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ABSTRACT 90 

Importance: If history teaches, as cardiac pacing moved from fixed-rate to on-demand delivery in 91 

in 80s of the last century, there are high probabilities that closed-loop and adaptive approaches will 92 

become, in the next decade, the natural evolution of conventional Deep Brain Stimulation (cDBS). 93 

However, while devices for aDBS are already available for clinical use, few data on their clinical 94 

application and technological limitations are available so far. In such scenario, gathering the 95 

opinion and expertise of leading investigators worldwide would boost and guide practice and 96 

research, thus grounding the clinical development of aDBS. 97 

Observations: We identified clinical and academically experienced DBS clinicians (n=21) to 98 

discuss the challenges related to aDBS. A 5-point Likert scale questionnaire along with a Delphi 99 

method was employed. 42 questions were submitted to the panel, half of them being related to 100 

technical aspects while the other half to clinical aspects of aDBS. Experts agreed that aDBS will 101 

become clinical practice in 10 years. In the present scenario, although the panel agreed that aDBS 102 

applications require skilled clinicians and that algorithms need to be further optimized to manage 103 

complex PD symptoms, consensus was reached on aDBS safety and its ability to provide a faster 104 

and more stable treatment response than cDBS, also for tremor-dominant Parkinson’s disease 105 

patients and for those with motor fluctuations and dyskinesias.  106 

Conclusions and Relevance: Despite the need of further research, the panel concluded that aDBS 107 

is safe, promises to be maximally effective in PD patients with motor fluctuation and dyskinesias 108 

and therefore will enter into the clinical practice in the next years, with further research focused on 109 

algorithms and markers for complex symptoms. 110 

 111 

 112 

 113 
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1. INTRODUCTION 119 

Deep Brain Stimulation (DBS) is a standard neurosurgical therapy to treat selected patients with 120 

neurological disorders including essential tremor (ET), Parkinson’s disease (PD), and dystonia.1 121 

Traditionally, DBS has been employed using open-loop stimulation techniques, i.e., delivering 122 

continuous, uninterrupted stimulation at the same parameter setting (conventional DBS, cDBS) that 123 

is independent of the real-time patient’s functional status or of the side effects induced by 124 

intermittent stimulation. In PD, DBS of the subthalamic nucleus (STN-DBS2), has been 125 

prominently associated with stimulation-induced speech impairments,3 risk of falling,4 dyskinesia,5 126 

stimulation-induced impulsivity,6 and, more importantly, only partial control of clinical 127 

fluctuations.7 Adaptive DBS (aDBS) was conceived to overcome some of the disadvantages of 128 

cDBS by facilitating optimized current delivery to improve symptoms and drive improved 129 

outcomes.8 This technology relies on the principle of on-demand or contingency-based stimulation, 130 

where clinically relevant biofeedback signals (e.g., brain signals) can be used to determine more 131 

effective characteristics of the stimulation (or changes to other parameters) to be delivered in real-132 

time in order to address emerging symptoms or side effects.9 Currently, in the field of movement 133 

disorders,8 both electrocorticographic signals registered from cortical electrode strips and local field 134 

potentials (LFPs) recorded directly from the DBS electrodes have been explored in feasibility 135 

testing.8,10 136 

Although the aDBS concept is perceived as a natural evolution of current cDBS, in line with the 137 

historical development of cardiac pacemakers, the evidence collected on its clinical application 138 

needs to be expanded, especially to better understand the emerging limitations, and to boost its 139 

adoption and understanding in everyday clinical practice. For instance, in PD, where beta band STN 140 

LFPs can be applied as control signal for DBS amplitude adjustments,11 experiments revealed an 141 

inconsistent correlation to clinical outcome scores on validated scales of PD disability and motor 142 

dysfunction,12,13 especially with patients presenting with different phenotypes (e.g., tremor 143 

dominant or akinetic rigid PD).14 Therefore, some experts suggested that LFP power alone might 144 

not provide a reliable biomarker for aDBS15 because of the failure to represent the complex 145 

pathological cortical-subcortical circuital activity in PD and, in turn, to serve as a robust marker, 146 

particularly for complex symptoms.16–18  147 

Such a challenging scenario demands for the integration of the knowledge derived from clinical 148 

data and from the experience of leading experts that will serve to (1) provide a clear scenario for 149 

aDBS advantages and limitations at the current state-of-the-art, (2) guide the future design of trials 150 

and (3) highlight the most promising directions for aDBS. To boost this dialogue, we identified 151 
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internationally recognized clinical and academic DBS experts to discuss the methodological and 152 

clinical challenges and we asked them to participate in a Delphi method-based study.19  153 

