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Testing for a Sweet Spot in Randomized

Trials

Donald A. Redelmeier , Deva Thiruchelvam, and Robert J. Tibshirani

Introduction. Randomized trials recruit diverse patients, including some individuals who may be unresponsive to the
treatment. Here we follow up on prior conceptual advances and introduce a specific method that does not rely on
stratification analysis and that tests whether patients in the intermediate range of disease severity experience more
relative benefit than patients at the extremes of disease severity (sweet spot). Methods. We contrast linear models to
sigmoidal models when describing associations between disease severity and accumulating treatment benefit. The
Gompertz curve is highlighted as a specific sigmoidal curve along with the Akaike information criterion (AIC) as a
measure of goodness of fit. This approach is then applied to a matched analysis of a published landmark randomized
trial evaluating whether implantable defibrillators reduce overall mortality in cardiac patients (n = 2,521). Results.
The linear model suggested a significant survival advantage across the spectrum of increasing disease severity (b =
0.0847, P \ 0.001, AIC = 2,491). Similarly, the sigmoidal model suggested a significant survival advantage across
the spectrum of disease severity (a = 93, b = 4.939, g = 0.00316, P \ 0.001 for all, AIC = 1,660). The discrepancy
between the 2 models indicated worse goodness of fit with a linear model compared to a sigmoidal model (AIC:
2,491 v. 1,660, P \ 0.001), thereby suggesting a sweet spot in the midrange of disease severity. Model cross-
validation using computational statistics also confirmed the superior goodness of fit of the sigmoidal curve with a
concentration of survival benefits for patients in the midrange of disease severity. Conclusion. Systematic methods
are available beyond simple stratification for identifying a sweet spot according to disease severity. The approach
can assess whether some patients experience more relative benefit than other patients in a randomized trial.

Highlights

1. Randomized trials may recruit patients at extremes of disease severity who experience less relative benefit
than patients at the middle range of disease severity.

2. We introduce a method to check for possible differential effects in a randomized trial based on the
assumption that a sweet spot is related to disease severity.

3. The method avoids a proliferation of secondary stratified analyses and can apply to a randomized trial with
a continuous, binary, or censored survival primary outcome.

4. The method can work automatically in a randomized trial and requires no additional information, data
collection, special software, or investigator judgment.

5. Such an analysis for identifying a potential sweet spot can also help check whether a negative trial correctly
excludes a meaningful effect.
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Introduction

Clinical trials tend to assume the relative treatment bene-
fit is uniform for patients at all levels of disease severity.
For example, spironolactone treatment for heart failure
may reduce mortality by 30% for a diverse spectrum of
patients.1 Naturally, the absolute benefits may vary
depending on baseline risks and random chance.2 The
presumed uniformity in relative effectiveness is usually
the default assumption since small sample sizes preclude
an examination of finer nuances.3 The presumed unifor-
mity is also a helpful simplification for summarizing a
complex distribution of responses as a single number for
clinicians to remember.4 A single number for quantifying
benefit is also valuable for health advocacy, cost-
effectiveness analyses, or planning future trials.5,6

A sweet spot is a way to relax the presumption of uni-
formity by postulating that some patients experience
more relative benefit than other patients.7 In particular,
patients with intermediate disease severity may be more
responsive to treatment than patients who are stable or
who are moribund. Differential responsiveness is often
considered during trial planning through selection cri-
teria defined to exclude minimal-stage or end-stage
patients.8 Differential responsiveness is frequently also
reconsidered later during trial interpretation in editorials
about a potential Goldilocks zone— especially if a trial
is negative.9,10 Much of the debate about sweet spots has

advanced only slowly in recent decades due to a lack of
rigorous methodology.11,12

In follow-up to prior conceptual advances, we now
introduce a method that does not rely on stratification to
test for a sweet spot in a clinical trial.13 The core idea
retains concepts of personalized medicine by hypothesiz-
ing treatment benefits vary for different patients diag-
nosed with the same disease.14 The main assumption is
that a sweet spot is related to disease severity as a range
and not an exact subgroup. The method capitalizes on
matching algorithms for large databases to detect pat-
terns in medical outcomes.15 The intent is to offer an
approach that avoids a profusion of subgroup compari-
sons, spurious P values, or a proliferation of stratified
analyses.16 The method is fully generalizable to rando-
mized and nonrandomized trials regardless of disease,
treatment, or outcome.

