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Abstract: Traditional drug development is a slow and costly process that leads to the production
of new drugs. Virtual screening (VS) is a computational procedure that measures the similarity of
molecules as one of its primary tasks. Many techniques for capturing the biological similarity between
a test compound and a known target ligand have been established in ligand-based virtual screens
(LBVSs). However, despite the good performances of the above methods compared to their predeces-
sors, especially when dealing with molecules that have structurally homogenous active elements,
they are not satisfied when dealing with molecules that are structurally heterogeneous. The main
aim of this study is to improve the performance of similarity searching, especially with molecules
that are structurally heterogeneous. The Siamese network will be used due to its capability to deal
with complicated data samples in many fields. The Siamese multi-layer perceptron architecture will
be enhanced by using two similarity distance layers with one fused layer, then multiple layers will be
added after the fusion layer, and then the nodes of the model that contribute less or nothing during
inference according to their signal-to-noise ratio values will be pruned. Several benchmark datasets
will be used, which are: the MDL Drug Data Report (MDDR-DS1, MDDR-DS2, and MDDR-DS3),
the Maximum Unbiased Validation (MUV), and the Directory of Useful Decoys (DUD). The results
show the outperformance of the proposed method on standard Tanimoto coefficient (TAN) and
other methods. Additionally, it is possible to reduce the number of nodes in the Siamese multilayer
perceptron model while still keeping the effectiveness of recall on the same level.

Keywords: drug discovery; ligand-based virtual screen; similarity model; Siamese architecture;
multi-layer perceptron (MLP)

1. Introduction

Drug discovery is a prolonged and complex process that culminates in the manufac-
ture of new drugs. The biomolecular target is selected, and high-performance screening
procedures are executed to identify bioactive chemicals for defined aims in traditional drug
research and development. It is costly and time-consuming to produce high-performing
research testing [1]. In truth, the chances of success are slim; approximately 1 out of every
5000 drug candidates is expected to be accepted and widely used at some point [2]. In-
creased computer capabilities, on the other hand, have enabled the screening of millions of
chemical compounds at a reasonable speed and cost. The virtual screening methodology
is a computerized method for scanning large libraries of small compounds for the most
likely structures with the goal of developing medication [3–5]. Virtual screening (VS) is
used in the early stages of drug development to identify the most promising lead com-
pounds from large chemical libraries. The development of medications has been sped up
in recent years thanks to virtual screening (VS). Virtual screening is divided into two types:
structure-based virtual screening (SBVS) and ligand-based virtual screening (LBVS) [6].
The SBVS approaches strategies to look for indirect chemicals that are suitable for the

Molecules 2021, 26, 6669. https://doi.org/10.3390/molecules26216669 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-7748-1840
https://doi.org/10.3390/molecules26216669
https://doi.org/10.3390/molecules26216669
https://doi.org/10.3390/molecules26216669
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26216669
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26216669?type=check_update&version=2


Molecules 2021, 26, 6669 2 of 25

binding site of the biological target. The molecular docking technique lies at the heart of
SBVS approaches [7]. On the other hand, the LBVS approach is used constantly for the
prediction of molecular properties and for measuring molecular similarity because the
method to represent the molecules is easy and accurate. The necessity of applications of
similarity searching comes from the importance of lead optimization in drug discovery
programs, in which close neighbors are looking into an initial lead compound to find
decent compounds [8–10].

Modern deep learning (DL) approaches have recently been presented in a variety
of fields, and they have progressed in recent years, creating a new door for researchers.
The hit of DL techniques benefits from the speedy growth of the DL algorithms and
the progression of high-performance computing techniques. Moreover, DL techniques
have slight generalization errors, which allow them to achieve credible results on certain
benchmarks or competitive tests [11,12]. In addition, the Siamese network is frequently
employed to solve image and text similarity problems. It has been utilized for more complex
data samples, particularly heterogeneous data samples with a variety of dimensionality
and type properties [13,14]. However, some studies reported that pruning the parameters
makes the model of deep learning smaller in size, more memory-efficient, more power-
efficient, and faster at inference. The whole idea of model pruning is to reduce the number
of parameters without much loss in the accuracy of the model, which means cutting down
parts of the network that contribute less or nothing to the network during inference [15–17].