 154 

2. METHODS 155 

The Delphi study methodology is a multistage process designed to combine opinions into group 156 

consensus,20 where a series of structured questionnaires (rounds) are anonymously completed by 157 

experts (panellists) and the responses from each questionnaire fed back in summarised form to the 158 

participants.21–23 This allows the panellists to reassess their initial judgments, considering the 159 

positive aspects of interacting groups (e.g., inclusion of different backgrounds) without the negative 160 

ones (e.g., influence of dominant members).24 For the purpose of our study, a modified Delphi 161 

process25,26 was designed in three rounds, which are considered as sufficient to collect the needed 162 

information and to reach a consensus.21,24,27,28 A Steering Committee (SC) of experts (n=8) based on 163 

the collaborative network of the leading authors discussed the topic and developed a structured 164 

questionnaire including key items pertinent to aDBS using five-point Likert scales (1=strongly 165 

disagree; 2=disagree; 3=undecided; 4=agree; 5=strongly agree).19 In rounds one, two and three, 166 

quantitative assessments to reach the consensus were performed by SC members and a larger Expert 167 

Panel (EP, n=13). Therefore, a total of 21 panellists took part in the assessment, which is a number 168 

of experts within the recommended range.24,29 Since no exact criterion is currently available on the 169 

definition of “expert”,30 we decided to consider positional leaders in the field, as suggested by 170 

previous works.31 The panellists were asked to rate 42 statements on several technical (21 171 

statements) and clinical (21 statements) aspects of aDBS (Table 1). In order to maintain the rigor of 172 

this method, we considered a response rate of >70% for each round32 to be a minimum. Electronic 173 

questionnaires were used in all steps of the process. In case one item reached a consensus during the 174 

first or second round, it was excluded from the following round to avoid confirmation bias. 175 

Although no guidelines are available,30 consensus was achieved when ≥80% of the responses fell in 176 

the same response label.19,33 Data were analysed and reported by descriptive statistics. We opted for 177 

median and interquartile range (IQR), as suggested by the literature.24,34–36 We report the results of 178 

each round separately in both textual (i.e., with median ± IQR) and graphical representation, to 179 

better illustrate the strength of support for each round.30 180 

 181 

3. RESULTS 182 

3.1. Specialists panel  183 

For the SC, all the eight invited authors agreed to participate (SC=8, response rate: 100%). For the 184 

EP, out of the 20 authors identified, two declined to participate and five did not reply (EP=13, 185 
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response rate: 65%). Therefore, the overall number of panellists was 21 (overall response rate: 75%, 186 

see eTable 1 in Supplementary Materials). Demographic characteristics of the panellists are 187 

displayed in Table 2. Briefly, most of them were male (16, 76%), >50 years old (14, 66.6%) and 188 

high-experienced in clinical routine (20, 95.5% with >10 years of clinical experience) and research 189 

(19, 90.4% and 18, 85.7% with >10 years of experience in, respectively, the DBS field and DBS 190 

clinical trials) settings.  191 

 192 

3.2. Delphi Panel results 193 

As for the 21 statements on the technical aspects of aDBS, the first round led to no consensus for 194 

any of the statements (see eFigure 1 in Supplementary Materials); in the second, the consensus was 195 

reached in only one statement (see eFigure 2 in Supplementary Materials); finally, in the third 196 

round, consensus was reached in other seven statements, for a total of eight out of 21 statements 197 

(see fig.1). More specifically, in the second round, the panellists agreed that automatic 198 

programming would be safe as long as stimulation intensity is constrained by upper and lower 199 

limits (90% agreed, median ± IQR: 4 ± 0). After the third round, panellists agreed that aDBS has 200 

technological limitations (Statement 1 – 80% agreed, median ± IQR: 4 ± 0), but that current 201 

pacemaker technology might be suitable to implement aDBS algorithms (Statement 20 – 90% 202 

agreed, median ± IQR: 4 ± 0). They strongly agreed that it requires high levels of expertise 203 

