data reports

OPEN access

Crystal structure of 2-[12-methyl-14phenyl-10,13,14,16-tetraazatetracyclo- $[7.7.0.0^{2,7}.0^{11,15}]$ hexadeca-1(16),2,4,-6,9,11(15),12-heptaen-8-ylidene]propandinitrile

Joel T. Mague,^a Shaaban K. Mohamed,^{b,c} Mehmet Akkurt,^d Hussein M. S. El-Kashef^e and Mustafa R. Albayati^{f*}

^aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^eDepartment of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

Received 23 October 2014; accepted 1 November 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

In the title molecule, $C_{22}H_{12}N_6$, the fused tetracyclic core shows a small lengthwise twist as indicated by the dihedral of $2.7 (2)^{\circ}$ between the outer rings. In the crystal, molecules stack along the *b*-axis direction via offset π -stacking [centroidcentroid distances = 3.5282(13) and 3.5597(14) Å] with the stacks weakly associated through $C-H \cdots N$ hydrogen bonds. The phenyl ring is rotationally disordered over two orientations with an occupancy ratio of 0.516 (4):0.484 (4).

Keywords: crystal structure; heptaene; propandinitrile; pyrazine scaffold compound; fused tetracyclic core.

CCDC reference: 1032263

1. Related literature

For the biological properties of pyrazine scaffold compounds, see: Kaliszan et al. (1985); Makino et al. (1990); Emary & Ibrahim (2006); Silva et al. (2010); Rusinov et al. (2005); Johnston & Kau (1993); Myadaraboina et al. (2010); Metobo et al. (2006). For use of pyrazines in industrial chemistry see: Rangnekar & Dhamnaskar, 1990). For the preparation of the title compound, see: El-Emary & El-Kashef (2013)

2. Experimental

2.1. Crystal data

C22H12N6 $M_r = 360.38$ Monoclinic, C2/c a = 35.968 (5) Åb = 4.6483 (6) Å c = 26.596 (3) Å $\beta = 129.6130 \ (12)^{\circ}$ V = 3425.5 (8) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-3}$ T = 150 K $0.21 \times 0.13 \times 0.07 \text{ mm}$

15751 measured reflections 3921 independent reflections

 $R_{\rm int} = 0.050$

2489 reflections with $I > 2\sigma(I)$

2.2. Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\rm min} = 0.77, T_{\rm max} = 0.99$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.053$ 1 restraint $wR(F^2) = 0.136$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^-$ S = 1.03 $\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$ 3921 reflections 249 parameters

Table 1		
Hydrogen-bond	geometry ((Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$		
$C10-H10A\cdots N5^{i}$	0.98	2.69	3.362 (3)	126		
Symmetry code: (i) $-x + 1, y - 1, -z + \frac{1}{2}$.						

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. SKM and HMSE would like to thank Professor T. El-Emary, Assiut University, for his contribution to this study.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5012).

References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Emary, T. & El-Kashef, H. (2013). Eur. J. Med. Chem. 62, 478-485.
- Emary, E. & Ibrahim, T. (2006). J. Chin. Chem. Soc. 53, 391-401.
- Johnston, P. A. & Kau, S. T. (1993). J. Pharmacol. Exp. Ther. 264, 604-608.

- Kaliszan, R., Pilarski, B., OŚmiałowski, K., Strzałkowska-Grad, H. & Hać, E. (1985). Pharm. Weekbl. Sci. 7, 141–145.
- Makino, E., Iwasaki, N., Yagi, N., Ohashi, T., Kato, H., Ito, Y. & Azuma, H. (1990). Chem. Pharm. Bull. 38, 201–207.
- Metobo, E., Jin, H., Tsiang, M. & Kim, C. U. (2006). *Bioorg. Med. Chem. Lett.* **16**, 3985–3988.
- Myadaraboina, S., Alla, M., Saddanapu, V., Bommena, V. R. & Addlagatta, A. (2010). Eur. J. Med. Chem. 45, 5208–5216.
- Rangnekar, D. W. & Dhamnaskar, S. V. (1990). Dyes and Pigments, 13, 241–250.
- Rusinov, V. L., Kovalev, I. S., Kozhevnikov, D. N., Ustinova, M. M., Chupakhin, O. N., Pokrovskii, A. G., Ilicheva, T. N., Belanov, E. F., Bormotov, N. I., Serova, O. A. & Volkov, G. N. (2005). *Pharm. Chem. J.* **39**, 630–635.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Silva, Y. K. da, Augusto, C. V., de Castro Barbosa, M. L., de Albuquerque Melo, G. M., de Queiroz, A. C., de Lima Matos Freire Dias, T., Júnior, W. B., Barreiro, E. J., Lima, L. M. & Alexandre-Moreira, M. S. (2010). *Bioorg. Med. Chem.* 18, 5007–5015.

