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Control can alter the eco-evolutionary dynamics of a target
pathogen in two ways, by changing its population size and by
directed evolution of new functions. Here, we develop a pay-
off model of eco-evolutionary control based on strategies of
evolution, regulation, and computational forecasting. We apply
this model to pathogen control by molecular antibody–antigen
binding with a tunable dosage of antibodies. By analytical solu-
tion, we obtain optimal dosage protocols and establish a phase
diagram with an error threshold delineating parameter regimes
of successful and compromised control. The solution identifies
few independently measurable fitness parameters that predict
the outcome of control. Our analysis shows how optimal con-
trol strategies depend on mutation rate and population size of
the pathogen, and how monitoring and computational forecast-
ing affect protocols and efficiency of control. We argue that these
results carry over to more general systems and are elements of an
emerging eco-evolutionary control theory.
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Control of human pathogens is a central goal of medicine.
Important examples are antimicrobial and antiviral thera-

pies and vaccinations; similarly, cancer therapies aim to control
tumor cell populations. Biological hosts, notably the human
immune system, face related issues of pathogen control. In most
cases, control targets pathogen populations with fast-paced repli-
cation and evolution. Its goal is to alter these dynamics: to
prevent or elicit an evolutionary process of the pathogen or to
curb the pathogen population by reducing its ecological niche.
Pathogen control has seen spectacular successes (e.g., in the
eradication of smallpox and in HIV combination therapies) (1).
However, control is often compromised by escape evolution of
the pathogen, highlighting the importance to factor pathogen
evolution into control protocols (2, 3). Promising evolutionary
avenues include adaptive pathogen control and cancer ther-
apy (4–6), vaccination, drug development and immunotherapy
strategies based on evolutionary predictions (7–10), and con-
trolled evolution of immune antibodies (11–13). However, we
need quantitative relations between leverage and cost of con-
trol in order to generate optimization criteria and protocols that
are comparable across systems. These are central elements of an
eco-evolutionary control theory.

Because population dynamics and evolution are stochastic
processes, any eco-evolutionary control operates on the likeli-
hood of future states. Successful control turns a likely process
into an unlikely one (e.g., the evolution of antibiotic resistance)
or vice versa (e.g., the evolution of a broadly neutralizing anti-
body). In a broader scientific context, directing a stochastic pro-
cess toward a future objective is a classic subject of control theory
(14, 15). There is a well-established conceptual and computa-
tional framework to optimize control protocols, given complete
knowledge of the dynamical rules and the ability to forecast likely
future outcomes. However, the swords of eco-evolutionary con-
trol are blunter, and establishing an appropriate control theory
faces new challenges. First, the control of an evolving population
is based, at best, on limited dynamical information and forecast-
ing capabilities. Here, we compare three modes of control update
dynamics: by Darwinian evolution of a biotic host system, by reg-

ulation (which requires sensing of the current pathogen state as
input), and by computation (which requires sensing and forecast-
ing). For human interventions, optimizing control is inextricably
linked to predictive evolutionary analysis, which is a topic of
high current interest but far from a comprehensive understand-
ing (16). Second, control theory has to factor in the underlying
biological mechanism of control. Host–pathogen interactions are
often based on biomolecular interactions, such as drug–target or
antibody–antigen binding (17). The form of these interactions
imposes specific constraints on control forces and their leverage
on the pathogen system, which are discussed below. Third, devel-
oping an appropriate dynamical model of control update and
pathogen response calls for a merger of control theory with eco-
logical dynamics and population genetics. These questions are
the topic of the present paper.

In the first part, we develop dynamical principles of eco-
evolutionary control. The evolution and population dynamics of
the pathogen are governed by intrinsic forces, including fitness
and entropy of pathogen traits, and by the additional selective
force imposed by control. We derive general minimum-leverage
relations that specify the strength of control needed to alter
the evolution of the pathogen toward the host’s control objec-
tive. The control force has a payoff function in the host system,
which includes the pathogen load and the cost of control, and is
updated in response to the pathogen. For control by evolution
or regulation, host and pathogen follow similar dynamical rules.
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The fixed points of the coupled dynamics, which are relevant for
long-term control, are coevolutionary (Nash) equilibrium points.
Through control by computation, however, a host can globally
maximize its integrated payoff over an extended control period,
often trading an initial dip for a later gain. We show that compu-
tational control defines a class of dynamical fixed points, called
computational equilibria, which differ from Nash equilibria and
reflect the added value of computation.

The second part focuses on applications to biomolecular con-
trol of pathogens. We analyze a minimal model of control, in
which the host produces antibodies that bind to the pathogen.
This model captures two complementary control modes, which
are associated with different host–pathogen interactions. For
ecological control, bound antibodies impede pathogen growth.
The control objective is to reduce the pathogen’s carrying capac-
ity; a deleterious collateral is the evolution of resistance. For
evolutionary control, bound antibodies reduce pathogenicity.
The control objective is the adaptive evolution of an antibody
binding site (epitope) in the pathogen population; a collateral
is the concurrent increase of the carrying capacity. We develop
an analytical solution of the minimal model for ecological and
evolutionary control. The solution includes maximum-payoff
stationary and time-dependent protocols for antibody dosage,
and it maps efficiency phase diagrams that delineate parameter
regimes of efficient and compromised control.

The control theory of the minimal model has a number of key
characteristics we argue to be general features of biomolecular
control. First, control phase diagrams contain an error thresh-
old, marking a switch in molecular antibody–antigen recognition
and a rapid change of control efficiency. Second, control by
computation shows striking differences to evolutionary and reg-
ulatory host protocols: computational equilibrium points can
reach higher payoff than Nash equilibria and in turn, be outcom-
peted by protocols with intermittent time dependence. Third,
protocols and success of control depend on the pathogen’s muta-
tion rate and population size, highlighting how control depends
on the underlying population genetics and ecology. We discuss
implications of these results for biomedical applications: how
information processing impacts mode and efficiency of control
and how measurements of core pathogen and host data can be
used to predict control outcomes.

Eco-evolutionary Control Theory
Eco-evolutionary Dynamics of Pathogens. Consider a population of
pathogens with a quantitative, heritable trait G that is a target of
host–pathogen interactions, including control. Selection on the
trait is described by a fitness landscape fp(G, ζ); this function
depends on a time-dependent control protocol ζ(t) generated
by a host system. The eco-evolutionary process of the pathogen
population has three components, which are detailed in Methods
and SI Appendix.

First, common mutations with individually small trait effects
∆G produce a heritable trait distribution ρ(G, t) that is acted
upon by selection. As described by [17] in Methods, this Darwinian
process generates a trait distribution peaked at its mean Γ(t),
which evolves by diffusion in a free fitness landscapeψp(Γ, ζ). This
landscape generates an evolutionary force given by its gradient,

∂Γψp(Γ, ζ) = 2N e
p (Γ) ∂Γ f̄p(Γ, ζ) + ∂ΓSp(Γ). [1]

The selective force component is generated by the mean pop-
ulation fitness f̄p(Γ, ζ); below, we will approximate f̄p(Γ, ζ)'
fp(Γ, ζ), which is appropriate for a peaked trait distribution.
The mutational component is generated by the entropy Sp(Γ),
defined as the log density of sequence states with trait value Γ.
This force measures changes in mutational target, which impede
evolution by gain of function (∂ΓSpdΓ< 0) but facilitate loss
of function (∂ΓSpdΓ> 0). The effective population size N e

p (Γ),

which equals the coalescence time of the evolutionary process,
enters the trait’s heritable variation and its Darwinian response
to selection and control (18, 19) (Methods).

