genes. A PPI network diagram of the shared genes. A darker colour indicates a stronger genetic correlation. B Common 
genes between the shared genes and the IRGs. The appropriate copyright permission of these KEGG images was obtained and used in this study

Fig. 5 Analysis of the hub genes. A Hub genes from the intersection of LASSO and SVM-RFE; B Hub gene coexpression network. The lines represent 
the associated paths between two genes. The size of the gene represents importance. C Regulatory network of miRNA-TF-hub genes. Hub genes 
are indicated in red, miRNAs in blue, and TFs in green
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B-cell memory was negatively correlated with DLBCL 
but positively correlated with pSS. ISG20 expression in 
resting memory CD4 T cells was negatively correlated 
with both diseases. Conversely, RSA2 expression in B-cell 
memory was correlated with both diseases. In contrast, 
the expression of TLR7 in memory B cells and regulatory 
T cells (Tregs) was oppositely associated with both dis-
eases and identical in M1 macrophages (Fig. 6 C, F).

STAT1 assessment, GSEA pathway enrichment analysis, 
immune infiltration assessment, and ssGSEA
The analysis validated the common DEGs between the 
two diseases. A total of 128 DEGs were obtained, and it 
was discovered that both the DEGs and the hub genes 
shared STAT1 and USP18 (Fig.  7). An analysis of the 
PPI network chart and the miRNA-TF-hub gene regula-
tory map revealed that STAT1 plays an essential role in 
all of these genes. Therefore, STAT1 may play a vital role 
in the development of DLBCL from pSS. Next, single-
gene GSEA pathway enrichment analysis of STAT1 was 
performed for both disease groups. The potential role of 
STAT1 in this disease was investigated. In DLBCL, the 
STAT1 high-expression group was involved in the lyso-
some, glycosaminoglycan degradation, and chemokine 
signalling pathways (Supplementary Figs.  3 A-C), while 

Table 2 Hub genes and targeted drugs

ID Gene Targeted Drug Interaction_Types

1 STAT1 IPRIFLAVONE

2 STAT1 GARCINOL

3 STAT1 GUTTIFERONE K

4 STAT1 CHEMBL85826

5 STAT1 PICOPLATIN

6 STAT1 CISPLATIN

7 TLR7 IMIQUIMOD agonist

8 TLR7 RESIQUIMOD agonist

9 TLR7 ISATORIBINE

10 TLR7 HYDROXYCHLOROQUINE antagonist

11 TLR7 TELRATOLIMOD

12 TLR7 VESATOLIMOD

13 TLR7 AZD-8848

14 TLR7 LOXORIBINE agonist

15 TLR7 GSK-2245035 agonist

16 TLR7 CHLOROQUINE

17 TLR7 HYDROXYCHLOROQUINE SULFATE antagonist

18 TLR7 CPG-52852

Fig. 6 Immune infiltration evaluation of DLBCL and pSS patients. A The ratio of immune cells in DLBCL. Each column represents a patient. 
B Association among immune cells of DLBCL. Blue represents a positive correlation, and red represents a negative correlation. C Association 
between hub genes and immune cells in DLBCL. Blue represents a negative correlation, and red represents a positive correlation. D The ratio 
of immune cells in pSS patients. One column represents a patient. E Association among immune cells in pSS patients. Blue represents a positive 
correlation, and red represents a negative correlation. F Association between hub genes and immune cells in pSS patients. Blue represents 
a negative correlation, and red represents a positive correlation
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the low-expression group was involved in base excision 
repair, RNA degradation, and glycosylphosphatidylino-
sitol (GPI) anchor biosynthesis (Supplementary Figs.  3 
D-F). In pSS, the STAT1 high-expression group was 
involved in homologous recombination, pyruvate metabo-
lism, and the citrate cycle (Supplementary Figs. 3G-I), and 
the low-expression group was involved in drug metabo-
lism, other enzymes, ECM receptor interactions, and the 
MAPK signalling pathway (Supplementary Figs. 3 J-L).