supporting information

Acta Cryst. (2014). E70, o1244-o1245 [doi:10.1107/S1600536814024167]

Crystal structure of 2-[12-methyl-14-phenyl-10,13,14,16-tetraazatetracyclo-[7.7.0.0^{2,7}.0^{11,15}]hexadeca-1(16),2,4,6,9,11(15),12-heptaen-8-ylidene]propandinitrile

Joel T. Mague, Shaaban K. Mohamed, Mehmet Akkurt, Hussein M. S. El-Kashef and Mustafa R. Albayati

S1. Comment

Over recent years there has been an increasing interest in the chemistry of pyrazine scaffold compounds due to their biological significance. Pyrazine ring is found in numerous pharmaceutically active compounds such as analgesic (Kaliszan *et al.*, 1985), antiallergic (Makino *et al.*, 1990), antibacterial (Emary & Ibrahim 2006), anti-inflammatory (Silva *et al.*, 2010), antiviral (Rusinov *et al.*, 2005), diuretic (Johnston & Kau, 1993), anticancer (Myadaraboina *et al.*, 2010), and anti-HIV (Metobo *et al.*, 2006) medications. Other pyrazine derivatives are also used as fluorescent dyes or dispersed dyes for polyester fibers (Rangnekar & Dhamnaskar, 1990). As part of our investigations of pyrazine derivatives to compare their chemical and biological activities, we have undertaken the X-ray crystal structure analysis of the title compound.

In the title compound, Fig. 1, the fused 4-ring core of the title molecule is nearly planar with only a slight lengthwise twist as indicated by the dihedral angle between the N1/N2/C7/C8/C9 and C12-C17 rings of 2.7 (2)°.

In the crystal, molecules pack in columns along [010] which involve offset π -stacking in which atom N2 is 3.36 (4) Å from the centroid of the N3/C11/C19/N4/C8/C7 ring one unit cell translation in *b* above it while C17 is 3.41 (4) Å from the centroid of the N3/C11/C19/N4/C8/C7 ring one unit cell translation in *b* below it (Fig. 2). Adjacent stacks are weakly associated *via* C—H···N hydrogen bonds (Fig. 3 and Table 1) and are inclined at *ca* 43.5° in opposite directions from (010).

S2. Experimental

The title compound was prepared according to the reported procedure (El-Emary & El-Kashef, 2013). Orange crystals suitable for X-ray diffraction were obtained by recrystallization of the reaction product from dimethylformamide (m.p. 587–589 K).

S3. Refinement

C-bound H atoms were placed in calculated positions and treated as riding atoms, with C—H = 0.95-0.98 Å and with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and = $1.2U_{eq}(C)$ for other H atoms. The phenyl ring attached to N1 is rotationally disordered over two sites with an occupancy ratio of 0.516 (4):0.484 (4). The components of the disorder were refined as rigid hexagons.

Figure 1

The molecular structure of the title molecule, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Portions of two neighboring stacks showing the offset π -stacking and C—H…N interactions (Table 1) as green and blue dotted line, respectively.

Figure 3

Crystal packing viewed along the *b* axis showing stacks of molecules connected by the weak C—H \cdots N interactions (blue dotted lines; see Table 1 for details).

2-{12-Methyl-14-phenyl-10,13,14,16-tetraazatetracyclo[7.7.0.0^{2,7}.0^{11,15}]hexadeca-1(16),2,4,6,9,11 (15),12-heptaen-8-ylidene}propandinitrile

Crystal data $C_{22}H_{12}N_6$ $M_r = 360.38$ Monoclinic, C2/c a = 35.968 (5) Å b = 4.6483 (6) Å c = 26.596 (3) Å $\beta = 129.6130 (12)^\circ$ $V = 3425.5 (8) Å^3$ Z = 8

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3660 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2014) $T_{\min} = 0.77, T_{\max} = 0.99$ F(000) = 1488 $D_x = 1.398 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4540 reflections $\theta = 2.3-27.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 150 KColumn, orange $0.21 \times 0.13 \times 0.07 \text{ mm}$