Second, mutations of large effect ∆G shift the trait from
an initial value Γ1 to a value Γ2 = Γ1 + ∆G ; the substitution
process involves a mean trait Γ(t) = (1− x (t)) Γ1 + x (t) Γ2 and
a free fitness ψp(t) = (1− x (t))ψp(Γ1, ζ(t)) + x (t)ψp(Γ2, ζ(t))
that depend on the frequency x (t) of the mutant allele. While
small-effect mutations generate evolutionary trajectories toward
a local fitness maximum, large-effect mutations can cross fitness
valleys and bridge between different local maxima and their basins
of attraction. Large-effect trait shifts can also be generated by
pairs of a deleterious and a compensatory mutation. The relative
weight of diffusive and large-effect trait evolution will prove to be
an important determinant of eco-evolutionary control.

Third, the pathogen population dynamics follows a minimal
ecological model, which is given by [18] in Methods. This model
describes a stochastic birth–death process with basic reproduc-
tive rate f̄p(Γ, ζ) in an ecological niche of constraint c. Given a
static or slowly varying reproductive rate, these dynamics generate
population size fluctuations around a carrying capacity N̄ (Γ, ζ)'
f̄p(Γ, ζ)/c.

In an individual pathogen population, the controlled evolu-
tionary dynamics defines a control path (Γ, ζ) that tracks the
evolving trait Γ(t) and the underlying control protocol ζ(t). We
define the evolutionary flux over a time interval (t1, t2),

Θp(Γ, ζ) =

∫ t2

t1

∂Γ ψp(Γ(t), ζ(t)) Γ̇(t) dt , [2]

which sums the entropy increments and the scaled fitness incre-
ments generated by trait changes along the path (Γ, ζ). The
flux Θp(Γ, ζ) is an important building block of eco-evolutionary
control theory: it characterizes the likelihood of the evolution-
ary path Γ given the control protocol ζ. This is shown in SI
Appendix, building on previous results in stochastic thermody-
namics and evolutionary statistics (20, 21). Pathogen evolution
often involves large flux amplitudes (Θp� 1), which can be gen-
erated by strong selection or sufficiently complex evolutionary
traits. In this case, we obtain a deterministic criterion: observable
evolutionary paths have a nonnegative flux,

Θp(Γ, ζ)≥ 0; [3]

that is, the evolution of the pathogen acts to increase its instan-
taneous free fitness ψp . Importantly, this relation holds not
only for the full process but for any subperiod (t1, t2), as long
as flux amplitudes remain large. Pathogen evolution is often
counteracted by control acting to decrease ψp .

Minimum-Leverage Relations for Pathogen Evolution. Eco-
evolutionary control is exerted by altering selection: the
controlled system is governed by a free fitness landscape
ψp(Γ, ζ) =ψb(Γ) + fc(Γ, ζ), which contains a background
component ψb(Γ) and a host-dependent control component
fc(Γ, ζ). We now use the flux inequality [3] to determine lower
bounds on fc(Γ, ζ) (i.e., a minimum leverage of the controlling
onto the controlled system required for successful control).

A control protocol ζ can elicit a trait value Γe from an initial
value Γ0, if there is a trait path Γ from Γ0 to Γe that fulfils the flux
condition [3] for any segment covered in an arbitrary subperiod
(t1, t2). That is, the trait Γ(t) moves uphill in the local free fitness
gradient given by [1] (20). This amounts to the local minimum-
leverage condition

2N e
p (Γ) ∂Γfc(Γ, ζ)>−2N e

p (Γ) ∂Γfb(Γ)− ∂ΓSp(Γ), [4]

which compares the control force with the evolutionary forces
in the absence of control. In particular, the control force must
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bridge fitness valleys of the background landscape fb(Γ), which
often requires high transient control amplitudes. Control must
also overcome bottlenecks of the pathogen entropy landscape
Sp(Γ), which arise for evolution by gain of function. The deter-
ministic minimum-leverage condition [4] is valid up to small
fitness troughs that can be crossed by common mutations at low
effective population size.

If the population states Γ0 and Γe are linked by large-effect
mutations and if the control amplitude ζ changes slowly over typ-
ical substitution periods, the minimum-leverage relation [4] takes
the simpler form

ψp(Γe , ζ)>ψp(Γ0, ζ), [5]

which relates the free fitness values at the end points of the
evolutionary path Γ (SI Appendix) (20, 22). In the case of a
constant N e

p , this inequality further reduces to Θc + Θb > 0;
that is, the control leverage Θc = 2N e

p [fc(Γe , ζ)− fc(Γ0, ζ)] has
to exceed the drop in free fitness of the uncontrolled system,
−Θb =ψb(Γ0)−ψb(Γe). The end point minimum-leverage con-
dition applies whenever large-effect substitutions are frequent on
timescales relevant for the control task (i.e., for sufficiently large
populations and sufficiently long control periods). A case in point
is the maintenance of a controlled pathogen state Γe by station-
ary control. The condition [5] says that escape mutations from Γe

to Γ0 are suppressed by negative selection. In large populations,
this condition is often necessary for successful control. However,
as shown by an example given below, it can be undercut in small
populations when escape mutations are rare.

Fig. 1 illustrates the minimum-leverage relation for a mini-
mal model of control with a time-independent amplitude ζ. The
pathogen free fitness landscape ψp(Γ, ζ) has two local maxima,
the wild type Γwt and the optimal evolved state Γ∗e(ζ), which are
assumed to be linked by large-effect mutations. We consider two
complementary control scenarios: ecological control aimed at
reducing the pathogen load N̄p while maintaining the wild-type
trait Γwt against the evolution of a resistant state Γ∗e (Fig. 1A)
and evolutionary control aimed at maintaining an evolved equi-
librium Γ∗e against reversal to Γwt (Fig. 1B). In both cases, the
minimum-leverage relation [5] is seen to delineate a strong con-
trol (SC) regime, where the control objective is achieved, and a
weak control (WC) regime, where the objective is missed. These
regimes and their dependence on the control amplitude ζ will be
further discussed below.

The inequalities [4 and 5] specify the minimum leverage that
a controlling host system must exert on the controlled pathogen
system in order to elicit a feature that would not evolve sponta-
neously and to maintain this feature against reverse evolution
toward the wild type. These relations are formally related to
the maximum-work theorem of thermodynamics, which specifies
the minimum-work uptake (or maximum-work release) associ-
ated with a given free energy change of a thermodynamic sys-
tem. Unlike in thermodynamics, however, the minimum-leverage
relations say nothing about cost and benefit of control for the
controlling system. This requires explicit modeling of the host’s
control dynamics and of the host–pathogen interactions, to which
we now turn.