To better analyse the importance of STAT1 in the 
immune microenvironment of DLBCL and pSS patients, 
the samples were divided into STAT1 high- and low-
expression groups, and CIBERSORT was used to 
calculate the differences in expression between the sub-
populations of immune cells. The results revealed that 
the four cell types expressed in DLBCL patients were 
significantly different from the seven immune cell types 
expressed in pSS patients (Fig. 8 A, G). To demonstrate 
the correlation of these cells with STAT1, we generated 
scatter plots. We found that activated memory CD4 T 
cells, M1 macrophages, activated memory CD4 T cells, 
and STAT1 were significantly positively correlated with 
DLBCL, whereas memory B cells were significantly 
negatively correlated with DLBCL (Fig.  8 C-F). In pSS, 
activated memory CD4 T cells, naïve CD4 T cells, follic-
ular helper T cells, gamma delta T cells, memory B cells, 
and M1 macrophages were positively correlated with 

STAT1, but resting Mast cells were negatively correlated 
with STAT1 (Fig. 8 I-O). Common immune cells include 
memory B cells, activated memory CD4 T cells, and M1 
macrophages. The infiltration levels of 28 immune cells 
in the high- and low-STAT1 expression groups were ana-
lysed via the ssGSEA algorithm. The data revealed that 
STAT1 expression was significantly different in activated 
CD4 T cells, activated dendritic cells, central mem-
ory CD4 T cells, central memory CD8 T cells, effector 
memory CD8 T cells, eosinophils, immature dendritic 
cells, MDSCs, natural killer cells, natural killer T cells, 
plasmacytoid dendritic cells, regulatory T cells, T folli-
cular cells, T cells, eosinophils, immature dendritic cells, 
MDSCs, natural killer cells, natural killer T cells, plas-
macytoid dendritic cells, regulatory T cells, T follicular 
helper cells, type 1  T helper cells, and type 2  T helper 
cells (Fig. 8B, H).

Verification of the hub genes
In the validation cohort, the diagnostic efficacy of the 
hub genes in disease was verified by plotting ROC diag-
nostic curves. In both groups, the hub genes had good 
diagnostic efficacy. We found that the area under the 
ROC curve (AUC) of STAT1 was greater than 0.7 in both 
groups (Fig. 9A, B). A comparative gene expression chart 
revealed that the number of hub genes was greater in 

Fig. 7 DEG analysis. A Volcano plot of DLBCL. Red represents upregulated genes. Blue represents downregulated genes; B Heatmap of DLBCL 
patients; C Volcano plot of pSS patients. Red represents upregulated genes. Blue represents downregulated genes. D Heatmap of pSS patients. E 
Intersection of DEGs and shared genes
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both pSS and DLBCL patients (Fig.  9 C). Validation by 
qPCR revealed statistically significant differences in hub 
genes between the two diseases, which was consistent 
with previous analyses (Fig. 9 D).

Discussion
This study analysed the pSS and DLBCL datasets pub-
lished in the GEO and TCGA databases (GSE12195, 
GSE135809, GSE154926, GSE56315, and GSE199868). 

Based on the WGCNA, the modular genes for each dis-
ease most associated with the clinical trait were selected. 
The genes shared by both diseases were machine learned, 
and four hub genes were selected: ISG20, STAT1, TLR7, 
and RSAD2. These four genes may play essential roles in 
the development of pSS and DLBCL. Finally, STAT1 is 
presumed to be highly important.

T and B cells in pSS patients infiltrate the salivary and 
lacrimal glands in large numbers and then secrete many 

Fig. 8 Immune cell infiltration evaluation via STAT1 and ssGSEA. A Comparison of gene expression between the high-STAT1 expression group 
and low-STAT1 expression group in DLBCL; B ssGSEA in DLBCL; (C-F) correlation scatter plot between STAT1 expression and four immune cell types 
(B memory cells, M1 macrophages, CD4 memory T cells, and CD8 T cells); (G) comparison of gene expression between the high- and low-STAT1 
expression groups in pSS; and (I-O) correlation scatter plot between STAT1 expression and seven immune cell types (B memory T cells, M1 
macrophages, resting Mast cells, activated memory T cells, naïve CD4 T cells, follicular helper T cells, and gamma delta T cells)
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cytokines (e.g., IFN-γ, TNF-α, and IL-6). A small num-
ber of patients will develop DLBCL [33]. The role of the 
immune system in DLBCL is reflected mainly in the 
tumour microenvironment and immune escape mecha-
nism [34]. According to previous reports, risk factors for 
the development of lymphoma in pSS patients include 
permanent salivary gland lymphocytic infiltration, lym-
phadenopathies, decreased C4 complement component 
levels, the presence of autoimmune antibodies, and lym-
phocytopenia [35]. Dysregulation of the immune system 
plays an essential role in the occurrence and development 
of pSS and DLBCL.