(statement 8 – 80% strongly agreed, median ± IQR: 5 ± 0), but strongly disagreed in its feasibility 204 

for patients with not well-positioned electrodes (statement 3 – 85% strongly disagreed, median ± 205 

IQR: 1 ± 0). Lastly, panellists were undecided on the role of aDBS in spreading segmented 206 

electrodes use (Statement 18 – 85% undecided, median ± IQR: 3 ± 0), or whether fast adaptation 207 

methods are superior or inferior than slow adaptation methods (Statement 14 and Statement 15 – 208 

90% undecided, median ± IQR: 3 ± 0 for both). 209 

As for the 21 statements on the clinical aspects of aDBS, no consensus was reached after the first 210 

round (see eFigure 3 in Supplementary Materials). After the second, the panellists agreed on one 211 

statement (see eFigure 4 in Supplementary Materials), and other eight after the third round, for a 212 

total of 9 out of 21 statements (see fig.2). In particular, in the second round the panellists agreed on 213 

the use of aDBS technology also for tremor-dominant PD patients (Statement 28 – 80% agreed, 214 

median ± IQR: 4 ± 0). After the third round, an agreement was reached on the safety of aDBS 215 

technology (Statement 25 – 85% agreed, median ± IQR: 4 ± 0) and that it will enter clinical routine 216 

in 10 years (Statement 22 – 85% agreed, median ± IQR: 4 ± 0), with positive long-term impact for 217 

patients (Statement 35 – 80% agreed, median ± IQR: 4 ± 0), also for those with significant motor 218 

fluctuations before surgery (Statement 30 – 90% agreed, median ± IQR: 4 ± 0) and on cDBS 219 
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treatment (Statement 31 – 95% agreed, median ± IQR: 4 ± 0), and for patients with significant 220 

dyskinesias on cDBS treatment (Statement 32 – 90% agreed, median ± IQR: 4 ± 0). Lastly, 221 

panellists agreed that aDBS might lead to a faster stable treatment response after the definition of 222 

stimulation settings (Statement 37 – 80% agreed, median ± IQR: 4 ± 0), but were uncertain if fast 223 

adaptation technology could lead to long term plastic changes (Statement 38 – 80% undecided, 224 

median ± IQR: 3 ± 0). 225 

 226 

4. DISCUSSION 227 

In this Delphi consensus study, 21 internationally recognized clinical and scientific experts in the 228 

DBS were asked to discuss current technical and clinical challenges related to aDBS development. 229 

Interestingly, out of the 42 open questions on aDBS proposed, a consensus was reached for 17, thus 230 

underlining the complexity and heterogeneity of the scenario and experiences as well as the general 231 

need of further research: experts agreed on a time frame of 10 years for aDBS to reach clinical 232 

practice whereas the time frame of 5 years did not achieve the agreement. To inform and support 233 

present adoption, the experience and knowledge gained so far suffice to reach a consensus 234 

regarding the safety of the adaptive approach and the potential benefits of aDBS. Experts in fact 235 

agreed that aDBS may lead to faster and more stable than cDBS treatment responses in selected 236 

patient populations, including tremor-dominant PD patients and those with motor fluctuations and 237 

dyskinesia on cDBS. Another important point related to the present scenario is the general 238 

agreement on the need of high level of expertise to manage aDBS, thus underlining a potential 239 

barrier to general adoption, but they also agreed that automatic programming can be safe if properly 240 

developed. The expert community remains uncertain regarding specific algorithms and their 241 

mechanisms of action, thus suggesting that future research and trials need to be directed towards the 242 

collection of data relevant both for understanding the neurophysiology of the adaptive approach and 243 

for identifying better biomarkers and the related stimulation patterns. Similarly, the possible 244 

combined benefits of aDBS and segmented electrodes remain unclear while there is general 245 

agreement on the fact that aDBS would not help in patients with electrodes that are not well 246 

positioned. Despite the high level of expertise, the lack of clinical and research evidence might have 247 

impaired the experts coming to a consensus on all the other aspects covered by the questions, both 248 