Control by Darwinian Evolution or Regulation. How can pathogen
evolution under control be optimized for the controlling host
system? To address this question, we have to specify a host pay-
off function and the resulting dynamics of the control amplitude
ζ(t). Eq. 19 in Methods specifies a stochastic update rule: ζ(t)
changes by small increments (i.e., by diffusion) in the payoff
landscape ψh(Γ, ζ). This local rule, which is analogous to the
evolution of the pathogen trait by common mutations, depends
only on the payoff gradient ∂ζψh(Γ(t), ζ(t)) at the instantaneous
point of the control path (Γ, ζ). It can be realized by Darwinian

A

B

Fig. 1. Modes and leverage of eco-evolutionary control. A pathogen pop-
ulation with mean trait Γ under control with amplitude ζ lives in a free
fitness landscape ψp(Γ, ζ) (orange lines), which is the sum of a background
component ψb(Γ) (blue lines) and a control landscape fc(Γ, ζ). An evolution-
ary path from the wild type Γwt to an optimal evolved state Γe* involves
the control leverage Θc = 2Ne

p[fc(Γe*, ζ)− fc(Γwt, ζ)] (orange arrows) and a

change in background free fitness, Θb =ψb(Γe*)−ψb(Γwt) (blue arrows).
(A) Ecological control, starting from an uncontrolled wild-type pathogen
(blue dots), has the objective of reducing the pathogen’s carrying capac-
ity (green arrows)—here by antibody binding—and the collateral effect of
resistance evolution (red arrows). SC (Θc + Θb < 0) suppresses the evolu-
tion of resistance and generates a stable wild type (orange dot; i.e., the
reverse path from Γe* to Γwt fulfils the minimum-leverage condition [5]). WC
(Θc + Θb > 0) triggers the evolution of resistance (orange circle). (B) Evolu-
tionary control has the objective of eliciting a new pathogen trait (green
arrow) and the collateral of increasing its carrying capacity (red arrow).
Dynamical control elicits the evolved trait along a path of positively selected
trait increments, which requires elevated transient control amplitudes (dot-
ted orange line). SC (Θc + Θb > 0) generates a stable evolved trait (orange
dot; i.e., the path from Γwt to Γe* fulfils the minimum-leverage condition
[5]). WC (Θc + Θb < 0) cannot elicit an evolved state (or triggers a reversal
to the wild type).

evolution in a host population, where the control amplitude is
a quantitative trait peaked at its population mean value ζ(t)
(12). In this case, the payoff function takes again the form of
a free fitness; i.e., ∂ζψh(Γ, ζ) = 2 N e

h (ζ) ∂ζ f̄h(Γ, ζ) + ∂ζSh(ζ),
where f̄h(Γ, ζ) is the mean population fitness, Sh(ζ) is an entropy
generated by the molecular encoding of the control amplitude,
and N e

h (ζ) is an effective population size (Methods).
Control by local update rules can readily lead to a local

maximum of the host’s payoff ψh(Γ, ζ). In contrast, so-called
greedy protocols globally maximize the instantaneous payoff, as
described by [20] in Methods. In a complex payoff landscape, this
involves bridging payoff valleys and requires large host popula-
tions that harbor large-effect control amplitude changes in their
standing variation. Otherwise, evolutionary update of the con-
trol amplitude becomes mutation limited and often prohibitively
slow. In appropriate host systems, as in the example given below,
global payoff maximization can be implemented more rapidly by
regulation. Given a recurrent pathogen, a trained regulatory net-
work can sense the instantaneous pathogen load and generate
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an approximately optimal control amplitude as output. Because
regulation is faster than the eco-evolutionary pathogen dynam-
ics, it produces a greedy maximization of the instantaneous host
payoff. These dynamics can again be modeled as a stochas-
tic or deterministic process in the payoff landscape ψh(Γ, ζ)
(Methods).

Given a control path (Γ, ζ), we define the host flux

Θh(Γ, ζ) =

∫ t2

t1

∂ζ ψh(Γ(t), ζ(t)) ζ̇(t) dt , [6]

in analogy to the pathogen flux given by [2]. Under a joint
stochastic process of pathogen evolution and (gradient or
greedy) instantaneous control, these fluxes take symmetric
roles. The total flux Θp + Θh is related to the probability
of the path (Γ, ζ) (SI Appendix). In the deterministic limit,
instantaneous-update protocols have a nonnegative flux,

Θh(Γ, ζ)≥ 0; [7]

that is, control acts to increase the instantaneous host payoff ψh .
These dynamics are often counteracted by pathogen evolution
acting to decrease ψh .

A stable fixed point (Γ†, ζ†) of deterministic pathogen evolu-
tion and instantaneous-update control satisfies the conditions

(Γ†, ζ†) = arg max
Γ

ψp(Γ, ζ†) = arg max
ζ
ψh(Γ†, ζ), [8]

where the maxima are to be taken over all trait values and control
amplitudes accessible over the relevant period. These condi-
tions define a Nash equilibrium of an evolutionary game with
payoff functions ψp and ψh (23). In the strong-selection limit
(N e

p ,N e
h � 1), they reduce to conditional maximization of the

fitness functions fp and fh . In other words, control by Darwinian
evolution or regulation leads to optimization problems familiar
from other coevolutionary and ecological systems.

Control by Computation. A more ambitious goal, and the subject
of control theory, is to optimize protocols toward an objective
defined over an extended period of the dynamics, including the
future. Here, we use a scoring function of the form

Ω(Γ, ζ) = Ψ(Γ, ζ)−λTδ(Γ, ζ). [9]

The first term is the time integral of the host payoff func-
tion, Ψ(Γ, ζ) =

∫
ψh(t) dt . For computational control of human

pathogens, this function may include survival, life quality, and
public health components. The second term penalizes the dura-
tion of controlled adaptation, Tδ(Γ, ζ), defined as the time
needed to reach a payoff maximum ψ∗h by a margin δ, with
a coefficient λ≥ 0. This term weighs in the speed of the con-
trol dynamics toward a given objective, which is often crucial in
biomedical applications but comes at the price of a reduced pay-
off score Ψ. Maximizing Ω requires computation preempting the
future evolution of the pathogen. This problem can be cast in
the form of a so-called Hamilton–Jacobi–Bellman (HJB) equa-
tion for the optimal score with given boundary conditions. In
Methods, we solve the HJB equation analytically for determinis-
tic control with scoring functions of the form [9]. Computational
protocols often steer through payoff valleys, trading transient
periods with Θh < 0 and a concurrent decline of ψh for a later
gain. Such protocols violate the flux condition [7]; hence, they
cannot be realized by any instantaneous-update rule in the pay-
off landscape ψh(Γ, ζ). As discussed below, this does not exclude
more complex evolutionary or regulatory circuits programming
investments for future payoff gains.

A stationary state (Γ∗, ζ∗) that maximizes Ω satisfies the
conditions

(Γ∗, ζ∗) = arg max
Γ

ψp(Γ, ζ∗) = arg max
ζ
ψh(Γ∗(ζ), ζ); [10]

that is, it is evolutionarily stable against pathogen escape muta-
tions and maximizes ψh by preempting pathogen response before
it happens. We refer to (Γ∗, ζ∗) as a computational equilibrium
point. As we will show below, the optimality condition [10] can
lead to different fixed points than the Nash equilibrium condition
[8]. Specifically, computational control can reach higher station-
ary payoff ψ∗h , but the control amplitude ζ∗ has to be main-
tained by computation against a payoff gradient. Explicitly time-
dependent computational control, including the protocols of
adaptive trait formation and metastable control discussed below,
can reach high payoff faster than evolutionary or regulatory pro-
tocols and maintain a higher average payoff than any stationary
protocol.