The signal transducer and activator of transcrip-
tion (STAT) family contains seven TFs: STAT1, STAT2, 
STAT3, STAT4, STAT5a, STAT5b, and STAT6. It is 
involved in embryonic development, the immune 
response, cell growth, and cell death [36]. STAT1 can 

induce and stimulate type I, II, and III IFN responses and 
is an important component of the pathogenic immune 
response [37]. In B cells and monocytes from patients 
with pSS, the sensitivity of STAT1 activation signals is 
increased such that patients have increased IFN in their 
blood [38]. Several studies have revealed an essential 
role for STAT1 in pSS [39–41]. Wu et  al. [42] reported 
that paeoniflorin-6’-O-benzene sulfonate (CP-25) inhib-
ited the JAK1-STAT1/2-CXCL13 signalling pathway and 
blocked B-cell invasion of the salivary glands, which could 
alleviate the symptoms of pSS. A recent genome-wide 
association study revealed a strong genetic correlation 
between STAT1 and Sjögren syndrome [43]. Jacob’s study 
demonstrated that STAT1 enhances IFN signalling, lead-
ing to chronic activation of T and B lymphocytes in pSS 
patients, and suggested that increased STAT1 expression 
is a biomarker [44]. The IFN pathway is a key pathogenic 

Fig. 9 Validation of the hub genes. A Diagnostic efficacy of hub genes in DLBCL; (B) diagnostic efficacy of hub genes in pSS; (C) differentiation 
of hub gene expression in pSS and DLBCL; (D) qPCR validation of hub genes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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pathway in pSS, and Chen et al. reported that activation 
of the JAK/STAT1 pathway can increase transcription of 
the BAFF promoter region, thus enhancing the role of 
IFN in pSS [40, 45]. B-aggressive lymphoma-1 protein 
(BAL1) and the ADP-ribosyltransferase BAL1/ARTD9 
are thought to be associated with DLBCL. Rosalba [46] 
demonstrated that BAL1 stimulates STAT1 phosphoryla-
tion and inhibits the IFNγ-STAT1-IRF1-p53 axis, leading 
to proliferation and drug resistance in DLBCL. Currently, 
miR130b inhibits the IFNAR1/p-STAT1 axis to downreg-
ulate OX40L expression [47]. STAT1 plays a key role in 
the immune escape mechanism in DLBCL. By regulating 
the STAT1 signalling pathway, the recognition and clear-
ance of tumours by the immune system can be enhanced. 
Combination therapy with immune checkpoint inhibitors 
(such as PD-1/PD-L1 inhibitors) and STAT1 inhibitors 
is expected to improve the effectiveness of immuno-
therapy [48, 49]. In addition, studies have shown that 
inhibiting the JAK-STAT signalling pathway can alleviate 
and improve the dryness symptoms of pSS patients and 
reduce the immune evasion and cell therapy resistance 
of DLBCL tumour cells [49, 50]. These results suggest a 
critical role for STAT1 in both pSS and DLBCL.