15751 measured reflections 3921 independent reflections 2489 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 27.5^\circ, \theta_{min} = 2.0^\circ$ $h = -46 \rightarrow 46$ $k = -6 \rightarrow 6$ $l = -34 \rightarrow 34$ Refinement

dary atom site location: difference Fourier
gen site location: inferred from
hbouring sites
n parameters constrained
$[\sigma^2(F_o^2) + (0.0537P)^2 + 1.9123P]$
re $P = (F_o^2 + 2F_c^2)/3$
$h_{\rm ax} = 0.001$
= 0.31 e Å ⁻³
$= -0.20 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The diffraction data were collected in three sets of 400 frames (0.5° width in ω) at $\varphi = 0$, 120 and 240°. A scan time of 90 sec/frame was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The phenyl ring attached to N1 is rotationally disordered over two sites in approximately equal amounts. The components of the disorder were refined as rigid hexagons.

	x	V	Z	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
N1	0.69392 (6)	0.2255 (4)	0.36211 (8)	0.0427 (4)	
N2	0.66369 (7)	0.0716 (4)	0.36798 (9)	0.0482 (5)	
N3	0.68329 (6)	0.5915 (3)	0.28798 (8)	0.0385 (4)	
N4	0.58234 (6)	0.5174 (4)	0.23053 (8)	0.0418 (4)	
N5	0.46527 (7)	0.6261 (5)	0.12918 (10)	0.0679 (6)	
N6	0.46809 (7)	1.2638 (5)	0.01592 (10)	0.0657 (6)	
C1	0.74396 (18)	0.1886 (11)	0.4101 (2)	0.0444 (5)	0.516 (4)
C2	0.7750 (3)	0.2928 (12)	0.4002 (2)	0.0565 (14)	0.516 (4)
H2	0.7624	0.3876	0.3605	0.068*	0.516 (4)
C3	0.8246 (2)	0.2582 (13)	0.4482 (3)	0.0568 (13)	0.516 (4)
Н3	0.8458	0.3294	0.4414	0.068*	0.516 (4)
C4	0.84309 (16)	0.1195 (12)	0.5063 (3)	0.0611 (7)	0.516 (4)
H4	0.8770	0.0959	0.5391	0.073*	0.516 (4)
C5	0.81201 (19)	0.0153 (11)	0.5163 (2)	0.0596 (12)	0.516 (4)
Н5	0.8246	-0.0795	0.5559	0.072*	0.516 (4)
C6	0.76244 (18)	0.0498 (11)	0.4682 (2)	0.0551 (11)	0.516 (4)
H6	0.7412	-0.0214	0.4750	0.066*	0.516 (4)
C1A	0.74487 (19)	0.1788 (12)	0.4091 (2)	0.0444 (5)	0.484 (4)
C2A	0.7774 (3)	0.3742 (10)	0.4168 (3)	0.0565 (14)	0.484 (4)
H2A	0.7660	0.5350	0.3884	0.068*	0.484 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