Pathogen Control by Antibodies
Antibody–Antigen Interactions. We now focus on a specific control
scenario, in which a host exerts control by producing antibod-
ies that bind to a pathogen (also referred to as antigen in this
context). The probability that the pathogen is bound,

Pbind(G, ζ) =
1

1 + ζ−1 exp(εG)
, [11]

depends on the pathogen trait G (with wild-type value Gwt = 0)
and the antibody density or dosage ζ (measured in units of the
dissociation constant or half-maximal inhibitory concentration
[IC50] of the wild-type pathogen). We consider two cases, which
cover the control modes illustrated in Fig. 1. For ecological con-
trol (ε= +1), G is a resistance trait (the log of the dissociation
constant; i.e., a population with evolved resistance [Γ∗e > 0] has
reduced binding). For evolutionary control (ε=−1), G is the
epitope affinity (the log of the association constant); this mode is
to elicit an evolved population (Γ∗e > 0) with increased binding.

Pathogen Fitness and Host Payoff Landscapes. We assume that host
and pathogen live in coupled landscapes of the form

fp(Γ, ζ) = fp,0− cpΓ− εqph Pbind(Γ, ζ),

ψh(Γ, ζ) =ψh,0− chζ − qhpLp(Γ, ζ). [12]

The pathogen has a background fitness fp,0 in the uncontrolled
wild type, a background cost cp > 0 per unit of the trait (the
linear form is taken for simplicity), and a binding-dependent con-
trol term fc =−εqph Pbind with a selection coefficient qph > 0.
The host has a background payoff ψh,0 in the absence of control
and pathogens, a production cost ch per unit of antibody, and
an interaction term depending on the pathogen load Lp(Γ, ζ)
with a selection coefficient qhp > 0. In the case of ecological
control, the load is generated by the full pathogen population,
Lp(Γ, ζ) = fp(Γ, ζ), where the pathogen is assumed to be at its
carrying capacity N̄ = fp/c given by [18] and measured in units
of c. In the case of evolutionary control, we use a load func-
tion Lp(Γ, ζ) = (1−Pbind(Γ, ζ))fp(Γ, ζ), assuming that bound
pathogens lose their pathogenicity. Fig. 2 shows the landscapes
of [12] for ecological and evolutionary control. In both cases, the
pathogen has two local fitness maxima (solid and dashed lines)
with a rank order depending on the antibody dosage.

Optimal Stationary Control. We now focus on pathogens that
can be contained by sustained treatment but cannot be eradi-
cated by a short-time protocol (this is, currently, an appropriate
assumption for HIV and some cancers). First, we compute the
maximum-payoff stationary control protocol, as given by the
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Fig. 2. Fitness and payoff landscapes of pathogen control. (A and B) Ecological control and (C and D) evolutionary control. Pathogen fitness fp (A and
C) and host payoff ψh (B and D) are shown as functions of the log control amplitude (antibody dosage), log ζ, and the pathogen trait, G. Specific control
loci: pathogen fitness minimum (dotted), pathogen fitness maxima (stable: solid; metastable: dashed; stability switch: horizontal lines), computational
equilibrium control (log ζ*, G*) (dots), Nash equilibrium of evolutionary control, (log ζ†, G†) (circles). Model parameters: fp,0 = 1, qph = 1/qph = 0.9, cp =

0.09, ch = 0.001 (ecological control); fp,0 = 1, qph = 0.9, qhp = 5/9, cp = 0.09, ch = 5 (evolutionary control).

computational equilibrium condition [10], which is relevant for
long-term treatment. Given a large pathogen population under
stationary control, the trait evolves to a dosage-dependent fit-
ness maximum, Γ∗(ζ) = arg maxΓ ψp(Γ, ζ)' arg maxΓ fp(Γ, ζ),
with a negligible contribution of the entropy. In the land-
scapes of [12], the resulting optimal control (Γ∗, ζ∗) can be
computed analytically ([27–30] in Methods). In the case of eco-
logical control, we find two control regimes, SC and WC, as
shown schematically in Fig. 1. These regimes are separated by
a transition at

c•h = qphqhp exp

(
1− qph

cp

)
. [13]

In the SC regime (ch < c•h ), the optimal protocol keeps the
pathogen in its wild type, maintaining antibody–antigen binding
and suppressing the evolution of resistance. In the WC regime
(ch > c•h ), control is compromised by evolved pathogen resis-
tance (this case is shown in Fig. 2A). At the transition, the
resistance trait switches from Γ∗= 0 (SC) to Γ∗= qph/cp − 1
(WC), akin to the order parameter of a first-order phase tran-
sition, while ψh , fp , and ζ∗ remain continuous (SI Appendix,
Fig. S1). Antibody–antigen binding switches from Pbind∼ 1
(SC) to Pbind� 1 (WC); that is, the transition can be inter-
preted as an error threshold of molecular recognition (24).
To map the phase diagram of optimal stationary control, we
define the control efficiency η∗= (ψh(Γ∗, ζ∗)−ψh,0)/δψmax as
the payoff gain relative to its maximum, δψmax = qphqhp , which
is reached for perfect control at no cost. Fig. 3A shows the
efficiency as a function of the cost parameters (cp , ch). The
error threshold c•h (cp) (yellow line) marks a rapid decline
from η∗∼ 1 in the SC regime to η∗� 1 in most of the WC
regime.

For stationary evolutionary control, we find a similar emer-
gence of two control regimes with an error threshold

c•h = qhp
cp
qph

(
1− cp

qph

)
exp

(
qph
cp
− 1

)
. [14]

In the SC regime (ch < c•h ), control maintains an evolved trait
Γ∗>Γwt with antibody–antigen binding beneficial to host and
pathogen. In the WC regime (ch > c•h ), control is too weak
to maintain the evolved trait, and the pathogen reverts to the
unbound wild type. At the transition, Γ∗ and ζ∗ switch, while
fp and ψh remain continuous (SI Appendix, Fig. S1). Fig. 3B
shows the control efficiency η∗= (ψh(Γ∗, ζ∗)−ψh,0)/(qhp fp,0)
as a function of the cost parameters (cp , ch). In this case, η∗ is a
decreasing function of both parameters (i.e., host and pathogen
cost impede evolutionary control). The error threshold c•h (cp)
marks the transition between η∗> 0 (SC) and η∗= 0 (WC).

Instantaneous-Update Control. Next, we consider the dynamical
accessibility of the computational equilibrium point. In the case
of ecological control, (Γ∗, ζ∗) is a stable fixed point of deter-
ministic pathogen evolution and instantaneous dosage update,
which satisfies the Nash equilibrium condition [8] (Methods).
Hence, this point can be reached by a control dynamics based on
host evolution or regulation; examples of such control paths are
shown in Fig. 4A. In the SC regime, the pathogen wild type is sta-
ble (Γ∗= Γwt); the conditional host payoff landscape ψh(Γwt, ζ)
has a single peak ζ∗ that can be reached by local or greedy
instantaneous-update protocols. In the WC regime, control paths
start with a large-effect escape mutation of the pathogen (orange
arrow), which is followed by a coupled dynamics of common
pathogen mutations and antibody dosage changes. A control
path with local stochastic update gets localized to (Γ∗, ζ∗);
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A B

Fig. 3. Phase diagrams of stationary control. (A) Ecological control and (B) evolutionary control. The control efficiency η* is shown as a function of the
(scaled) cost parameters cp and ch. A yellow line marks the error threshold c•h (cp) between WC and SC.

deterministic paths with local or greedy update converge to the
same point. Host payoff and pathogen fitness evolve in a non-
monotonic way along these control paths (Fig. 4B), reflecting
the mutually deleterious effects of host and pathogen in the
landscapes of [12]. The host and pathogen fluxes, however, are
positive throughout in accordance with the flux conditions [3,
4, and 7] (Fig. 4C). In this case, computational update gener-
ates control paths with a similar convergence to the fixed point
(Γ∗, ζ∗); evolutionary, regulatory, and computational protocols
have only transient differences in their time-dependent efficiency
(SI Appendix, Fig. S2). We conclude that the ecological con-
trol equilibrium can be dynamically reached and maintained in
a robust way.