Various techniques have been utilized in order to augment the retrieval effectiveness
of similarity search algorithms. The use of 2D similarity algorithms has gained popular-
ity. Estimating molecular similarity is based on the assumption that structurally similar
molecules seem to be more likely to have similar characteristics than structurally different
ones. Therefore, the objective of similarity searching is to identify molecules that are
similar in structure to the consumer’s reference structures [18,19]. A number of coeffi-
cient techniques can be used to quantify the similarity/difference between molecule pairs.
Many other studies tested the outcomes of various similarity coefficients, showing that
the Tanimoto coefficient performed better than the others. As a result, in cheminformatics,
the Tanimoto coefficient has become the most often used measure of chemical compound
similarity [20–22]. Some experiments attempted to combine techniques from other fields.
Such that they adapted the techniques from text information retrieval to employ in the
cheminformatic domain to improve the similitude of molecular searching [23]. For example,
the Bayesian inference network was based on text retrieval domains, it has been adapted
and used in the similarity of molecular searches in virtual screening, and outperforms
the Tanimoto technique [24,25]. Furthermore, reweighting approaches were employed
to model document retrieval in the text field and modified in the cheminformatic area
in the retrieval model [25–27]. Mohammed Al Dabagh (2017) improved the molecular
similarity searching and molecular ranking of chemical compounds in LBVS using quan-
tum mechanics physics theory principles [28]. Mubarak Hussien (2017) constructed a new
similarity measure using current similarity measures by reweighting several bit-strings.
Furthermore, the author offered ranking strategies for the development of a replacement
ranking approach [29]. Deep belief networks (DBN) were used by Nasser, Majed, and
colleagues (2021) to reweight molecular data wherein many descriptors were used, each
reflecting separate relevant aspects, and combining all new features from all descriptors to
create a new descriptor for similarity searches [30,31].

On the other hand, many studies have used deep learning methods as prediction or
classification models. Some of them have used the DNN model to predict the activities
of the selected compounds. Furthermore, other studies have reported that deep learning
methods in Siamese architecture as a similarity model produce the best performance in
many fields. For example, Jonas et al. (2016) used an LSTM Siamese neural network to
calculate the similarity wherein the exponential Manhattan distance was used to measure
the similarity between two sentences [32]. Jun Yu and Mengyan Li et al. (2020) used
CNN Siamese architecture to determine whether two people are related, allowing missing
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persons to be reunited with their kin [33]. In the drug discovery domain, Devendra
Singh Dhami et al. (2020) used images as an input in a Siamese convolutional network
architecture to predict drug interactions in the drug discovery area [34]. Minji Jeon1 et al.
(2019) proposed a method for calculating distance, utilizing MLP Siamese neural networks
(ReSimNet) in structure-based virtual screen (SBVS) using cosine similarity [35].

Moreover, some early work in the pruning parameters domain used a gradual pruning
scheme based on pruning all the weights in a layer less than some threshold (manually
chosen) [12]. Blundell et al. (2015) introduced Bayes backpropagation for feedforward
neural networks. This method gives the uncertainty in their predictions and reduces the
model’s parameter count by ordering the weights according to their signal-to-noise-ratio
and setting a certain percentage of the weights with the lowest ratios to 0 to prune these
weights [15]. Louizos and Christos et al. (2017) used hierarchical priors to prune nodes
instead of individual weights and also used the posterior uncertainties to determine the
optimal fixed-point precision to encode the weights [36]. Chenglong Zhao et al. (2019)
proposed a variational Bayesian scheme for pruning convolutional neural networks at the
channel level. The variational technique is introduced to estimate the distribution of a
newly proposed parameter; based on this, redundant channels can be removed from the
model [37].

Despite the good performances of the above methods compared to their prior, espe-
cially when dealing with molecules that have homogenous active elements structural such
as classes of molecules in the MDL Drug Data Report dataset (MDDR_DR2), the perfor-
mances are not satisfied when dealing with molecules with structurally heterogeneous
nature such as classes of molecules in the MDL Drug Data Report dataset (MDDR_DR3,
MDDR_DR1) and maximum unbiased validation (MUV) dataset. In this paper, the
Siamese multi-layer perceptron model will be used and enhanced in order to achieve
the main purpose of this study for improving the performance of similarity searching, es-
pecially with molecules that are structurally heterogeneous. The following are the paper’s
main contributions:

(1) The Siamese multi-layer perceptron will be enhanced by (a) using two distance layers
and then a fuse layer that combines the results from two distance layers, with multiple
layers added after the fusion layer to improve the similarity recall; (b) pruning nodes
in the Siamese similarity model to reduce the number of parameters that contribute
less or nothing to the network during inference.

(2) In comparison to the benchmark approach and previous studies, the suggested
method outperformance in terms of results, especially when dealing with heteroge-
neous classes of molecules.