from the technical and the clinical point of view. 249 

 250 

4.1. Technical aspects of aDBS 251 

The panellists believe that despite the technological limitations of aDBS methodology, current 252 

pacemaker technology might be suitable to implement aDBS algorithms. Indeed, the recent 253 
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development of pulse generators which are also able to record LFPs offers more options for 254 

optimising DBS therapy and aDBS algorithms.37 One of the main limitations of aDBS application 255 

in routine clinical care remains the uncertainty about which and how many signals could entirely 256 

represent patients’ clinical state and whether many of them need to be used together in multimodal 257 

algorithms.8 Most biomarkers have been identified with patients in “off stimulation”,38 but in the 258 

aDBS concepts, signals should be recorded in “on stimulation”. Therefore, the availability of 259 

devices able to record during stimulation is crucial to shed light on how to select the optimal 260 

personalised biomarker. While the most used closed-loop design (i.e., STN-LFP beta band as 261 

control signal to adjust for DBS amplitude) has been questioned,15 there is growing consensus that 262 

beta band is a fairly reliable biomarker.39 Several alternative approaches have been proposed (e.g., 263 

using cortical-subcortical gamma rhythm40), but no conclusive findings have been obtained yet.  264 

The panellist acknowledged that a high level of expertise would be required to use aDBS. Indeed, 265 

currently, the programming phase of aDBS devices might require familiarity and higher technical 266 

skills (when compared with cDBS devices41), however the future algorithms will likely need to 267 

become more automated. This may suggest to industries to develop in the future simplified 268 

workflows or to provide adequate education to clinicians using aDBS. Still, clinicians will maintain 269 

a crucial role in assessing LFP recordings and their relationship to patient's symptoms. As in any 270 

other new therapy, clinicians applying aDBS should keep the patient monitored to verify the 271 

persistence of an adequate control of symptoms over time and to modify pharmacological treatment 272 

if necessary. Adjustment of medications will likely be required independently of the type of 273 

stimulation (aDBS42–44 or cDBS45); however, combined effects of adaptive stimulation with 274 

medication might in selected cases decrease the risk of treatment-induced side effects like 275 

dyskinesia. 276 

From the point of view of the level of automation in the approach, the experts agreed that automatic 277 

programming would be safe if stimulation intensity were constrained by combined upper and lower 278 

limits. The answer is in line with the need to avoid unpleasant side effects and an inadequate 279 

treatment of patients’ symptoms, especially for upper limits. However, many  algorithms tested in 280 

clinical studies to date allow reduction of stimulation amplitude to zero when beta amplitude falls 281 

below a threshold, however, this could be modified in future fast aDBS algorithms.39,42,44,46  282 

From a control algorithm point of view, the experts were uncertain about whether fast adaptation 283 

methods (movement-related) would be superior or inferior when compared to slow adaptation 284 

methods (drug-related). Indeed, beta activity can immediately trigger a brief increase in stimulation 285 

to shorten prolonged beta bursts39,47 or it can be smoothed over many seconds to serve as a 286 

medication state biomarker and then be used as feedback to drive stimulation.44 The way fast and 287 
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slow adaptation algorithms have been implemented and studied, both reduced the total electrical 288 

energy delivered (TEED) over time by 50%, but while the first seems to reduce adverse effects on 289 

speech48 and to achieve a better control of bradykinesia and rigidity44 the latter seems to be more 290 

effective in reducing dyskinesias.43 These effects should be interpreted with great caution because 291 

of the paucity of cases and lack of independent validation. Indeed, speech was not systematically 292 

assessed for the “slow adaptation”, neither dyskinesias for the “fast adapting” algorithms. However, 293 

fast beta aDBS did also show the ability to adjust how often aDBS was triggered according to 294 

(slower) medication state, with stimulation becoming less frequent in the medication ON state. This 295 

suggests that “fast” aDBS algorithms can operate on both fast and slow timescales, and therefore 296 

could theoretically help medication induced dyskinesias.49 Currently, the lack of data does not allow 297 

to conclude differential benefits of both algorithms on side effects. Also, aDBS can possibly allow 298 

more TEED to be delivered, but with improved clinical efficacy and without inducing side effects;40 299 

therefore, reduced TEED seems to be less of a critical outcome for DBS implementation, 300 

particularly with the advent of rechargeable devices.50  301 

Panellists reached a consensus that the feasibility of aDBS for patients with suboptimally positioned 302 

electrodes was a limitation, meaning that it will likely not be effective. This expert opinion was in 303 

line with the evidence that the peak in beta activity is a feature of the motor part of the STN.51 304 