Computational Control of Adaptive Trait Formation. In contrast,
the optimal stationary (computational equilibrium) protocol
(Γ∗, ζ∗) for evolutionary control in the SC regime is not a Nash
equilibrium of deterministic pathogen evolution and instanta-
neous dosage update. Hence, it cannot be reached or maintained
by an evolutionary or regulatory host system. Time-dependent
computational protocols maximizing the score Ω(Γ, ζ) in the fit-
ness and payoff landscapes [12] can be evaluated analytically
(Fig. 4D and Methods). These protocols have two phases. Starting
from a wild-type pathogen, we apply a high initial dosage ζin to
trigger an intermediate-effect gain-of-function mutation of the
pathogen that establishes antibody binding at a trait value Gin

(orange arrow). This initial-phase protocol flattens the pathogen
fitness valley for trait formation but generates a drop in host pay-
off (Fig. 4E). In a second “breeding” phase, small-effect trait
and dosage changes increase host payoff and steer the control
path toward the stationary point (Γ∗, ζ∗). The pathogen evo-
lutionary flux is positive throughout this process, following the
conditions [3 and 4]. The host flux has negative increments in
the initial phase and final phase, which violate the condition
[3] and mark strong deviations of the computational proto-
col from evolutionary or regulatory protocols (Fig. 4F). These
instantaneous-update protocols converge to a Nash equilibrium
point (Γ†, ζ†) or to the WC fixed point (Γwt, 0), both of which
have smaller payoff than the computational equilibrium protocol
(Γ∗, ζ∗) (SI Appendix, Fig. S2).

Computational protocols of adaptive trait formation maxi-
mize the score Ω by jointly tuning payoff and duration of the
initial and the breeding phase. The optimal protocol depends

on the speed scoring parameter λ; protocols with large λ steer
the pathogen along paths of near-maximal speed of trait evo-
lution (SI Appendix, Fig. S3). Importantly, the optimal protocol
also depends on the pathogen population size, which affects the
mutational supply in the adaptive process (SI Appendix, Fig. S3).
To map these effects, we evaluate the score of a time-dependent
path relative to the optimal stationary protocol, ∆Ω = ∆Ψ−
λTδ with ∆Ψ =

∫
[ψh(Γ(t), ζ(t))−ψ∗h ] dt ; we call (−∆Ψ) the

cost of adaptation. In Methods, we solve an extended HJB equa-
tion for ∆Ω with a maximum-likelihood approximation for the
initial phase, which uniquely relates the gain-of-function ampli-
tude Gin to the initial dosage ζin. These protocols have a scoring
function of the form

∆Ω =
1

θ
ω(θ,Gin/ε0), [15]

which depends on the sequence diversity of the pathogen trait,
θ= 2 µNe , and on the gain-of function trait measured in units of
the mutational scale ε0 (Methods). In small populations (θ. 1),
the maximum-score protocol has Gin/ε0∼ 1; larger values of
Gin are suppressed by an exponentially longer waiting time for
a gain-of-function mutation. In large populations (θ& 1), the
maximum-score protocol has Gin/ε0∼ log θ. This amplitude is
set by a simple rule: the optimal Gin is the largest adaptive
gain-of-function amplitude likely to be seeded from standing
variation of the initial pathogen population (Methods). That is,
the optimal protocol of adaptive trait formation eliminates the
bottleneck of waiting for de novo gain-of-function mutations
by circumnavigating the pathogen fitness valley (SI Appendix,
Fig. S4). Larger values of Gin are still suppressed by waiting time;
smaller ones require an excess control cost chζin and additional
breeding time. In both regimes, the cost of adaptation decreases,
and Gin monotonically increases with increasing θ (Fig. 4G).
We conclude that in small pathogen populations, adaptive
trait formation requires higher control effort and is more
costly.

Metastable Computational Control. Strikingly, optimal computa-
tional protocols can be time-dependent even for long-term con-
trol with the stationary objective of maximizing the host payoff
integral Ω = Ψ (we set λ= 0 here). As an example, consider
ecological control in the WC regime. The control protocols dis-
cussed above, which lead to the equilibrium point (Γ∗, ζ∗), apply
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Fig. 4. Control dynamics. (A–C) Ecological control by instantaneous-update protocols. (A) Control paths (Γ, ζ) generated by local deterministic (dashed
orange) and greedy (solid orange) control dynamics. These paths start with a pathogen escape mutation (gray square) and converge to the optimal sta-
tionary protocol (Γ*, ζ*) (red dot), which is a computational and a Nash equilibrium. (B) Time-dependent pathogen fitness, fp(t), and host payoff, ψh(t),
of these control paths. (C) Pathogen flux, Θp(t), and host flux, Θh(t). Both fluxes are monotonically increasing functions of the path coordinate Γ(t).
(D–G) Evolutionary control for adaptive trait formation. (D) Deterministic computational control path in the SC regime (orange line). This path maximizes
the score Ω(Γ, ζ) for given values of the speed parameter and of the pathogen sequence diversity (here λ= 0, θ= 1) (SI Appendix, Fig. S3). The initiation
phase (Γ≤Gin) with a gain-of-function mutation (gray square) is followed by a breeding phase (Γ>Gin); the path converges to the optimal stationary
protocol (red dot), which is a computational but not a Nash equilibrium. (E) Pathogen fitness, fp(t), and host payoff, ψh(t), along the computational control
path. (F) Fluxes Θp(t) and Θh(t) as functions of the path coordinate Γ(t). This path has negative increments of the host flux (∂Θ/∂Γ< 0) at the start and in
the final segment. (G) Cost of adaptation, (−∆Ω) (orange), and initial gain-of-function trait, Gin (blue), of the maximum-score computational protocol as
a function of the pathogen diversity, θ for λ= 0. (H–K) Metastable ecological control. (H) Time-dependent protocol ζ(t) with baseline dosage ζbase, boost
dosage ζres, and boost duration Tres (orange); pathogen escape mutant frequency x(t) (blue) using a detection threshold x(t)> 0.05 to initiate rescue boost
(dashed line). (I) Pathogen mean fitness, f̄p(t), and host payoff, ψh(t). (J) Fluxes, Θp(t) and Θh(t). (K) Efficiency of maximum-score metastable protocols, ηms

(orange), as a function of the pathogen diversity, θ, together with the efficiency of the optimal stationary protocol, η* (red dashed). For θ < θc, metastable
control outperforms stationary control. Parameters: ε0 = 1, others as in Fig. 2.

to sufficiently large pathogen populations that evolve resistance
by frequent escape mutations (Fig. 4A). In smaller populations,
such mutations become rare, and the pathogen will stay in a
metastable state (here, the wild type) over extended periods.
Computational control can reinforce metastability by deepen-
ing the pathogen fitness valley for escape mutations; we refer
to such protocols as metastable control. Provided we can detect
escape mutants at low frequency, we can keep the bulk pathogen
population permanently in the metastable state by a two-state
protocol (Fig. 4H). As long as no escape mutant is detected, we
apply a baseline antibody dosage ζbase to jointly curb pathogen
load and escape rates. After an escape mutant is detected
above a threshold frequency x0, we apply a rescue boost of
higher dosage ζres over a period Tres to drive that mutant to
loss. Metastable control shows intermittent drops in host payoff

(Fig. 4I) and flux (Fig. 4J), which mark strong deviations from
instantaneous-update protocols.