G2 4		0.0044 (11)		0.05(0.(10)	0.404.(4)
C3A	0.8267 (3)	0.3344 (11)	0.4661 (4)	0.0568 (13)	0.484 (4)
НЗА	0.8490	0.4679	0.4714	0.068*	0.484 (4)
C4A	0.84344 (17)	0.0991 (13)	0.5077 (3)	0.0611 (7)	0.484 (4)
H4A	0.8771	0.0719	0.5414	0.073*	0.484 (4)
C5A	0.8109 (2)	-0.0963 (11)	0.5000 (2)	0.0596 (12)	0.484 (4)
H5A	0.8223	-0.2571	0.5284	0.072*	0.484 (4)
C6A	0.76159 (19)	-0.0564 (11)	0.4507 (3)	0.0551 (11)	0.484 (4)
H6A	0.7393	-0.1900	0.4454	0.066*	0.484 (4)
C7	0.66759 (7)	0.4096 (4)	0.31061 (9)	0.0385 (5)	
C8	0.61906 (7)	0.3724 (4)	0.28314 (10)	0.0395 (5)	
С9	0.61930 (8)	0.1579 (4)	0.32169 (11)	0.0458 (5)	
C10	0.57752 (8)	0.0445 (5)	0.31473 (12)	0.0575 (6)	
H10A	0.5884	-0.1118	0.3461	0.086*	
H10B	0.5530	-0.0286	0.2703	0.086*	
H10C	0.5636	0.1991	0.3232	0.086*	
C11	0.64643 (7)	0.7328 (4)	0.23600 (9)	0.0360 (4)	
C12	0.64814 (7)	0.9456 (4)	0.19683 (9)	0.0368 (4)	
C13	0.68659 (7)	1.0487 (4)	0.20208 (10)	0.0424 (5)	
H13	0.7185	0.9834	0.2359	0.051*	
C14	0.67732 (8)	1.2503 (5)	0.15671 (10)	0.0470 (5)	
H14	0.7032	1.3228	0.1594	0.056*	
C15	0.63093 (8)	1.3466 (5)	0.10772 (10)	0.0480 (5)	
H15	0.6255	1.4850	0.0774	0.058*	
C16	0.59220 (7)	1.2445 (4)	0.10213 (10)	0.0440 (5)	
H16	0.5604	1.3125	0.0684	0.053*	
C17	0.60064 (7)	1.0419 (4)	0.14650 (9)	0.0387 (5)	
C18	0.56731 (7)	0.8908 (4)	0.15189 (9)	0.0389 (5)	
C19	0.59741 (7)	0.6983 (4)	0.20825 (9)	0.0379 (4)	
C20	0.51870 (7)	0.9165 (4)	0.11397 (10)	0.0421 (5)	
C21	0.49030 (8)	0.7526 (5)	0.12444 (11)	0.0499 (5)	
C22	0.49111 (8)	1.1104 (5)	0.05965 (11)	0.0491 (5)	
	• •				

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0487 (10)	0.0408 (9)	0.0452 (10)	0.0038 (8)	0.0331 (9)	0.0037 (8)
N2	0.0606 (12)	0.0437 (10)	0.0563 (11)	0.0011 (9)	0.0447 (11)	0.0022 (9)
N3	0.0421 (9)	0.0351 (9)	0.0406 (9)	0.0017 (7)	0.0274 (8)	-0.0007 (7)
N4	0.0452 (10)	0.0383 (9)	0.0471 (10)	-0.0017 (8)	0.0318 (9)	-0.0063 (8)
N5	0.0494 (12)	0.0848 (16)	0.0745 (15)	-0.0056 (11)	0.0418 (12)	-0.0071 (12)
N6	0.0538 (12)	0.0703 (14)	0.0579 (13)	0.0127 (11)	0.0287 (11)	0.0066 (12)
C1	0.0527 (13)	0.0398 (12)	0.0459 (12)	0.0081 (10)	0.0339 (11)	0.0016 (9)
C2	0.0545 (17)	0.058 (3)	0.060 (3)	0.018 (2)	0.037 (2)	0.020 (3)
C3	0.0543 (17)	0.058 (3)	0.063 (4)	0.015 (2)	0.040 (2)	0.006 (2)
C4	0.0583 (15)	0.0649 (17)	0.0510 (14)	0.0200 (13)	0.0306 (13)	0.0071 (13)
C5	0.073 (2)	0.056 (3)	0.047 (3)	0.017 (3)	0.038 (2)	0.008 (2)
C6	0.0618 (18)	0.054 (3)	0.050 (3)	0.006 (2)	0.036 (2)	0.006 (2)
C1A	0.0527 (13)	0.0398 (12)	0.0459 (12)	0.0081 (10)	0.0339 (11)	0.0016 (9)