2. Materials and Methods

A Siamese neural network includes two artificial neural networks that are the same,
each able to handle the hidden input data representation, which have to be linked to a final
layer using a distance layer to predict whether or not two vectors fall under the same group.
The networks that make up the Siamese architecture are called twins since all the weights
and biases are connected. This means that both networks are symmetric. During training,
the two neural networks use both feedforward perceptron and error back-propagation. As
a result, it has been applied to more complex data samples, particularly heterogeneous data
samples with varying dimensionality and type properties [13]. In this paper, the Siamese
multilayer perceptron (MLP) model will be enhanced; the flowchart of steps for enhancing
the Siamese architecture is presented in Figure 1:
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Figure 1. The flowchart of enhancing the Siamese multi-layer perceptron architecture.

The steps to enhance the Siamese architecture of the multilayer perceptron include:

(1) Many models of Siamese architecture have been studied and analyzed in various do-
mains, such as Minji Jeon1 et al. (2019) [35], Devendra Singh Dhami et al. (2020) [34] in
the field of structure-based virtual screens, and Jonas et al. (2016) in the text field [32].

(2) All prior studies used one distance layer. In this paper, two distance layers are used,
and then one fusion layer combines the results from distance layers. The reason for
using more than one distance layer is to further improve the similarity measurements
between molecules.

(3) Many layers have been added after the fusion layer to improve the retrieval recall.
(4) To acquire a good retrieval recall outcome, the model hyperparameters, such as the

number of epochs and batch size, optimization, and the activation function, have
been tuned.

(5) Finally, the nodes of the model that contribute less or nothing to the network during
inference are pruned without having an effect on the effectiveness of the retrieval recall.

The architecture of the Siamese MLP similarity model and the mechanism of pruning
the nodes will be explained in the following subsections.

2.1. Enhanced Siamese Multi-Layer Perceptron Similarity Model

The architecture of the Siamese MLP similarity model consists of two inputs, repre-
senting molecular descriptors (fingerprints), and has one output that represents the degree
of similarity, meaning that the output has two classes; a value of (1) means high similarity
and a value of (0) means high dissimilarity. In this model, the input layer has 1024 cells,
each one connected to one feature of the molecular fingerprint, with each input layer
connected to distance layers. Two distances were used; the first one was the Manhattan
distance, which can be represented as [38]:

dAB = | fA − fB| (1)
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dAB: Manhatten distance
f A: feature of molecule’s query
f B: feature of molecule’s dataset
And the second distance was exponential Manhattan distance and can be given as [32]:

EAB = exp(−| fA − fB|) (2)

EAB: exponential Manhatten distance
f A: feature of molecule’s query
f B: feature of molecule’s dataset
A fusion layer was then added between two distance layers—Manhattan and Expo-

nential Manhattan—and was the reason for using more than one similarity distance to
enhance the measures of similarity between molecules. The ReLU activation function has
been used for all layers except the last one, in which the sigmoid activation function has
been used. Moreover, the RMSprop optimizer has been used and the loss function was
(binary_crossentropy); and the batch size was 256. Figure 2 demonstrates the architecture
of the enhanced Siamese MLP similarity model.
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2.2. Nodes or Neurons Pruning

As deep neural networks contain more layers, we must multiply multiple floating-
point integers together, which takes a long time to train and infer and consumes a lot
of computing resources. The problem mentioned above can be solved in a number of
ways, including weight sharing, pruning, quantization, and so on. The goal of model
pruning is to reduce the number of parameters while maintaining model correctness,
which entails pruning parts of the network that give little or no information to the network
during inference. As a result, models are smaller in size, and more memory-efficient,
power-efficient, and faster at inference with low accuracy loss [16,39]. Weight pruning
and node pruning are the two most common methods of pruning. In weight pruning,
individual weights are ranked in a weight matrix W based on their magnitude (or any
other criterion), and the smallest k percent of the weights are set to zero in weight trimming.
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This corresponds to deleting connections between nodes in different layers. However, in
node pruning, the columns that represented nodes in weight matrix are set to zero, in
effect deleting the corresponding output neuron. Here, nodes are ranked according to
their magnitude (or any other criterion), and the smallest k percent of each node is set to
zero. Pruning nodes will be employed in this research. Figure 3 demonstrates the idea of
node pruning.
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Each node is represented by a column of values in the weights matrix; the mean
and variance of the column (node) are evaluated, and then the signal-to-noise ratio is
calculated [15], the formula for which is:

signal_to_noise ratio =
|µi|
σi

(3)