Methods

Background Theory

We begin with a hypothetical trial where the primary out-
come is a continuous variable and a change is observed
for each patient after follow-up (e.g., diet treatment for
overweight patients). In this case, a uniform benefit at all
levels of disease severity might appear as a horizontal
straight line elevated above the null (Figure 1A). Conver-
sely, a sweet spot might appear as a curved line where the
net area under the curve is above the null (Figure 1B).
Naturally, more complex patterns are possible, including
the possibility of detrimental effects at some parts of the
distribution. Waterfall plots are an alternative graphical
representation of this concept that can highlight how the
relative treatment effectiveness may not be uniform for
all patients.17,18

Many patient outcomes are binary indicators rather
than continuous variables. In this case, cumulative plots
of collective benefits can show the results without resort-
ing to smoothing models or subgroup stratification.19

For example, a uniform relative benefit at all levels of
disease severity might appear as a diagonal line rising
with a steady slope above the null (Figure 2A). Conver-
sely, a sweet spot might appear as a sigmoidal curve with
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a trajectory above the null and a midrange of dispropor-
tionate gains (Figure 2B). These cumulative plots are not
usually tested in medicine due to a lack of matched data
(unlike repeated-measures designs) and due to the
reduced statistical power of binary data for identifying a
sigmoidal pattern (unlike continuous data).20

Testing Sigmoidality

All tests for a sigmoidal pattern face 3 important chal-
lenges. First, a linear model might often be a good
approximation and leave little remaining systematic var-
iation. Second, sigmoidal functions such as the Gom-
pertz, logistic, or Weibull can be unfamiliar to readers.21

Third, a specific sigmoidal function tends to have added
degrees of freedom that mandate a check of goodness of

fit to avoid overfitting. The net implication is that a sig-
moidal function requires large amounts of valid data.
This prerequisite may explain why tests for a sigmoidal
function are rare in clinical research (despite theorized in
common dose–response curves) and tend to be more
popular in public health science (such as describing a dis-
ease epidemic).

The Gompertz curve is a generalized logistic function
developed 2 centuries ago and is the traditional sigmoidal
curve for studying numerical growth.22,23 Similar to all
sigmoidal functions, the Gompertz curve describes mod-
est positive beginnings that accelerate in the midrange
and decelerate to an upper asymptote. Unlike a conven-
tional logistic function, the Gompertz curve is slightly
asymmetric where the upper asymptote is approached
more slowly than the initial baseline growth. Diverse

Figure 1 Relative benefit and continuous outcome.
Hypothetical data from a trial where primary outcome is a
continuous variable that gauges clinical effectiveness. The x-
axis denotes disease severity measured at baseline. The y-axis
denotes relative change from baseline following treatment. (A)
Uniform relative benefit at all levels of disease severity. (B)
Potential sweet spot with greater relative benefit at middle
range and less benefit at extremes of disease severity. An

example could be a diet intervention for overweight patients
where the average participant drops 0.1 pounds per day, yet
those at extremes of baseline weight have smaller relative
changes.

Figure 2 Cumulative benefit and continuous outcome.
Hypothetical data from a trial where primary outcome is a
continuous variable that gauges clinical effectiveness. The x-
axis denotes disease severity measured at baseline. The y-axis
denotes cumulative change in outcome from baseline following
treatment. (A) Uniform relative benefit at all levels of disease
severity. (B) Potential sweet spot with greater relative benefit
at middle range and less benefit at extremes of disease severity.
An example could be a diet intervention for overweight
patients where the total cohort drops 80 pounds per day, yet
those at extremes of baseline weight have smaller relative
changes.
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applications of the Gompertz curve have included model-
ing worldwide population counts, forest growth over
time, cancer tumor size in laboratory conditions, market
uptake of cellular phones, and learning curves from
extended education.24