Therefore, suboptimally positioned electrodes will not likely detect the LFPs needed to “adapt” 305 

aDBS to patients’ symptoms.  306 

Similarly, the panellists were doubtful about the role of aDBS in facilitating the use of segmented 307 

electrodes, which may be used to widen the therapeutic window between efficacy and adverse 308 

effects by steering the field of stimulation.52 The experts did concede that segmented electrodes 309 

share with aDBS the common aim to “personalise” and shape stimulation electrical fields to single 310 

patients. Indeed, this technology increases spatial specificity while aDBS improves temporal 311 

specificity through the delivery of a dynamic stimulation that changes over time according to 312 

disease-related feedback.52 Theoretically, these two approaches could be complementary. 313 

 314 

4.2. Clinical aspects of aDBS 315 

The panellists shared an optimistic opinion in terms of development and applications of aDBS in 316 

clinical routine, and its potential ability to allow a faster and more stable treatment response in 317 

select patients. Indeed, despite the initial scepticism of parts of the medical community, the 318 

knowledge and technology in the field of aDBS have been growing.53 Also, recent technological 319 

advancements (e.g., directional leads54 or multiple stimulation methods17,55) may limit side effects 320 

and may serve to optimise for an individual symptom or symptoms.8 321 
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Another important point related to aDBS adoption is its safety, on which the panellists agreed. In 322 

addition to the surgical risks that to date are comparable to those of cDBS,56 concerns have been 323 

expressed in literature about the potential side effects of aDBS stimulation.57 Although no 324 

significant side effects have been reported so far,58 rapid changes of voltage or frequency induced 325 

by neurosignals could be unpleasant or even intolerable to patients in chronic stimulation. Thus, 326 

stimulation methods that balance ramp rates to avoid side effects and keep the stimulation 327 

therapeutic by responding in time to neurosignals changes are under study.59  328 

One of the major potential advantages of aDBS is its ability to provide personalized therapy. The 329 

panellists agreed that aDBS is suitable both for PD patients experiencing motor fluctuations and 330 

dyskinesias before surgery or on cDBS, and for tremor-dominant PD patients. This consensus 331 

boosts the need of gaining more insights on the “precision medicine” potential of aDBS, i.e., 332 

investigating which patients are likely responders to stimulation, or which technology (e.g., which 333 

biomarker) is right for a specific patient.60 Beta frequency correlates more with 334 

rigidity/bradykinesia than resting tremor,61,62 while gamma activity, particularly finely-tuned 335 

gamma, has been associated with ON medication states and dyskinesia.63,64 Beta-driven aDBS 336 

might be less activated during levodopa-ON medication state (following beta suppression38) and 337 

hence reduces the likelihood of inducing levodopa-induced dyskinesia. Indeed, studies on aDBS in 338 

patients with PD and dyskinesia report good efficacy in reducing such symptom while guaranteeing 339 

a similar or even better control of cardinal symptoms of PD.42,44,46  340 

Tremor can be detected from brain signals, either by the presence of lower frequency oscillations 341 

(3–7 Hz) or more accurately by combining multiple features from the whole-spectrum LFP.65,66 342 

Additionally, several computational models have been recently developed to test the feasibility and 343 

efficacy of aDBS methods that modulate stimulation to control different biomarkers.67,68 In these 344 

cases, the best control may be provided by selecting between multiple controllers depending on 345 

context or patient symptoms (i.e., tremor or beta oscillations). Recent studies suggest a similar 346 

efficacy of aDBS both for tremor and bradykinesia dominant patients.69,70 Additionally, peripheral 347 

sensors may also be used for adaptive DBS for tremor.71,72 348 

Major uncertainties remain on the mechanisms of action of aDBS: the experts were uncertain that 349 

fast adaptation technology could lead to long-term plastic changes. Although one might expect an 350 

effect close to what has been supposed for cDBS,73 whether aDBS might induce neuroplastic 351 

changes remains an open question due to the lack of evidence to support any opinion. Similarly, it is 352 