µ: mean of column
σ: variance of column
i: the sequence of a column in the weight matrix

3. Experimental Design
3.1. Datasets

The MDL drug data report (MDDR) [40], maximum unbiased validation (MUV) [41],
and directory of useful decoys (DUD) [42] were used in the experiments. These datasets are
the most common cheminformatics datasets, and these datasets have recently been used by
our study community. All molecules in the MDDR dataset were converted to fingerprints
using the ECFC 4 descriptor. The screening studies were carried out with ten reference
structures randomly selected from each activity class. Three 102,516-molecule datasets
have been chosen (MDDR-DS1, MDDR-DS2, and MDDR-DS3). The MDDR-DS1 is divided
into 11 activity groups, some of which have structurally homogeneous active elements and
others which have structurally heterogeneous (i.e., structurally different) active elements.
MDDR-DS2 contains ten homogeneous activity classes, whereas MDDR-DS3 contains ten
heterogeneous activity classes. All of the datasets are described in Tables 1–3. Each row
of a table includes the activity class, the number of molecules belonging to the class, as
well as a diversity of groups, which were measured as the average similarity of Tanimoto,
computed by ECFC 4 for all pairs of molecules. As shown in Table 4, Rohrer and Baumann
recorded the second data collection (MUV) in this study. This data collection contains
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17 interaction groups, each of which has up to 30 active and 15,000 inactive molecules.
The class composition of this dataset shows that it contains classes with a lot of variety
or processes that are more heterogeneous. The last group of data used in this study is the
Useful Decoys Directory (DUD), which was recently compiled for docking methods as a
benchmark dataset. It was introduced by Huang et al. (2006) and was recently used in
both molecular and molecular virtual screening [43]. Twelve DUD subsets with 704 active
compounds and 25,828 decoys were used in this study, as shown in Table 5.

Table 1. The MDDR-DS1 structure activity classes.

Activity Index Active Molecules Activity Class Pairwise Similarity

31420 1130 Renin inhibitors 0.290
31432 943 Angiotensin II AT1 antagonists 0.229
37110 803 Thrombin inhibitors 0.180
71523 750 HIV protease inhibitors 0.198
42731 1246 Substance P antagonists 0.149
07701 395 D2 antagonists 0.138
06245 359 5HT reuptake inhibitors 0.122
78374 453 Protein kinase C inhibitors 0.120
06235 827 5HT1A agonists 0.133
06233 752 5HT3 antagonist 0.140
78331 636 Cyclooxygenase inhibitors 0.108

Table 2. The MDDR-DS2 structure activity classes.

Activity Index Active Molecules Activity Class Pairwise Similarity

07707 207 Adenosine (A1) agonists 0.229
42710 111 CCK agonists 0.361
31420 1130 Renin inhibitors 0.290
64200 113 Cephalosporins 0.322
64100 1346 Monocyclic lactams 0.336
64500 126 Carbapenems 0.260
64220 1051 Carbacephems 0.269
75755 455 Vitamin D analogous 0.386
75755 455 Vitamin D analogous 0.386
07708 156 Adenosine (A2) agonists 0.305

Table 3. The MDDR-DS3 structure activity classes.

Activity Index Active Molecules Activity Class Pairwise Similarity

09249 900 Muscarinic (M1) agonists 0.111

31281 106 Dopamine -hydroxylase
inhibitors 0.125

12464 505 Nitric oxide synthase inhibitors 0.102

71522 700 Reverse transcriptase
inhibitors 0.103

43210 957 Aldose reductase inhibitors 0.119
12455 1400 NMDA receptor antagonists 0.098
75721 636 Aromatase inhibitors 0.110
78351 2111 Lipoxygenase inhibitors 0.113
78348 617 Phospholipase A2 inhibitors 0.123
78331 636 Cyclooxygenase inhibitors 0.108

Table 4. MUV structure activity classes.

Activity Index Active Molecules Activity Class Pairwise Similarity

66 30 S1P1 rec. (agonists) 0.117
644 30 Rho-Kinase2 (inhibitors) 0.122
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Table 4. Cont.