Introducing a Gompertz curve to replace a simple lin-
ear model requires checking if the effort is worthwhile.
The Akaike information criterion (AIC) was developed
half a century ago for model selection based on informa-
tion theory.25 An AIC can assess different models of the
same data to gauge goodness of fit with penalties for
adding coefficients (lower values better).26 An AIC can
be computed for most statistical models, including linear
regression (based on the number of coefficients, residual
sum of squares, sample size). An AIC is generally super-
fluous when checking an individual regression model
because each coefficient can be tested directly. The AIC
is necessary when evaluating incongruous models such as
comparing a linear model to a Gompertz curve.

An additional way to check model validity or avoid
overfitting is by cross-validation. Such validation
requires splitting the original data into a training sample
to derive coefficients and a separate testing sample to
examine resulting errors.27 The leave-one-out cross-
validation (LOOCV) approach involves computationally
intensive techniques that iterate through an entire data
set to generate a laborious and unbiased estimate of the
error rate.28 The LOOCV approach, therefore, serves to
check the superior goodness of fit of a Gompertz model
relative to a simple linear model.29 Another strength of
this approach is to provide an R2 estimate as a more
familiar measure of goodness of fit for both the Gom-
pertz model and the linear model.

Clinical Application

In this study, we examined a clinical trial that tested the
benefits of an implantable defibrillator for preventing all-
cause mortality in cardiac patients.30 By random assign-
ment, one-third received a defibrillator and two-thirds
received medical management only. A total of 2,521
patients were followed (median duration = 3.8 years),
and overall mortality was lower for the defibrillator
group (182 / 829 = 22%) than the control group (484 /
1,692 = 29%), indicating a significant reduction (P \
0.001). Stratification suggested the survival advantage
was mostly explained by patients in the middle range of
disease severity.31 This pattern implies a potential sweet
spot in disease severity where some patients experienced
more relative benefit than others.

Similar to other clinical trials, this study also collected
data on multiple baseline patient features relevant to

estimating disease severity. Because no preexisting dis-
ease severity index was available, a simple approach was
to build a prediction model to determine how these com-
bined baseline features might predict the patient’s out-
come over the study duration (see Appendix, available
online). This prediction score to gauge disease severity
was based solely on the control patients to avoid misin-
terpreting patients who received a treatment that altered
the natural history.32 Such predictive models are also
called endogenous stratification in the econometrics liter-
ature.33 Split-sample prevalidation was not included but
can be an added way to avoid overfitting disease severity
predictions.34

Results

Descriptive Overview

An analysis for identifying a sweet spot requires forming
clusters of similar patients.35 In this case, we used a
greedy nearest-neighbor matching algorithm (caliper
width = 0.2, no replacement) to form triplets where 1
patient received a defibrillator, 2 patients did not receive
a defibrillator, and all 3 patients had a similar baseline
disease severity score.36–39 The intent was to convert the
randomized trial into a matched randomized trial and
estimate an apparent survival advantage for each triplet.
Overall, we obtained 829 triplets (sample size = 2,487)
that retained all defibrillator patients (n = 829) and
most control patients (n = 1,658). The median follow-up
was slightly reduced (duration = 3.4 years), and the final
outcome counts equaled 661 total deaths.

As expected, these matched patients again showed lower
patient mortality in the defibrillator group (182 / 829 =
22%) compared to the control group (479 / 1,658 = 29%),
equal to nearly a one-third reduction in odds (odds ratio =
0.69; 95% confidence interval [CI], 0.57–0.84; P \ 0.001).
The survival advantage with defibrillator treatment was
sufficiently clear that it could be confirmed by directly clas-
sifying patients as dead or alive at study termination. As in
the unmatched analysis, the observed survival advantage
was mostly apparent among patients in the middle range of
disease severity (Figure 3). Relatively little of the survival
advantage from defibrillators was observed for patients
with the greatest disease severity or those with the least dis-
ease severity.