For metastable control over a long period T , the average score
relative to the optimal stationary state per unit of time, ∆ω=
∆Ω/T , can be written in the form

∆ω= ∆ωbase− θ cres, [16]

where ∆ωbase refers to the baseline protocol and cres > 0 is pro-
portional to the average payoff cost per rescue. This expression
governs the joint optimization of baseline and boost protocols
(Eq. 37 in Methods and SI Appendix, Fig. S4). For ∆ωbase > 0
and θ < θc = ∆ωbase/cres (i.e., at sufficiently low mutation rates
or in sufficiently small populations), metastable control out-
performs stationary control. This is shown in Fig. 4K, which
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compares the efficiency of maximum-score metastable and
stationary protocols, ηms and η∗, as functions of θ.

For evolutionary control in the WC regime, a similar protocol
can stabilize a metastable evolved trait Γe against reversal to the
wild type. Alternative protocols exploiting metastable pathogen
states include temporarily suspending control (25) or switching
to a secondary defense against escape mutants. All of these time-
dependent protocols depend on θ in a similar way, indicating that
metastable control becomes more effective in small pathogen
populations.

Discussion
In this paper, we solve the optimization problem for a minimal
model of pathogen control operating on realistic biomolecu-
lar host–pathogen interactions. Specific features of host and
pathogen biology enter the eco-evolutionary control theory
of this system at several stages. In particular, control mech-
anisms are based on physiological effects of host–pathogen
interactions—here, antibody–antigen binding—and the objective
functions of control, Eq. 12, account for the fitness and payoff
effects of these interactions. As we have shown, these biological
features strongly impact the eco-evolutionary control dynamics
and the efficiency of optimized protocols.

A salient feature of eco-evolutionary control is the emer-
gence of high- and low-efficiency parameter regimes separated
by an error threshold of molecular recognition (Fig. 3). This
behavior can be traced to the nonlinearities in the Hill func-
tion of antibody–antigen binding, Eq. 11. First, binding-mediated
control has a diminishing-return leverage, which is bounded
by the pathogen selection coefficient qph . Second, the control
cost depends exponentially on the chemical potential (log ζ),
which determines the evolved pathogen state Γe (Fig. 2). Hence,
the minimum-leverage control [5] has a moderate cost in the
SC regime but is too expensive or mechanistically impossible
in the WC regime. Because such nonlinearities are a generic
feature of biomolecular interactions, we expect error thresh-
olds to emerge also in more complex models of pathogen
control.

In biomedical applications of pathogen control, it is crucial
to predict the likely efficiency of control prior to any interven-
tion. Our results show that few independently measurable cost
parameters can inform such estimates. The pathogen cost param-
eters (cp and qph in the minimal model) are routinely measured
in dosage–response assays (26). The control cost parameter ch
can, for example, be estimated as the metabolic production cost
per unit of antibody (27, 28). The arguably most case-specific
parameter is the pathogen cost to the host. This parameter can
be measured by fitness assays in microbial systems but is more
complex to assess for human hosts.

Optimal control protocols and their efficiency also depend on
mutation rate and population size of the pathogen. Eqs. 15 and
16 describe opposing effects: adaptive formation of pathogen
traits becomes less costly in large populations; maintenance of
traits by metastable control is more efficient in small popula-
tions. These effects reflect differences between control strate-
gies. Evolutionary control aimed at eliciting a pathogen trait has
to circumnavigate valleys of the pathogen’s fitness and entropy
landscape in order to catalyze its adaptive dynamics. In contrast,
metastable control has to broaden fitness valleys surrounding
a metastable state in order to suppress pathogen adaptation
by escape mutations. In both cases, we can compute opti-
mized control paths by combining probabilistic, discrete jumps
across fitness valleys with continuous dynamics on smooth flanks
in between. These navigation principles and their computa-
tional implementation are expected to extend to strong-selection
control in more complex landscapes.

An equally important issue for control by humans and by
natural hosts is optimizing the control dynamics in tune with

the monitoring and computation capabilities of the host system
(29). Instantaneous-update dynamics following local payoff gra-
dients can often be realized efficiently by Darwinian evolution in
the host (i.e., by variation of and selection on antibody levels).
Protocols based on regulation can, in principle, circumnavigate
payoff valleys and implement an approximate maximization of
the instantaneous host payoff. However, signaling and regula-
tory networks require prior training by learning or by evolution,
and they generate an additional cost to the host. Optimiza-
tion of control toward future objectives depends, to various
degree, on computation. The minimal model displays the rel-
ative efficiency of these control modes. For ecological control,
the computational equilibrium point (i.e., the stationary state
of maximal host payoff) is also a Nash equilibrium and can
be reached by instantaneous-update protocols; for evolution-
ary control, this point can only be reached by computation. In
more complex systems, the success of human computational con-
trol is limited by the ability to predict pathogen evolution. An
example is vaccine selection for human influenza based on pre-
dictive analysis, where current methods have a prediction and
control horizon of about one year (8, 16). For biotic, nonhu-
man host systems, it remains a fascinating question how far
evolutionary and regulatory mechanisms can emulate control by
computation.

A case in point is metastable control, which realizes the time-
independent objective of maintaining a controlled pathogen
state by a time-dependent protocol responding to recurrent
pathogen attacks. In the control theory literature, this class of
protocols is known as closed loop control (14). Here, we have
solved a minimal model of metastable control, which main-
tains a metastable pathogen state against escape mutations by
a two-state protocol of baseline control and rescue boosts.
We find that metastable control can outperform the computa-
tional equilibrium protocol (Γ∗, ζ∗) under two conditions: there
is a metastable point of high host payoff (undercutting the
quasistatic minimum-leverage relation [5]), and escape mutants
have a substantial intrinsic cost (generating positive selection
for the metastable state during rescue boosts). In the mini-
mal model, an optimized resource allocation between baseline
and rescue protocols can only be achieved by computation. We
can compare this model with the adaptive immune system of
vertebrates, which controls multiple pathogens by a complex
pattern of resource allocation (30). From the perspective of
control theory, the immune system mounts a bilayer baseline
protocol of naive and memory B cells; control boosts involving
the evolution of target-specific high-affinity antibodies (affin-
ity maturation) respond to acute infections by specific antigens
(akin to escape mutations in the minimal model). Remark-
ably, affinity maturation continues for several weeks after an
infection, which is an investment toward future infections by sim-
ilar antigens. Together, adaptive immunity may be regarded as
an instance of metastable control by nested circuits of evolu-
tion (of antibody–antigen affinities) and regulation (of antibody
levels).

In summary, this paper establishes a conceptual frame-
work and infers navigation principles for eco-evolutionary
control based on a minimal model of host–pathogen inter-
actions with stationary control objectives. Several complex-
ities of biomedical control problems are not captured by
the minimal model. For example, the human immune sys-
tem has a complex antibody repertoire, and pathogens often
have multiple antigenic binding sites (microbial and viral epi-
topes, cancer neoantigens). This generates multiple antibody–
antigen interactions (i.e., multiple potential control chan-
nels with independent control amplitudes, leverage, and cost
parameters). Conversely, pathogens with a high mutation rate
often have multiple channels of escape mutations from a
given antibody (31). Consequently, the fitness and payoff
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landscapes of host and pathogen live in a multidimensional
parameter space; an appropriate control dynamics is to nav-
igate this space toward high-efficiency protocols. An impor-
tant example is the competitive selective dynamics of broadly
neutralizing and specific antibodies for HIV (11, 13). Another
layer of complexity arises for pathogens embedded in micro-
biota, which are multispecies systems with a tightly connected
ecology. The control of a given pathogen can perturb the entire
microbiota, generating cross-resistance of multiple pathogens
and complex collateral effects for the host (32). Gearing up
eco-evolutionary control theory to these systems is an important
avenue for future work.