Activity Index Active Molecules Activity Class Pairwise Similarity

600 30 SF1 (inhibitors) 0.123
689 30 Eph rec. A4 (inhibitors) 0.113
652 30 HIV RT-RNase (inhibitors) 0.099
712 30 HSP 90 (inhibitors) 30 0.106
692 30 SF1 (agonists) 0.114
733 30 ER-b-Coact. Bind. (inhibitors) 0.114
713 30 ER-a-Coact. Bind. (inhibitors) 0.113
810 30 FAK (inhibitors) 0.107
737 30 ER-a-Coact. Bind. (potentiators) 0.129
846 30 FXIa (inhibitors) 0.161
832 30 Cathepsin G (inhibitors) 0.151
858 30 D1 rec. (allosteric modulators) 0.111
852 30 FXIIa (inhibitors) 0.150
548 30 PKA (inhibitors) 0.128
859 30 M1 rec. (allosteric inhibitors) 0.126

Table 5. DUD structure activity classes, where Na denotes the number of active compounds, and
Ndec denotes the number of decoys.

No. Dataset
Active and Inactive

Ndec Na

1 FGFR1T 4550 120
2 FXA 5745 146
3 GART 879 40
4 GBP 2140 52
5 GR 2947 78
6 HIVPR 2038 62
7 HIVRT 1519 43
8 HMGA 1480 35
9 HSP90 979 37
10 MR 636 15
11 NA 1874 49
12 PR 1041 27

total - 25,828 704

3.2. Evaluation Measures of the Performance

The following criteria are used to assess the efficacy of the suggested method:

1. The first method is to look for active chemical compounds in the top 1% and 5% of
the scored test set and calculate the recall value. This metric has been employed in a
number of previous approaches [27,28,30,31,44–48].

2. Comparison method: the second method is to compare current techniques that may
be utilized to evaluate the proposed model’s findings. These techniques include
the following:

(a) TAN: the Tanimoto similarity coefficient has been the search benchmark
method in LBVS for many years. The Tanimoto coefficient is used in its
continuous form for similarities. It has been utilized in the datasets DS1, DS2,
DS3, MUV, and DUD.

(b) BIN: the second technique is the Bayesian inference network, which used the
ECFC4 descriptors in datasets DS1, DS2, DS3, and MUV. This is another way
of comparing the results in the similarity model of molecular fingerprints in
LBVS [24].

(c) SQB: the third method is quantum similarity search SQB in the MDDR dataset
(DS1, DS2, DS3, and MUV) for the ECFC4 descriptor. This method utilizes a
quantum mechanics approach as the model of similarity searching in LBVS [28].
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(d) SDBN: the last technique is the deep belief networks, used to reweight the
chemical characteristics, where ECFC-4, EPFP-4, and ECFP-4 descriptors were
analyzed using the stack of deep belief networks technique on the MDDR
dataset (DS1, DS2, DS3) [31].

3. The Kendall W concordance test is another important metric that could be used
to measure the performance of the suggested techniques and rank the similarity
methods. The concordance coefficient is a measure of agreement among raters. In the
Kendall W test, each case represents a judge or rater, while each variable represents
the thing or person being assessed. The domain of a Kendall W test score is between
0 and 1. If the test score is 0, this means no agreement; if the test score 1, this means
complete agreement. Assume the object (i) is considered as the similarity method,
(ranked objects) is given the rank rij by the raters j (activity class), where there are in
total (n) objects and (m) raters. Then, the total rank (R) given to object (i) is [49]:

<i =
m

∑
j=i

rij (4)

Then, the mean value (Ŕ) is calculated by these total rankings as:

< =
1
2

m(n + 1) (5)

Then, the sum of squared deviations (δ) is calculated as:

δ =
n

∑
i=i

(
<i −<

)2
(6)

Then, the Kendall W test is calculated as:

W =
12δ

m2(n3 − n)
(7)

The results of this test are the Kendall coefficient (between 0 and 1) and significance
level (p-value); if the p-value is less than 0.05, the result is considered significant, and the
similarity methods can be ranked.

4. Results and Discussion

The experimental results from the MDDR-DS1, MDDR-DS2, MDDR-DS3, MUV, and
DUD datasets, for the ECFC-4 descriptor, are provided in Tables 6–15, respectively, using
1% and 5% cut-offs. These tables show the results of the enhanced Siamese MLP similarity
model compared to the benchmark TAN, as well as earlier studies BIN, SQB, and SDBN for
MDDR datasets, BIN and SQB for MUV datasets, and SQB for DUD datasets. Every row in
the tables displays the recall for the top 1% and 5% of the activity class, with the best recall
rate shaded in each row. The mean rows in the tables represent the average for all activity
classes, whereas the rows with shaded cells represent the total number of shaded cells for
each technique throughout the whole range of activity classes.

Table 6. Retrieval results of top 1% for MDDR-DS1 dataset for (ECFC_4) descriptor.