The ligand‒receptor interaction of IFN activates the 
JAK‒STAT signalling pathway, resulting in the upregu-
lation of a gene cluster called the interferon-stimulated 
gene (ISG) [51]. Interferon-stimulated gene 20 kDa pro-
tein (ISG20) is a nuclease active type I and type II inter-
feron-inducible protein that inhibits a broad spectrum of 
viruses [52]. ISG20 has RNase enzymatic properties that 
can directly degrade viral RNA [53]. The family of Toll-
like receptors (TLRs) are key pattern recognition recep-
tors (PRRs) that play a central role in the subsequent 
development of various immune responses [54]. TLR7 
has been closely linked to autoimmune diseases, and sev-
eral studies [55–57] have demonstrated that TLR7 plays 
an essential role in lupus. In pSS, the number of TLR7-
expressing B cells is increased, and patients exhibit type 
I and type II IFN features [41] such as thrombocytope-
nia [58]. TLR7 is elevated in patients’ salivary and parotid 
gland tissues, leading to hypofunction [59]. Radical 
s-adenosyl methionine domain-containing 2 (RSAD2) is 
a protein of IFN that is involved in antiviral activity and 
associated with endoplasmic reticulum function [60]. 
RSAD2 is upregulated in B cells from pSS patients and is 
positively correlated with interleukin-10 (IL-10). Inhibi-
tion of the NF-κb signalling pathway by knocking down 
RSAD2 reduces B-cell overactivity in pSS patients [61]. In 
addition, TLR7 upregulation leads to the upregulation of 
downstream RSAD2 in pSS patients [62].

All of the hub genes were found to be associated with 
IFN, which is an antiviral cytokine that responds to viral 

attacks by modulating the body’s immune response [63]. 
IFNs are divided into three categories: type I, type II, 
and type III IFNs. It has been demonstrated [64] that 
IFN causes immune dysregulation, leading to pSS. Type 
I IFN overexpression is thought to play an essential role 
in pSS [65]. Plasmacytoid dendritic cells (pDCs) are 
thought to be specialist producers of type I IFN [66], and 
monocytes respond to type I IFN. pDCs can increase the 
expression of TLR7 and TLR9 and are more suscepti-
ble to activation by stimuli. The biological effect of IFN 
is that STAT1 and 2 are activated and form dimers after 
IFN binds to the corresponding receptors. Next, it binds 
to interferon-regulatory factors (IRFs) and transcribes 
and activates ISGs [67]. In addition, B-cell activating 
factor (BAFF) also responds to type I and type II IFNs. 
In pSS, BAFF amplifies autoimmune antibodies and is a 
major driver of lymphoma escape [15, 68]. These find-
ings suggest a critical role for IFN in pSS. IFN-β also 
inhibits DLBCL via tumour necrosis factor-related apop-
tosis-inducing ligand (TRAIL) [69], and high expression 
of IFN-γ is associated with a protective effect against 
disease [70].

Because of the apparent antiviral effect of IFN, we also 
investigated the causes of pSS and DLBCL. Some of the 
literature has demonstrated the involvement of EBV in 
the pathogenesis of pSS [71] and that EBV is also a cause 
of DLBCL [72]. We believe that EBV may play a role in 
the progression of pSS to DLBCL, but further studies are 
needed.

Although pSS progresses to DLBCL, few studies have 
demonstrated a common molecular mechanism. This 
study analysed the hub genes involved in pSS develop-
ment into DLBCL from a bioinformatics perspective, 
aiming to explore the underlying molecular mechanisms 
of this disease. In addition, we explored the relevance 
of immune cell profiles and hub genes in immune cells 
in DLBCL and pSS patients via the CIBERSORT and 
ssGSEA algorithms. It is speculated that STAT1 may be 
an essential gene in both diseases.

Limitations
There are many limitations associated with the current 
study. First, this study relies on bioinformatics analysis 
of public datasets, which could generate some inconsist-
encies in the results. The public datasets used were from 
European populations, and it remains unclear whether 
the conclusions apply universally. Moreover, larger clini-
cal samples need to be collected to validate the accuracy 
of the results. In addition, this study focused only on 
blood hub gene differences in patients and did not further 
explore other differences. Finally, more molecular experi-
ments are needed to explore the mechanisms involved.
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Conclusions
We identified hub genes (ISG20, STAT1, TLR7, and 
RSAD2) involved in the progression of pSS to DLBCL. 
The analysis revealed that the hub genes are primarily 
involved in the viral response and regulation and are asso-
ciated with IFN. STAT1 may play a vital role in the devel-
opment of both diseases, and these findings may provide 
new insight for subsequent studies. Additionally, future 
work involves studying the association of STAT1 with 
DLBCL and pSS through cell and animal experiments and 
further exploring the mechanisms involving STAT1.
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