C2A	0.0545 (17)	0.058 (3)	0.060 (3)	0.018 (2)	0.037 (2)	0.020 (3)
C3A	0.0543 (17)	0.058 (3)	0.063 (4)	0.015 (2)	0.040 (2)	0.006 (2)
C4A	0.0583 (15)	0.0649 (17)	0.0510 (14)	0.0200 (13)	0.0306 (13)	0.0071 (13)
C5A	0.073 (2)	0.056 (3)	0.047 (3)	0.017 (3)	0.038 (2)	0.008 (2)
C6A	0.0618 (18)	0.054 (3)	0.050 (3)	0.006 (2)	0.036 (2)	0.006 (2)
C7	0.0458 (11)	0.0339 (10)	0.0412 (11)	0.0034 (9)	0.0302 (10)	-0.0016 (9)
C8	0.0460 (12)	0.0344 (10)	0.0469 (12)	0.0009 (9)	0.0337 (10)	-0.0038 (9)
С9	0.0551 (13)	0.0421 (11)	0.0521 (13)	-0.0012 (10)	0.0398 (12)	-0.0045 (10)
C10	0.0674 (15)	0.0569 (14)	0.0712 (16)	-0.0045 (12)	0.0548 (14)	-0.0006 (12)
C11	0.0381 (11)	0.0328 (10)	0.0377 (10)	0.0001 (8)	0.0245 (9)	-0.0044 (8)
C12	0.0396 (11)	0.0326 (10)	0.0381 (10)	-0.0005 (8)	0.0247 (9)	-0.0043 (8)
C13	0.0393 (11)	0.0429 (11)	0.0410 (11)	-0.0017 (9)	0.0238 (10)	-0.0040 (9)
C14	0.0468 (12)	0.0497 (12)	0.0511 (13)	-0.0024 (10)	0.0342 (11)	-0.0006 (10)
C15	0.0541 (13)	0.0479 (12)	0.0446 (12)	0.0024 (10)	0.0327 (11)	0.0035 (10)
C16	0.0442 (12)	0.0431 (11)	0.0404 (11)	0.0038 (10)	0.0249 (10)	-0.0008 (9)
C17	0.0392 (11)	0.0352 (10)	0.0407 (11)	0.0004 (8)	0.0250 (9)	-0.0051 (9)
C18	0.0410 (11)	0.0352 (10)	0.0409 (11)	-0.0011 (8)	0.0262 (10)	-0.0088 (9)
C19	0.0394 (11)	0.0345 (10)	0.0409 (11)	0.0003 (8)	0.0261 (10)	-0.0042 (8)
C20	0.0391 (11)	0.0420 (11)	0.0411 (11)	0.0023 (9)	0.0238 (10)	-0.0052 (9)
C21	0.0392 (12)	0.0558 (13)	0.0516 (13)	-0.0009 (11)	0.0274 (11)	-0.0101 (11)
C22	0.0412 (12)	0.0528 (13)	0.0481 (13)	0.0026 (11)	0.0261 (11)	-0.0072 (11)

Geometric parameters (Å, °)

N1—C7	1.361 (2)	C4A—C5A	1.3900
N1—N2	1.391 (2)	C4A—H4A	0.9500
N1-C1	1.403 (5)	C5A—C6A	1.3900
N1—C1A	1.430 (5)	C5A—H5A	0.9500
N2—C9	1.311 (3)	С6А—Н6А	0.9500
N3—C11	1.328 (2)	C7—C8	1.409 (3)
N3—C7	1.353 (2)	C8—C9	1.426 (3)
N4—C19	1.327 (2)	C9—C10	1.489 (3)
N4—C8	1.342 (3)	C10—H10A	0.9800
N5-C21	1.147 (3)	C10—H10B	0.9800
N6-C22	1.148 (3)	C10—H10C	0.9800
C1—C2	1.3900	C11—C19	1.421 (3)
C1—C6	1.3900	C11—C12	1.466 (3)
С2—С3	1.3900	C12—C13	1.384 (3)
С2—Н2	0.9500	C12—C17	1.413 (3)
С3—С4	1.3900	C13—C14	1.390 (3)
С3—Н3	0.9500	C13—H13	0.9500
C4—C5	1.3900	C14—C15	1.382 (3)
C4—H4	0.9500	C14—H14	0.9500
C5—C6	1.3900	C15—C16	1.387 (3)
С5—Н5	0.9500	C15—H15	0.9500
С6—Н6	0.9500	C16—C17	1.384 (3)
C1A—C2A	1.3900	C16—H16	0.9500
C1A—C6A	1.3900	C17—C18	1.474 (3)