DS1
Previous Studies Proposed Methods

Retrieval Result 1%
Activity Index TAN BIN SQB SDBN MLP

31420 69.69 74.08 73.73 74.21 82.1416
71523 25.94 28.26 26.84 27.97 49.4118
37110 9.63 26.05 24.73 26.03 45.5639
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Table 6. Cont.

DS1
Previous Studies Proposed Methods

Retrieval Result 1%
Activity Index TAN BIN SQB SDBN MLP

31432 35.82 39.23 36.66 39.79 45.5957
42731 17.77 21.68 21.17 23.06 32.0546
6233 13.87 14.06 12.49 19.29 22.9708
6245 6.51 6.31 6.03 6.27 5.36313
7701 8.63 11.45 11.35 14.05 12.0918
6235 9.71 10.84 10.15 12.87 10.7767

78374 13.69 14.25 13.08 17.47 21.9196
78331 7.17 6.03 5.92 9.93 9.70199
Mean 19.86 22.93 22.01 24.63091 30.69

Shaded cells 1 0 0 3 7

Table 7. Retrieval results of top 5% for MDDR-DS1 dataset for (ECFC_4) descriptor.

DS1
Previous Studies Proposed Methods

Retrieval Result 5%
Activity Index TAN BIN SQB SDBN MLP

31420 83.49 87.61 87.22 89.03 87.3628
71523 48.92 52.72 48.70 65.17 75.8289
37110 21.01 48.20 45.62 41.25 71.4536
31432 74.29 77.57 70.44 79.87 84.1489
42731 29.68 26.63 24.35 31.92 51.3644
6233 27.68 23.49 20.04 29.31 49.443
6245 16.54 14.86 13.72 21.06 16.0894
7701 24.09 27.79 26.73 28.43 29.7449
6235 20.06 23.78 22.81 27.82 28.7379

78374 20.51 20.20 19.56 19.09 36.7857
78331 16.20 11.80 11.37 16.21 24.1391
Mean 34.77 37.70 35.51 40.83273 50.463

Shaded cells 0 0 0 2 9

Table 8. Top 1% retrieval results for MDDR-DS2 dataset for descriptor (ECFC 4).

DS2
Previous Studies Proposed Methods

Retrieval Result 1%
Activity Index TAN BIN SQB SDBN MLP

7707 61.84 72.18 72.09 83.19 86.4706
7708 47.03 96.00 95.68 94.82 97.3077

31420 65.10 79.82 78.56 79.27 71.7699
42710 81.27 76.27 76.82 74.81 82.9091
64100 80.31 88.43 87.80 93.65 94.2769
64200 53.84 70.18 70.18 71.16 35.5696
64220 38.64 68.32 67.58 68.71 88.5333
64500 30.56 81.20 79.20 75.62 62.8571
64350 80.18 81.89 81.68 85.21 91.8557
75755 87.56 98.06 98.02 96.52 90.5727
Mean 62.63 81.24 80.76 82.296 80.21226

Shaded cells 0 3 0 1 6
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Table 9. Top 5% retrieval results for MDDR-DS2 dataset for descriptor (ECFC 4).

DS2
Previous Studies Proposed Methods

Retrieval Result 5%
Activity Index TAN BIN SQB SDBN MLP

7707 70.39 74.81 74.37 73.9 94.2157
7708 56.58 99.61 99.61 98.22 98.7179

31420 88.19 95.46 94.88 95.64 92.9381
42710 88.09 92.55 91.09 90.12 88
64100 93.75 99.22 99.03 99.05 96.6615
64200 77.68 99.2 99.38 93.76 38.6076
64220 52.19 91.32 90.62 96.01 93.2381
64500 44.8 94.96 92.48 91.51 71.2698
64350 91.71 91.47 90.78 86.94 95.3608
75755 94.82 98.35 98.37 91.6 93.8767
Mean 75.82 93.70 93.06 91.675 86.28862

Shaded cells 0 4 3 2 2

Table 10. Top 1% retrieval results for MDDR-DS3 dataset for descriptor (ECFC 4).

Ds3
Previous Studies Proposed Methods

Retrieval Result 1%
Activity Index TAN BIN SQB SDBN MLP

9249 12.12 15.33 10.99 19.47 39.7556
12455 6.57 9.37 7.03 13.29 9.8
12464 8.17 8.45 6.92 12.91 31.84
31281 16.95 18.29 18.67 23.62 61.8
43210 6.27 7.34 6.83 14.23 17.5789
71522 3.75 4.08 6.57 11.92 6.42857
75721 17.32 20.41 20.38 29.08 57.5667
78331 6.31 7.51 6.16 11.93 41.3
78348 10.15 9.79 8.99 9.17 12.2
78351 9.84 13.68 12.5 18.13 14.3024
Mean 9.75 11.43 10.50 16.375 29.257217

Shaded cells 0 0 0 3 7

Table 11. Top 5% retrieval results for MDDR-DS3 dataset for descriptor (ECFC 4).