The matched cohort then allowed the collective sur-
vival advantage to be depicted by a cumulative plot
according to the disease severity in each triplet. A triplet
where the defibrillator patient survived, 1 control patient
died, and the other control survived, for example, sug-
gested a 0.5 patient survival advantage from defibrillator
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treatment (observed survival = 1.0, expected survival =
0.5). This cumulative plot followed a sigmoidal shape
that highlighted how the survival advantage was mostly
for patients with midrange severity (Figure 4). The net
survival advantage was 57 defibrillator patients (95%
CI, 32–80). This latter analysis ignored the timing of
death and could be subjected to a global test of statistical
significance as a sigmoidal model.

Linear and Gompertz Models

We analyzed the cumulative survival advantage as a lin-
ear model and as a Gompertz model.40 The linear model
yielded a significant survival advantage across the spec-
trum of increasing disease severity (intercept = –7.32,
b = 0.0847, P \ 0.001). As expected, the linear model
had high goodness of fit (R2 = 95%) and information
(AIC = 2,491). Similarly, a Gompertz model yielded a
significant survival advantage across the spectrum of
increasing disease severity (a = 93, b = 4.939, g =
0.00316, P \ 0.001 for all). As expected, the Gompertz
model had high goodness of fit (F = 44,834) and
information (AIC = 1,660). The contrast suggested lost

information in the linear model compared to the Gom-
pertz model (2,491 v. 1,660, P \ 0.001).

The LOOCV approach also confirmed the superior
goodness of fit of the Gompertz model (Figure 4).41 The
simple linear model had a median absolute error of 0.068
when comparing observed values to predicted values.
The Gompertz model had a median absolute error of
0.029 when checking observed values to predicted values.
Overall, this equated to the simple linear model demon-
strating a strong relationship of disease severity with
accumulating survival advantage (R2 = 95.31%) and the
Gompertz model demonstrating an even stronger rela-
tionship (R2 = 99.20%). Model validation through the
LOOCV approach indicated this superior goodness of fit
was unlikely due to change (P \ 0.001).

Alternative Sigmoidal Models

Three alternative sigmoidal models were also considered
for sensitivity analysis.24 A logistic model suggested a
sweet spot in the midrange of disease severity (a = 115,
b = –2.24, ED-50 = 736, P \ 0.001 for all) and reason-
able information (AIC = 1,823). A Weibull growth
model suggested a sweet spot in the midrange of disease
severity (a = 74.1, b = 2.28, ED-50 = 617, P \ 0.001

Figure 3 Survival in quintiles of disease severity. Analysis of
survival benefit stratified by of five categories of disease
severity. X-axis shows disease severity with least severe quintile
on left and most severe quintile on right. Y-axis shows
proportion of each group alive at study termination. Bars show
observed data and circles show results from Gompertz model.
Speckled pattern denotes defibrillator group, striped pattern
denotes control group, and floating percentages indicate actual
survival in each group. Lower square brackets provide count
of triplets, individual patients, observed deaths, and estimated
number-needed-to-treat (NNT) in each quintile. Results show
higher probability of survival with defibrillator treatment for
each quintile, accentuated increase in middle quintile, and close
fit of Gompertz model with observed data in all quintiles.

Figure 4 Cumulative survival advantage for defibrillator
patients. Histogram of cumulative survival advantage
comparing defibrillator patients to control patients. The x-axis
shows consecutive triplets of matched patients who are
sequenced ordinally by increasing disease severity. The y-axis
shows cumulative count of survival advantage for defibrillator
patients. Display contains 829 bars for 829 matched triplets (1
defibrillator patient and 2 control patients in each triplet, all
with similar disease severity). Results show survival advantage
of defibrillator patients mostly explained by individuals with
intermediate disease severity.
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for all) and reasonable information (AIC = 1,753). A
Chapman–Richards model suggested a sweet spot in the
midrange of disease severity (a = 118, b = 0.0019, g =
2.60, P \ 0.001 for all) and reasonable information
(AIC = 1,868). Together, the similarity of AIC values
confirmed the overall findings of the Gompertz sigmoi-
dal curve.