Methods
Stochastic Pathogen Dynamics. We consider a population of pathogens with
a quantitative trait G, which has a peaked trait distribution ρ(G) character-
ized by its mean Γ and variance ∆. We describe the evolution of the trait
and the concurrent population dynamics in an ecological niche by coupled
stochastic equations for the mean Γ and the population size N,

Γ̇ = D
∂ψp(Γ, t)

∂Γ
+χΓ(t), [17]

Ṅ = f(Γ, t)N− cN2
+χN(t), [18]

with white noise χΓ(t),χN(t) of mean 0 and variance 〈χΓ(t)χΓ(t′)〉=
D δ(t− t′), 〈χN(t)χN(t′)〉= N δ(t− t′). By [1], the trait dynamics of Eq. 17
depend on the entropy landscape S(Γ), which is defined as the log den-
sity of states with trait value Γ, and the fitness seascape f(Γ, t), which
is often explicitly time dependent. The trait diffusion constant, D = Uε2

0,
is set by the total rate U and the mean square trait effect ε2

0 of muta-
tions at genomic loci encoding the trait (19, 33). The trait response to
selection, ∆ = 2DNe, is also proportional to the effective population size
Ne, which equals the coalescence time of the evolutionary process (18,
19). This quantity depends on the population size dynamics in a model-
dependent way, often generating an inhomogeneous response to selection,
∆(Γ) = 2DNe(Γ). The population dynamics of [18] depend on the fitness
f(Γ, t), which sets the basic reproductive rate, and the constraint parameter
c of the ecological niche. Given a static or slowly varying fitness function,
these dynamics generate population size fluctuations around a carrying
capacity N̄(Γ, t)' f(Γ, t)/c. Details of this stochastic calculus are given in SI
Appendix.

Instantaneous-Update Control Dynamics. The diffusive update rule for the
control amplitude takes the form

ζ̇= ∆h
∂fh(Γ, ζ)

∂ζ
+χζ , [19]

with white noise of mean 0 and variance 〈χζ (t)χζ (t′)〉= Dζ δ(t− t′), similar
to the stochastic trait dynamics given by [17]. Greedy update is defined by

ζmax(t) = arg max
ζ

fh(Γ(t), ζ) +χζ . [20]

The deterministic limit of these dynamics (Dζ = 0) is used in Fig. 4A;
stochastic control paths are shown in SI Appendix, Fig. S2.

Computational Control Dynamics. Given deterministic pathogen evolu-
tion and landscapes ψp(Γ, ζ),ψh(Γ, ζ) without explicit time dependence,
maximum-score control paths based on common mutations can be
computed from a reduced payoff function,

∆ψλ(Γ, ζ)≡ψh(Γ, ζ)−ψh*−λHδ(ψh*−ψh(Γ, ζ)). [21]

Here, ψh* is the payoff at the computational equilibrium, Eq. 10, and we
define Hδ(x) = 1 for x>δ and Hδ(x) = 0 otherwise. The optimal control
amplitude as a function of the trait is given by

ζ*(Γ) = arg max
ζ

∆ψλ(Γ, ζ)

Vp(Γ, ζ)
, [22]

where VΓ(Γ, ζ) = D ∂ψp(Γ, ζ)/∂Γ is the deterministic evolutionary speed in
[17]. The maximum payoff ∆ψλ*(Γ) = maxζ ∆ψλ(Γ, ζ) gives the reduced
score, relative to the optimal stationary protocol, of the optimal control
path linking an initial trait value G with the equilibrium value Γ*,

J(G) =

∫ Γ*

G

∆ψλ*(Γ)

Vp(Γ, ζ)
dΓ. [23]

These results are derived in SI Appendix.

Pathogen Equilibrium States. In the parameter regime of interest, the
pathogen fitness landscape of [12] has two local fitness maxima. 1) The wild
type Γ = 0 (vertical lines in Fig. 2) is assumed to be a boundary (i.e., the trait
evolution generates only values Γ≥ 0). 2) The evolved state Γe(ζ) (inclined
lines in Fig. 2) exists in the regime cp/qph < 1/4, which provides a bound to
the pathogen cost. Maximization of fp(G, ζ) with respect to G determines
two characteristics of the evolved state. First, the trait value Γe is shifted
by an amount re≡Γe(ζ)−G1/2(ζ) = log(qph/cp) with respect to the half-
binding point G1/2(ζ) (i.e., the trait value that has the IC50 value ζ). Second,
the error qe, which is defined as qe = Pbind for ecological control (ε= +1)
and as qe = 1− Pbind for evolutionary control (ε=−1), is given by

qe = exp(−re) =
cp

qph
; [24]

here, we have used the exponential asymptotic form of the binding
probability (11). These characteristics determine the trait of the evolved
state

Γe(ζ) = ε log ζ+ log
qph

cp
[25]

and the resulting fitness fp,e(ζ) = fp(Γe(ζ), ζ). The fitness ranking (i.e., the
evolutionary stability) of the evolved state and the wild type depends on
the control amplitude ζ (stable/metastable pathogen states are shown as
solid/dashed line segments in Fig. 2). The rank switch, which marks the
loss of the evolved trait, occurs at a value ζl determined by the condition
fp,e(ζl) = fp(ζl, 0) (horizontal lines in Fig. 2). This determines the cross-over
point (

Γl, ζ
ε
l

)
=

(
qph

cp
− 1,

cp

qph
exp

(
qph

cp
− 1
))

. [26]

Computational Control Equilibria. We compute the point of optimal station-
ary control, (Γ*, ζ*), by evaluating the host payoff with the pathogen at
its conditional stable equilibrium, fh(Γ*(ζ), ζ), and maximizing this function
with respect to ζ. For ecological control in the SC regime, the pathogen is
in the wild type Γwt = 0; in the WC regime, the pathogen is in the evolved
state Γe(ζ) given by [25]. We obtain the equilibrium point

(Γ*, ζ*) =


(

0,
cp

qph
exp

( qph
cp
− 1
))

(SC, ch < c•h ),(
log

qphqhp
ch

,
qhpcp

ch

)
(WC, ch > c•h );

[27]

this determines the pathogen fitness fp* = fp(Γ*, ζ*), the host payoff ψh* =

ψh(Γ*, ζ*), and the control efficiency

η* =


1− cpch

q2
ph

qhp
exp

( qph
cp
− 1
)

(SC, ch < c•h ),

cp
qph

log
qphqhp

ch
(WC, ch > c•h )

[28]

(Fig. 3 and SI Appendix, Fig. S1). The transition between the SC and WC con-
trol regimes is determined by the condition Γe = Γl, from which we obtain
the transition line c•h (cp, qph, qhp), Eq. 13.