Ds3 Retrieval Result 5% Previous Studies Proposed Methods
Activity Index TAN BIN SQB SDBN MLP

9249 24.17 25.72 17.8 31.61 61.1556
12455 10.29 14.65 11.42 16.29 27.1429
12464 15.22 16.55 16.79 20.9 53.72
31281 29.62 28.29 29.05 36.13 75.8
43210 16.07 14.41 14.12 22.09 36.2105
71522 12.37 8.44 13.82 14.68 15.9143
75721 25.21 30.02 30.61 41.07 78.2333
78331 15.01 12.03 11.97 17.13 78.2
78348 24.67 20.76 21.14 26.93 25.4667
78351 11.71 12.94 13.3 17.87 34.2667
Mean 18.43 18.38 18.00 24.47 48.611

Shaded cells 0 0 0 1 9
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Table 12. Top 1% retrieval results for MUV dataset for descriptor (ECFC 4).

MUV Retrieval Result 1% Previous Studies Proposed Method
Activity Index TAN BIN SQB MLP

466 3.1 6.33 1.38 6.66667
548 8.62 14.89 11.38 28.6667
600 3.79 6.33 5.52 14.6667
644 7.59 11 8.97 14.6667
652 2.76 7 3.79 12
689 3.79 7.33 4.48 8
692 0.69 5.33 1.38 6.66667
712 4.14 8.22 5.17 8.66667
713 3.1 5.89 2.76 6
733 3.45 6.67 4.14 6
737 2.41 5.11 1.72 7.33333
810 2.07 6.78 1.72 6.66667
832 6.55 12.55 8.28 16.6667
846 9.66 13.11 12.41 16
852 12.41 13.78 9.66 18
858 1.72 5.11 1.38 7.33333
859 1.38 4.89 2.41 6.66667

Mean 4.542941 8.254118 5.091176 11.21569471
Shaded cells 0 2 0 12

Table 13. Top 5% retrieval results for MUV dataset for descriptor (ECFC 4).

MUV Retrieval Result 5% Previous Studies Proposed Method
Activity Index TAN BIN SQB MLP

466 5.86 10.44 8.62 12
548 22.76 27.22 24.14 46.6667
600 11.38 12.89 16.21 20.6667
644 17.59 19.67 17.93 25.3333
652 7.93 11.67 9.66 17.3333
689 9.66 13.22 11.72 15.3333
692 4.83 9.22 4.83 14.6667
712 10.34 16.45 11.03 14
713 7.24 9 5.86 12
733 8.97 10.11 8.62 9.33333
737 8.28 12 8.28 12
810 6.9 13.33 11.03 10
832 13.1 20.44 14.83 24.6667
846 28.62 26.11 26.9 36.6667
852 21.38 23.11 20 34.6667
858 5.86 9.11 6.21 14
859 8.97 9.44 8.62 11.3333

Mean 11.74529412 14.90765 12.61706 19.45098412
Shaded cells 0 4 0 13
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Table 14. Top 1% retrieval results for DUD dataset.

DUD Retrieval Result 1% Previous Studies Proposed Method
Activity Index TAN SQB3 MLP

FGFR1T 2.5 2.92 3.17
FXA 1.92 3.36 1.64

GART 7.75 5.75 8.00
GBP 13.27 15.96 3.46
GR 2.31 3.21 3.08

HIVPR 3.55 3.55 5.16
HIVRT 1.63 1.86 5.00
HMGA 6.29 5.43 11.67
HSP90 1.62 4.05 4.21

MR 5.33 5.33 10.00
NA 2.24 5.31 5.20
PR 1.85 2.22 4.29

Mean 4.19 4.91 5.41
Shaded cells 0 4 8

Table 15. Top 5% retrieval results for DUD dataset.