Extension to Time-to-Event Data

The clinical trial provided a secondary analysis of an
alternate end point since outcomes were recorded as
time-to-event data (survival analysis) rather than end-of-
trial vital status (logistic analysis). This meant 2 patients
who both died could have different implications if 1
patient had died later than the other. Addressing this
nuance and accounting for censoring required scoring
each matched triplet by comparative survival (Appen-
dix). For example, if the defibrillator patient died later
than the matched control, the defibrillator patient was
scored as superior survival. Other patterns were scored
depending on which and when matched patients died
(Appendix). This analysis thereby accounted for the tim-
ing of death and again yielded a sigmoidal curve to iden-
tify a sweet spot (Appendix).

The LOOCV approach also confirmed the superior
goodness of fit of the Gompertz model for the time-to-
event data. The simple linear model had a median abso-
lute error of 0.049 when checking observed values to pre-
dicted values. The Gompertz model had a median
absolute error of 0.019 when checking observed values to
predicted values. Overall, this equated to the simple lin-
ear model demonstrating a strong relationship of disease
severity with accumulating survival advantage (R2 =
96.96%) and the Gompertz model demonstrating an
even stronger relationship (R2 = 99.26%). Model valida-
tion through the LOOCV approach indicated this super-
ior goodness of fit was unlikely due to change (P \
0.001).

Model Interpretation

The coefficients from a Gompertz curve can be difficult
to interpret. As one approach, we modeled the estimated
survival advantage for each quintile of disease severity
(Figure 3). We found a substantial reduction in mortality
for patients in the mid-zone of disease severity (estimated
odds ratio = 0.52; 95% CI, 0.32–0.86). In contrast,
we found modest reductions in mortality for patients
with the lowest severity (estimated odds ratio = 0.68;
95% CI, 0.35–1.33) or highest severity (estimated odds
ratio = 0.71; 95% CI, 0.49–1.02). For example, the

highest-severity patients showed relatively modest abso-
lute survival gains with a defibrillator, equal to a number
needed to treat of 56 to avoid 1 death.

A different approach to interpreting Gompertz models
is based on the coefficients. A linear model, for example,
presumes a consistent marginal benefit regardless of
severity with a slope that estimates the gains for an aver-
age triplet. In our case, a slope of 0.0847 means treatment
for the average triplet saves 0.0847 lives, implying a num-
ber needed to treat of 12 to avoid 1 death (1 / 0.0847).
Similarly, the inflection point of a Gompertz curve yields
a slope calculated from the amplitude and curvature
(slope = a 3 g / e) that estimates the gains at the sweet
spot. In our case, a slope of 0.1081 (93 3 0.00316 /
2.7183) means treatment for the sweet-spot triplet saves
0.1081 lives, implying a number needed to treat of 9 to
avoid 1 death (1 / 0.1081).

Discussion

In this article, we focus on the concept of a sweet spot in
a randomized trial and introduce a method testing
whether a study might underestimate or overestimate the
effects of a treatment on diverse patients. The core
assumption is that a sweet spot is related to disease sever-
ity. The strategy is to explore for a sigmoidal relationship
of disease severity with cumulative treatment effect
(Box). The analysis then tests whether a sigmoidal rela-
tionship is superior to a linear relationship for describing
accumulating differences. In follow-up to prior theory,
the approach does not rely on subgroup stratification.42

Using this method, we detected a potential sweet spot in
a randomized trial of defibrillators for preventing mor-
tality in cardiac patients.

Our method has limitations. The creation of matched
sets requires extending the concept of a randomized trial
to imply patients tend to be balanced both at the sample
average and at finer substratifications. The functional
form of a sigmoidal curve differs from polynomial or
spline regressions that provide more complex models for
studying nonlinear associations.43 The actual coefficients
of a sigmoidal curve of cumulative benefit can also vary
slightly depending on whether later matched sets are
scaled in a weighted or unweighted manner. The subse-
quent estimates for pinpointing a sweet spot are impre-
cise and do not identify exact boundaries for a sweet
spot. The analyses do not directly account for equity,
diversity, inclusion, or other societal priorities.