still to be determined what impact aDBS will have on the habituation phenomenon (i.e., the 353 

progressive loss of DBS benefit in time due to a decreased biological response of the neuronal 354 

networks74) that may in select cases threaten the effectiveness of cDBS in chronic conditions.74 355 
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However, some experts believe that habituation of DBS in the setting of PD is rare and that most of 356 

the worsening of symptoms is driven by PD progression. 357 

 358 

4.3. Limitations 359 

The consensus reached among experts as for the Delphi methods provides only the lowest level of 360 

evidence for making causal inferences.75 Therefore, the outcome of the present panel review cannot 361 

replace clinical judgments or original research, nor is it intended to define a standard of practice. 362 

Similarly, the feasibility of the consensus reached should be further debated and scientifically 363 

demonstrated – even more when considering stimulation targets commonly used for DBS (e.g., 364 

globus pallidus internus) not explored for aDBS. Rather, since our results aggregate the opinion of 365 

experts who could count on both personal expertise and scientific knowledge, they appear to be 366 

relevant in terms of current state of knowledge and future directions for research, even more for a 367 

field which is still at its infancy. 368 

 369 

4.4. Conclusions 370 

Despite experts agreed only partially on some technical aspects of aDBS, the panel concluded that 371 

aDBS will be routine in the mid-term. As for now, safety is a key aspect that reached agreement as 372 

well as the potential of aDBS to provide faster and more stable treatment response than cDBS, and 373 

in tremor-dominant PD patients and in those with motor fluctuations and dyskinesias. The expert 374 

panel also agreed that the neurophysiological mechanisms of aDBS, the best control strategy, and 375 

the relationship between this technology and other DBS-related innovations, such as segmented 376 

leads, are still to be investigated, thus orienting future research. Also, the current need of high level 377 

of expertise for the programming and management of aDBS patients represent a challenge that 378 

requires the coordination between research and industry, with automatic programming being an 379 

important development. In conclusion, the results of this Delphi consensus represent a step forward 380 

for aDBS to reach clinical adoption. 381 

 382 

 383 

 384 

 385 

 386 

 387 
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 667 

Fig.1. Percentage of agreement for the 21 statements on the technical aspects of adaptive DBS (Statement 1-21) among the Delphi Panel 668 

members, as result of the third round. A consensus was reached for Statement 1 (80% of the responses fell in the response label “Agree”), 669 

Statement 3 (85% of the responses fell in the response label “Strongly Disagree”), Statement 8 (80% of the responses fell in the response label 670 
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“Strongly Agree”), Statement 14 (90% of the responses fell in the response label “Undecided”), Statement 15 (90% of the responses fell in the 671 

response label “Undecided”), Statement 18 (85% of the responses fell in the response label “Undecided”), and Statement 20 (90% of the responses 672 

fell in the response label “Agree”). DBS = Deep Brain Stimulation; S = statement. 673 
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674 
Fig.2. Percentage of agreement for the 21 statements on the clinical aspects of adaptive DBS (Statement 22-42) among the Delphi Panel 675 

members, as result of the third round. A consensus was reached for Statement 22 (85% of the responses fell in the response label “Agree”), 676 

Statement 25 (85% of the responses fell in the response label “Agree”), Statement 30 (90% of the responses fell in the response label “Agree”), 677 
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Statement 31 (95% of the responses fell in the response label “Agree”), Statement 32 (90% of the responses fell in the response label “Agree”), 678 

Statement 35 (80% of the responses fell in the response label “Agree”), Statement 37 (80% of the responses fell in the response label “Agree”), and 679 

Statement 38 (80% of the responses fell in the response label “Undecided”). DBS = Deep Brain Stimulation; S = statement.680 
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Table 1. Five-point Likert questionnaire with the results (median ± IQR) for each round.  681 

Statement 

1st round 

(n=19; 

RR=90.5%) 

2nd round  

(n=20; 

RR=95.2%) 

3rd round 

(n=20; 

RR=95.2%) 

Technical aspects of adaptive DBS 

S1. Adaptive DBS is at the beginning of its clinical applications, but I think that there 

may still be technological limitations 
4 ± 1 4 ± 0.25 4 ± 0 – C.R. 