С2А—С3А	1.3900	C18—C20	1.356 (3)
C2A—H2A	0.9500	C18—C19	1.466 (3)
C3A—C4A	1.3900	C20—C22	1.434 (3)
СЗА—НЗА	0.9500	C20—C21	1.437 (3)
C7—N1—N2	110.14 (16)	N1—C7—C8	106.37 (17)
C7—N1—C1	131.2 (3)	N4—C8—C7	123.33 (18)
N2—N1—C1	118.4 (3)	N4—C8—C9	130.67 (19)
C7—N1—C1A	131.0 (3)	C7—C8—C9	105.99 (18)
N2—N1—C1A	118.8 (3)	N2—C9—C8	109.54 (18)
C9—N2—N1	107.95 (16)	N2—C9—C10	122.5 (2)
$C_{11} = N_{3} = C_{7}$	110.46 (16)	C8-C9-C10	122.0(2) 128.0(2)
C19 - N4 - C8	111 93 (16)	C9-C10-H10A	109 5
$C_{2}-C_{1}-C_{6}$	120.0	C9—C10—H10B	109.5
$C_2 - C_1 - N_1$	120.3 (4)	H10A-C10-H10B	109.5
C6-C1-N1	1197(4)	C9-C10-H10C	109.5
$C_3 - C_2 - C_1$	120.0	H_{10A} $-C_{10}$ $-H_{10C}$	109.5
C_{3} C_{2} H_{2}	120.0	H10B-C10-H10C	109.5
$C_1 - C_2 - H_2$	120.0	N3-C11-C19	124 72 (17)
$C_2 - C_3 - C_4$	120.0	N3	127.38(17)
C2C3H3	120.0	C_{19} C_{11} C_{12}	107 90 (16)
C4-C3-H3	120.0	C_{13} C_{12} C_{12} C_{17}	120 84 (18)
C_{5} C_{4} C_{3}	120.0	C_{13} C_{12} C_{11}	120.01(10) 130.85(18)
$C_5 - C_4 - H_4$	120.0	C_{17} C_{12} C_{11}	108.30(16)
C3-C4-H4	120.0	C_{12} C_{13} C_{14}	118 35 (19)
C6-C5-C4	120.0	C_{12} C_{13} H_{13}	120.8
C6-C5-H5	120.0	C14-C13-H13	120.8
C4-C5-H5	120.0	C_{15} C_{14} C_{13}	120.0 120.9(2)
C_{5} C_{6} C_{1}	120.0	C_{15} C_{14} H_{14}	119 5
C5-C6-H6	120.0	C_{13} C_{14} H_{14}	119.5
C1-C6-H6	120.0	C14-C15-C16	1211(2)
$C^2A - C^1A - C^6A$	120.0	C14-C15-H15	119.4
C2A - C1A - N1	121.3 (4)	C16—C15—H15	119.4
C6A - C1A - N1	121.5(1) 1185(4)	C_{17} $-C_{16}$ $-C_{15}$	118 82 (19)
C1A - C2A - C3A	120.0	C17 - C16 - H16	120.6
C1A - C2A - H2A	120.0	C_{15} C_{16} H_{16}	120.0
C_{3A} C_{2A} H_{2A}	120.0	C_{16} C_{17} C_{12}	119.95 (18)
C4A - C3A - C2A	120.0	$C_{16} - C_{17} - C_{18}$	131 13 (18)
C4A - C3A - H3A	120.0	C_{12} C_{17} C_{18}	101.13(10) 108.91(17)
$C_{A} = C_{A} = H_{A}$	120.0	$C_{12} - C_{13} - C_{10}$	100.91(17) 125.14(18)
$C_{2}A - C_{3}A$	120.0	$C_{20} - C_{18} - C_{17}$	123.14(10) 128.95(10)
C5A - C4A - H4A	120.0	$C_{20} = C_{10} = C_{17}$	126.93(19) 105.91(16)
C_{3A} C_{4A} H_{4A}	120.0	N4-C19-C11	103.91(10) 124.33(18)
C4A - C5A - C6A	120.0	N4 - C19 - C18	124.55(10) 126.69(17)
C4A = C5A = H5A	120.0	C_{11} C_{19} C_{18}	120.09(17) 108.98(17)
C64 - C54 - H5A	120.0	C18 - C20 - C22	100.90(17) 122.7(2)
C5A - C6A - C1A	120.0	$C_{10} = C_{20} = C_{22}$	122.7(2) 123 22 (10)
C5A - C6A - H6A	120.0	C^{22} C^{20} C^{21}	114 06 (18)
	120.0	$\bigcirc LL \bigcirc (LV \bigcirc L1$	117.00(10)