Several other methods are available as alternative
ways of testing how treatment effects might vary by
patient characteristics. Forest plots can provide separate
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analyses based on individual characteristics but can also
create type I or type II statistical errors, unlike a single
test based on a severity score. Regression analysis with
interaction terms is an approach in population epide-
miology that can also be hard for clinicians to interpret,
unlike a visual display that can show relative risk, absolute
risk, or number needed to treat. More advanced general-
ized estimating equations can allow other functional forms
but tend to also require substantial sophistication and
iteration, unlike our approach that can be standardized.

Testing for a sweet spot in a clinical trial is rarely the
primary analysis (unless testing a treatment known to be
effective or theorized to have a highly responsive sub-
group). As such, a sweet-spot analysis deserves skepti-
cism due to the risk of multiple hypothesis testing and
capitalizing on chance. The study sample needs to have
substantial variability in disease severity that can be
quantified in a single metric.44 A matching algorithm
must also be available to assemble clusters of matched
patients randomized to different treatments.45–47 Overall,
a study will require plentiful sample size and outcome
events to avoid overfitting.48 The importance of these
conditions may explain why a sweet-spot analysis of ran-
domized trials is often discussed but rarely attempted.3

A related caveat is the risk of a false-negative analysis
and mistakenly concluding no sweet spot is present.

Indeed, it is impossible to prove a sweet spot does not
exist. The specific trial analyzed herein suggests the rela-
tive benefit of a defibrillator in reducing mortality
depends on disease severity. The same pattern might also
help explain why a subsequent trial of patients who had
mild disease severity found no significant mortality bene-
fit.49 Together, the modest results might have undercut
enthusiasm for an effective intervention and indirectly pro-
moted costly alternatives such as external defibrillators in
public spaces.50–52 More generally, the basic concept of a
sweet spot could help inform cost-effectiveness analyses
and policy decisions around expensive interventions.

Future research can extend ideas in different direc-
tions. Methodologists could address different severity
scores and different sigmoidal functional forms. Experts
in machine learning could develop high-dimensional
algorithms for creating matched sets of similar patients.53

Statisticians might also wish to tackle more complex
cases that include competing risks or when a sweet spot is
not unimodal. Policy analysts could conduct simulations
to assess how differences in patient recruitment might
shift subsequent study results. Meta-analysts could con-
sider how to incorporate a sweet spot into the GRADE
framework.54 Trialists could adopt our approach to
review the frequency of a sweet spot in past randomized
trials in diverse fields. We encourage these and other
directions for future research.

Public domain software for an R module is now in
development for the CRAN site to help guard against
faulty execution and other statistical nuances of a sweet-
spot analysis. Of course, no analysis can compensate for
a failure of randomization, lack of blinding, specious
second-guessing, or other biases in study design.55 In
addition, scientists are prone to self-deception that can
be exacerbated by sunk-cost reasoning in the aftermath
of a costly trial.56 A small amount of data falsification,
furthermore, can quickly cause spurious results when
estimating a sigmoidal function. These caveats merit
attention since the methodology described here can be
readily replicated in randomized trials worldwide to
check whether a potential sweet spot might be important.
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Box Identifying a Sweet Spot in a Randomized Triala

General Steps for a Sweet-Spot Analysis
� Build a severity score based on controls
� Compute each patient’s baseline severity
� Assemble matched clusters with similar severity
� Determine the apparent benefit in each cluster
� Assess cumulative benefit with increasing severity
� Inspect for an apparent sigmoid shape
� Test sigmoid model against linear model
� Show results translated back to natural units

General Limitations of a Sweet-Spot Analysis
� Spurious P values from capitalizing on chance
� Insufficient sample size and diversity
� Fallible estimations of disease severity
� Faulty matching algorithm
� Mistaken selection of a particular sigmoidal model
� Inability to estimate exact boundary of sweet spot
� Trivial clinical magnitude of estimated sweet spot
� Propagation of failures in underlying trial design
� Vulnerability to data falsification
� Difficulties generalizing to other patient populations

aUpper points summarize 8 specific steps for analysis. Lower points

summarize specific limitations. Main assumption is that a sweet spot is

related to disease severity. Approach can apply to a randomized trial

in diverse patients regardless of study end point.
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