S2. I think that a possible limitation of the diffusion of adaptive DBS are high costs 3 ± 1 3 ± 1.25 3 ± 1 

S3. I think adaptive DBS is applicable in patients with not well-positioned electrodes 1 ± 1 1 ± 1 1 ± 0 – C.R. 

S4. I think adaptive DBS is applicable when one side only is able to record 3 ± 1 4 ± 1 4 ± 1 

S5. I think that only modulating the amplitude might be a limiting factor of adaptive 

DBS 
3 ± 2 2 ± 2 2.5 ± 2 

S6. I think an actual risk for adaptive DBS is overstimulation 3 ± 1 3 ± 1 3 ± 0 

S7. I think an actual risk for adaptive DBS is under stimulation 3 ± 1.5 3 ± 1 3 ± 1 

S8. I think adaptive DBS requires high level of expertise 4 ± 1 5 ± 1 5 ± 0 – C.R. 

S9. I think adaptive DBS is feasible only in experienced DBS centres with 

neurophysiological expertise 
4 ± 1.5 4 ± 0.25 4 ± 0 

S10. I think adaptive DBS surgery is time-consuming 3 ± 2 4 ± 2 4 ± 2 

S11. I think adaptive DBS programming is time-consuming 4 ± 3 4 ± 1 4 ± 1 

S12. I think that automatic programming will reduce programming time 5 ± 1 5 ± 1 5 ± 1 

S13. I think that automatic programming is safe as long as the neurologist can set upper 

and lower limits for stimulation intensity 
4 ± 0 4 ± 0 – C.R. - 
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S14. I think fast adaptation adaptive DBS methods are superior to slow adaptation 

adaptive DBS methods 
3 ± 1 3 ± 0 3 ± 0 – C.R. 

S15. I think slow adaptation adaptive DBS methods are superior to fast adaptation 

adaptive DBS methods 
3 ± 1 3 ± 0 3 ± 0 – C.R. 

S16. I think adaptive DBS will be based more likely on feedback from wearables than on 

signal recording from the DBS electrodes 
2 ± 1 2 ± 0 2 ± 0.25 

S17. I think adaptive DBS will be based more likely on signal recording from the DBS 

electrodes than on feedback from wearables 
4 ± 1 4 ± 1 4 ± 0 

S18. I think adaptive DBS would help to diffuse DBS with segmented electrodes 3 ± 1 3 ± 0 3 ± 0 – C.R. 

S19. I think the rapid development of artificial intelligence (AI) will fuel the clinical use 

of adaptive DBS 
4 ± 1 4 ± 1 4 ± 0.25 

S20. I think current pacemaker technology in principle allows to install adaptive DBS 

algorithms 
4 ± 0.5 4 ± 0.25 4 ± 0 – C.R. 

S21. I think changes in technology are still necessary to foster adaptive DBS soon 4 ± 1 4 ± 1 5 ± 1 

Clinical aspects of Adaptive DBS 

S22. I think adaptive DBS will be clinical routine in 10 years from now 4 ± 0 4 ± 1 4 ± 0 – C.R. 

S23. I think adaptive DBS will be clinical routine in 5 years from now 3 ± 1.5 3 ± 1 3 ± 1 

S24. The side effects (ramping) will lead to many patients being unable to tolerate 

adaptive DBS 
2 ± 1 2.5 ± 1 2.5 ± 1 

S25. I think adaptive DBS is a safe technology 4 ± 0.5 4 ± 0 4 ± 0 – C.R. 

S26. I think adaptive DBS is applicable on a large scale 3 ± 1 3 ± 1 3 ± 1 

S27. I think adaptive DBS is applicable only for non-tremor patients with Parkinson’s 2 ± 1 2 ± 0.25 2 ± 1 
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disease 

S28. I think adaptive DBS is applicable also for tremor-dominant patients with 

Parkinson’s disease 
4 ± 0.5 4 ± 0 – C.R. - 

S29. I think the primary clinical indication for adaptive DBS will rather be tremor then 

Parkinson’s disease 
2 ± 1 2 ± 1 2 ± 0 

S30. I think the patient profile who will likely benefit from adaptive DBS is the patient 

with significant motor fluctuations before DBS 
4 ± 1.5 4 ± 1.25 4 ± 0 – C.R. 