For evolutionary control, the pathogen has an evolved pathogen trait
Γe(ζ) in the SC regime and a wild-type trait Γwt = 0 in the WC regime. We
obtain the equilibrium point

(Γ*, ζ*) =


( qph

cp
− 1,

qph
cp

exp
(

1−
qph
cp

))
(SC, ch < c•h ),

(0, 0) (WC, ch > c•h ).
[29]

The optimal SC control is now at (Γ* = Γl, ζ* = ζl), as given by [26], where
the pathogen has the maximum stable Γe value. This point has the pathogen
load Lp* = qefp* with qe = (1− Pbind) given by [24], the host payoff fh*, and the
control efficiency

η* =


1− cp

qph
−

chqph
cpqhp

exp
(

1−
qph
cp

)
(SC, ch < c•h ),

0 (WC, ch > c•h )
[30]
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(Fig. 3 and SI Appendix, Fig. S1). The transition between the SC and WC con-
trol regimes is determined by the condition ηSC* = 0, from which we obtain
the transition line c•h (cp, qph, qhp), Eq. 14.

Dosage Protocols for Adaptive Trait Formation. In the protocols described
above, an initial-phase dosage ζ elicits a gain-of-function mutation to a
trait value G, which is the starting point for the subsequent breeding phase.
The extended HJB equation for these two-phase protocols determines the
relative score

∆Ω(G, ζ) = ∆Ωin(G, ζ) + Jbr(G) [31]

with an initial-phase component ∆Ωin(G, ζ) and a breeding-phase com-
ponent Jbr(G) given by [23]. To compute ∆Ωin(G, ζ), we assume that
trait-changing mutations have an exponential rate distribution, u(G)∼
µ exp(−G/ε0). The selective effects of these mutations are given by the
pathogen fitness landscape, Eq. 12. Prior to the start of control, all mutants
with G> 0 evolve under negative selection of strength s0(G) = fp(G, 0)−
fp,0 < 0. Under control, gain-of-function mutants have a positive selection
coefficient against the wild type, s(G, ζ) = fp(G, ζ)− fp,0 > 0, leading to an
adaptive fixation rate

v(G, ζ) = 2Neu(G) s(G, ζ) = θ exp(−G/ε0) s(G, ζ). [32]

Because s and s0 are of similar magnitude, the number of mutants with trait
amplitude G that are present at the start of control and destined for fixation
under the initial-phase protocol follows a Poisson distribution with expecta-
tion value close to 2Neu(G). Hence, the expected time to high frequency of
such mutants is

Tin(G, ζ) =
1− exp[−2Neu(G)]

s(G, ζ)
+

exp[−2Neu(G)]

v(G, ζ)
. [33]

The two terms on the right-hand side describe the contributions of standing
variation at the start of control and of de novo mutations originating under
control, respectively. The resulting initial-phase score reads

∆Ωin(G, ζ) = (−qhp− chζ−ψh*−λ) Tin(G, ζ). [34]

We evaluate the diversity θ= 2Neµ in the initial phase with Ne = N̄0≡ f0/c.
Combining Eqs. 31–34 displays the scaling form of the score, Eq. 15, where
the scaling function ω describes the cross-over in prevalence between de
novo mutations (θ. 1) and standing variation (θ& 1) driving the initial
gain-of-function evolution. The breeding phase has a related cross-over
from periodic selection (θ. 1) to clonal interference (θ& 1) (34), which
sets the effective population size in that phase (SI Appendix). Using Eqs.
23 and 34 together with a maximum-likelihood approximation for the
gain-of-function amplitude,

G*(ζ) = arg min
G

Tin(G, ζ), [35]

the HJB Eq. 31 determines the global maximum-score protocol (SI Appendix,
Fig. S4). This protocol has a gain-of-function dynamics

(Gin, ζin) = arg max
ζ

Ω(G*(ζ), ζ) [36]

and a breeding phase described by [22] (Fig. 4 D–G and SI Appendix, Figs. S2
and S3).

Dosage Protocols for Metastable Control. For the two-state protocol, we
evaluate the relative score per unit of time as a function of the escape
amplitude G and baseline dosage ζ for λ= 0,

∆ω(G, ζ) = ∆ωbase(ζ) + v(G, ζ) ∆Jres(G, ζ). [37]

Here, v(G, ζ) denotes the θ-dependent establishment rate of escape muta-
tions given by [32], ∆ωbase(ζ) =ψh(0, ζ)−ψh* is the baseline score per unit
of time, and ∆Jres(G) = Jres(G)− Tres(G)∆ωbase(ζ) is the negative excess pay-
off per rescue boost. The optimal score per rescue, Jres(G), is computed in
a simple approximation: we apply a constant dosage ζres(G) = exp(G + 2re),
which generates positive selection of strength sres(G)≈ cpGres of the wild
type against the escape mutant. The boost dosage is maintained over a
period

Tres(G) = a
log(2Nexescsres(G))

sres(G)
, [38]

which is proportional to the expected time to loss of the mutant (xesc is
the detection threshold frequency; the constant a determines the expected
failure rate of rescue). The resulting rescue score is

Jres(G) = [ψh(0, ζres(G))−ψh*] Tres(G). [39]

Using again a maximum-likelihood approximation for escape mutations,

G*(ζ) = arg max
G

v(G, ζ), [40]

we obtain the optimal metastable protocol by maximization of ∆ω, Eq. 37
(SI Appendix, Fig. S4). This protocol has a baseline dosage

ζbase = arg max
ζ

∆ω(G*(ζ), ζ), [41]

which determines the escape trait Gesc = G*(ζbase) and the rescue dosage
ζres = exp(Gres + 2re) (Fig. 4 H–J). The maximum score per unit of time, j =

maxζ ∆ω(G*(ζ), ζ), sets the long-term efficiency gain of metastable control,
ηms− η* = j/(qphqhp) (Fig. 4K).

Data Availability. Analysis notebooks are available at Open Science Frame-
work (OSF), https://osf.io/6nakg/.
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7. M. Łuksza, M. Lässig, A predictive fitness model for influenza. Nature 507, 57–61
(2014).

8. D. H. Morris et al., Predictive modeling of influenza shows the promise of applied
evolutionary biology. Trends Microbiol. 26, 102–118 (2017).

9. D. Hughes, D. I. Andersson, Evolutionary trajectories to antibiotic resistance. Annu.
Rev. Microbiol. 71, 579–596 (2017).

10. M. Łuksza et al., A neoantigen fitness model predicts tumour response to checkpoint
blockade immunotherapy. Nature 551, 517–520 (2017).

11. S. Wang et al., Manipulating the selection forces during affinity mat-
uration to generate cross-reactive HIV antibodies. Cell 160, 785–797
(2015).

12. A. Nourmohammad, J. Otwinowski, J. B. Plotkin, Host-pathogen coevolution and the
emergence of broadly neutralizing antibodies in chronic infections. PLoS Genet. 12,
e1006171 (2016).

13. V. Sachdeva, K. Husain, J. Sheng, S. Wang, A. Murugan, Tuning environmen-
tal timescales to evolve and maintain generalists. Proc. Nat. Acad. Sci. USA 117,
12693–12699 (2020).

14. R. F. Stengel, Optimal Control and Estimation (Dover Publication Inc., New York, NY,
1994).

15. H. J. Kappen, “An introduction to stochastic control theory, path integrals and
reinforcement learning” in AIP Conference Proceedings (AIP, 2007), pp. 149–181.

16. M. Lässig, V. Mustonen, A. M. Walczak, Predicting evolution. Nat. Ecol. Evol. 1, 77
(2017).

17. J. M. A. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, L. J. V. Piddock, Molecular
mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).
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