С1А—С6А—Н6А	120.0	N5-C21-C20	176.0 (2)
N3—C7—N1	128.40 (18)	N6-C22-C20	178.4 (2)
N3—C7—C8	125.22 (18)		
C7—N1—N2—C9	-0.6 (2)	N3—C7—C8—C9	178.93 (17)
C1—N1—N2—C9	174.4 (2)	N1—C7—C8—C9	0.0 (2)
C1A—N1—N2—C9	177.4 (3)	N1—N2—C9—C8	0.6 (2)
C7—N1—C1—C2	-18.7 (4)	N1—N2—C9—C10	-177.98 (18)
N2—N1—C1—C2	167.6 (2)	N4—C8—C9—N2	178.80 (19)
C1A—N1—C1—C2	69 (11)	C7—C8—C9—N2	-0.3 (2)
C7—N1—C1—C6	160.6 (3)	N4C8C10	-2.8 (4)
N2—N1—C1—C6	-13.1 (4)	C7—C8—C9—C10	178.1 (2)
C1A—N1—C1—C6	-112 (11)	C7—N3—C11—C19	0.2 (3)
C6-C1-C2-C3	0.0	C7—N3—C11—C12	-179.09 (17)
N1—C1—C2—C3	179.3 (4)	N3-C11-C12-C13	1.4 (3)
C1—C2—C3—C4	0.0	C19—C11—C12—C13	-177.97 (19)
C2—C3—C4—C5	0.0	N3-C11-C12-C17	-179.69 (18)
C3—C4—C5—C6	0.0	C19—C11—C12—C17	0.9 (2)
C4—C5—C6—C1	0.0	C17—C12—C13—C14	0.2 (3)
C2-C1-C6-C5	0.0	C11—C12—C13—C14	178.95 (19)
N1-C1-C6-C5	-179.3 (4)	C12-C13-C14-C15	0.3 (3)
C7—N1—C1A—C2A	14.8 (4)	C13-C14-C15-C16	-0.3 (3)
N2—N1—C1A—C2A	-162.6 (3)	C14—C15—C16—C17	-0.3 (3)
C1—N1—C1A—C2A	-80 (11)	C15-C16-C17-C12	0.8 (3)
C7—N1—C1A—C6A	-169.9 (3)	C15-C16-C17-C18	-178.22 (19)
N2—N1—C1A—C6A	12.7 (4)	C13-C12-C17-C16	-0.8 (3)
C1—N1—C1A—C6A	95 (11)	C11—C12—C17—C16	-179.76 (17)
C6A—C1A—C2A—C3A	0.0	C13—C12—C17—C18	178.45 (17)
N1—C1A—C2A—C3A	175.2 (4)	C11—C12—C17—C18	-0.6 (2)
C1A—C2A—C3A—C4A	0.0	C16—C17—C18—C20	-0.9 (3)
C2A—C3A—C4A—C5A	0.0	C12—C17—C18—C20	179.99 (19)
C3A—C4A—C5A—C6A	0.0	C16—C17—C18—C19	179.1 (2)
C4A—C5A—C6A—C1A	0.0	C12—C17—C18—C19	0.0 (2)
C2A—C1A—C6A—C5A	0.0	C8—N4—C19—C11	0.8 (3)
N1—C1A—C6A—C5A	-175.3 (4)	C8—N4—C19—C18	-179.82 (17)
C11—N3—C7—N1	179.02 (18)	N3—C11—C19—N4	-0.8 (3)
C11—N3—C7—C8	0.3 (3)	C12—C11—C19—N4	178.58 (17)
N2—N1—C7—N3	-178.56 (18)	N3—C11—C19—C18	179.68 (17)
C1—N1—C7—N3	7.3 (4)	C12—C11—C19—C18	-0.9 (2)
C1A—N1—C7—N3	3.8 (4)	C20—C18—C19—N4	1.1 (3)
N2—N1—C7—C8	0.4 (2)	C17—C18—C19—N4	-178.91 (18)
C1—N1—C7—C8	-173.8 (3)	C20—C18—C19—C11	-179.43 (18)
C1A—N1—C7—C8	-177.2 (3)	C17—C18—C19—C11	0.6 (2)
C19—N4—C8—C7	-0.3 (3)	C19—C18—C20—C22	179.49 (18)
C19—N4—C8—C9	-179.28 (19)	C17—C18—C20—C22	-0.5 (3)
N3—C7—C8—N4	-0.3 (3)	C19—C18—C20—C21	-0.6 (3)
N1—C7—C8—N4	-179.24 (17)	C17—C18—C20—C21	179.43 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C10—H10A…N5 ⁱ	0.98	2.69	3.362 (3)	126

Symmetry code: (i) -x+1, y-1, -z+1/2.