S31. I think the patient profile who will likely benefit from adaptive DBS is the patient 

with significant motor fluctuations on conventional DBS 
4 ± 0 4 ± 0 4 ± 0 – C.R. 

S32. I think the patient profile who will likely benefit from adaptive DBS is the patient 

with significant dyskinesias on conventional DBS 
4 ± 1.5 4 ± 1 4 ± 0 – C.R. 

S33. I think that adaptive DBS will improve non-motor aspects of Parkinson’s disease 3 ± 1 3 ± 1 3.5 ± 1 

S34. I think that adaptive DBS will reduce stimulation induced side effects 4 ± 1 4 ± 0.25 4 ± 0 

S35. I think the long-term impact of adaptive DBS might be positive for the patients 4 ± 0.5 4 ± 1 4 ± 0 – C.R. 

S36. I think adaptive DBS might more easily adapt to pharmacological changes 4 ± 1 4 ± 1 4 ± 0 

S37. I think adaptive DBS leads to faster stable treatment response after DBS surgery 

once a setting is defined 
4 ± 1 4 ± 1 4 ± 0 – C.R. 

S38. I think fast adaptation adaptive DBS leads to long term plastic changes 3 ± 1 3 ± 0.25 3 ± 0 – C.R. 

S39. I think adaptive DBS will improve patient’s well-being because adaptive DBS 

automatically increases stimulation if patient forgets to take medication 
3 ± 1.5 4 ± 1 4 ± 1 

S40. I think adaptive DBS will improve patient’s well-being because adaptive DBS 

automatically decreases stimulation if patient accidentally takes too high a dose of 
4 ± 1 4 ± 1 4 ± 1 
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medication 

S41. I think adaptive DBS decreases the number of patient visits to neurologists for 

programming 
3 ± 1.5 3 ± 2 3 ± 0.25 

S42. I think adaptive DBS makes medication titration easier – with less precision 

required 
3 ± 1 3 ± 0.25 3 ± 0.25 

Delphi Panel members were asked to rate their agreement with each statement (1=strongly disagree; 2=disagree; 3=undecided; 4=agree; 5=strongly agree). R.R. = 682 

response rate; C.R. = consensus reached; PD = Parkinson’s disease; DBS = deep brain stimulation.683 
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Table 2. Demographic and academic information for the Delphi Panel members. 684 

 

 

Steering 

Committee (n=8) 

Expert Panel 

(n=13) 

Gender – n   

Female 1 4 

Male 7 9 

Prefer not to say 0 0 

Age (yr) – n   

25-30 0 0 

31-39 0 1 

40-49 1 5 

50-59 4 4 

60-69 3 3 

Prefer not to say 0 0 

Highest academic degree – n   

Bachelor’s Degree 0 0 

Master’s Degree 0 0 

Doctor of Medicine (MD) 3 5 

Doctor of Philosophy (PhD) 5 8 

Other 0 0 

Country of residence/work – n    

Italy 1 0 

UK 0 1 

Germany 4 3 

Canada 2 1 

Netherlands 0 1 

Spain 0 3 

Switzerland 0 1 

USA 1 3 

Primary place of worka – n    

Private Company 0 1 

Hospital 5 6 
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University 7 9 

Research Institute (public) 1 1 

Research Institute (Independent) 0 1 

Experience in DBS field (yr)   

≤5 0 0 

6-10 0 2 

>10 8 11 

field(s) of research (besides neurostimulation) a – n    

Biomedical Engineering 1 2 

Cognitive Science 2 2 

Computational Modelling 0 1 

Epidemiology 0 0 

Neurology 7 8 

Neuroscience 5 8 

Neurosurgery 3 7 

Pharmacology 1 0 

Psychiatry 0 0 

Psychology 0 0 

Neurorehabilitation 0 0 

Other (Systems Neuroscience, EEG, MEG) 1 0 

Experience in DBS clinical trials (yr) – n   

≤5 0 2 

6-10 0 1 

>10 8 10 

Experience in treating patients (yr) – n   

≤5 1 0 

6-10 0 0 

>10 7 13 

aone or more options were accepted 685 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.26.24312580doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.26.24312580
http://creativecommons.org/licenses/by-nd/4.0/