DUD Retrieval Result 5% Previous Studies Proposed Method
Activity Index TAN SQB3 MLP

FGFR1T 6.67 7 8.17
FXA 7.88 8.29 7.95

GART 22.25 23.25 25.00
GBP 20.96 30.96 10.00
GR 6.41 8.46 7.69

HIVPR 11.77 11.29 13.87
HIVRT 4.88 6.98 9.09
HMGA 10.29 13.14 21.11
HSP90 8.11 8.38 13.68

MR 9.33 10 16.25
NA 5.1 9.8 10.00
PR 4.81 5.19 7.14

Mean 9.87 11.90 12.50
Shaded cells 0 3 9

When comparing the MDDR-DS1 recall results for the top 1% and 5% in Tables 6 and 7,
the suggested enhanced Siamese MLP technique was clearly superior to the benchmark
TAN method and prior studies BIN, SQB, and SDBN in terms of the mean and number
of shaded cells. The suggested technique has the highest mean value (30.69) in Table 6,
followed by SDBN, BIN, SQB, and lastly, TAN methods. In the suggested approach, the
shaded cells have a value of (7). The suggested approach has the highest mean value
(50.463) in Table 7, followed by SDBN, BIN, SQB, and lastly TAN methods. In the suggested
technique, shaded cells have a value of (9).

Furthermore, the MDDR-DS2 recall values obtained at the top 1%, as shown in Table 8,
demonstrate that the suggested Siamese MLP technique outperforms the benchmark TAN
method. In view of the number of shaded cells, the MLP approach produced the best
retrieval recall results, and the suggested method’s mean value is extremely close to that of
prior research. However, by comparison, The MDDR-DS2 recall values obtained at the top
5% in Table 9 clearly shows that the suggested Siamese MLP approach outperforms the
benchmark TAN method only. In terms of the mean and number of shaded cells, the BIN
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approach produced the best retrieval recall results. Next, the second is SQB, SDBN, and
finally, TAN in view of the mean value.

In addition, the MDDR-DS3 recall values recorded at the top 1% and 5% in Tables 10
and 11, respectively, show that the proposed enhanced Siamese MLP method is obviously
superior to the benchmark TAN method and methods from other studies. Likewise, in
Table 10, the proposed method gave the best retrieval recall results in view of the mean
and number of shaded cells, compared to prior studies and benchmark TAN, followed by
SDBN, BIN, SQB, and finally, TAN methods. By comparison, in Table 11, the suggested
enhanced Siamese MLP method was obviously superior to the benchmark TAN method
and other studies. The second one is SDBN, followed by TAN, BIN, and SQB.

Moreover, the MUV dataset recall values recorded at the top 1% and 5% in Tables 12
and 13, respectively, show that the proposed enhanced Siamese MLP method is obviously
superior to the benchmark TAN method and other studies. Likewise, in Table 12, the
proposed method gave the best retrieval recall results in view of the mean and number of
shaded cells, compared to the TAN method and methods from other studies, followed by
BIN, SQB, and finally, TAN methods. However, by comparison, in Table 13, the proposed
enhanced Siamese MLP method was obviously superior to the benchmark TAN method
and methods from other studies. Next, the second one is BIN, followed by SQB and TAN.

Moreover, the DUD dataset recall values recorded at the top 1% and 5% in Tables 14
and 15, respectively, show that the proposed enhanced Siamese MLP method is obviously
superior to the benchmark TAN method and methods from other studies. Likewise, in
Table 14, the proposed method gave the best retrieval recall results in view of the mean and
number of shaded cells, compared to the previous study and benchmark TAN. Furthermore,
in Table 15, the proposed enhanced Siamese MLP method was obviously superior to the
benchmark TAN method and the previous study SQB.

The experimental results for pruning nodes on MDDR-DS1, MDDR-DS2, MDDR-DS3,
MUV, and DUD datasets are shown in Figures 4–13, respectively. In these figures, the x
axis represents the pruning ratio starting from 0% and ending with 90%, 95%, 95%, 70%,
and 98% in DS1, DS2, DS3, MUV, and DUD datasets, respectively. They y axis represents
the level of retrieval recall values for each class in the dataset. The classes of molecules are
represented as color lines. The tables that contain on pruning ratio of recall values for each
dataset are available as Supplementary Materials.

Figure 4 shows the level of the retrieval recall values at different pruning ratios for
each class at the top 1% in DS1. We note that the recall values of most classes remain the
same until they reach 80% of the pruning ratio, while some classes increased slightly, such
as class 7, and decreased by a little in others, such as classes 2 and 9. Furthermore, Figure 5
shows the level of retrieval recall values at different pruning ratios for each class at the top
5% in DS1. The recall values of most classes remain the same values until they reach 80%
of the pruning ratio, while some classes decreased, such as classes 2 and 10.

Figure 6 shows the level of retrieval recall values at different pruning ratios for each
class at the top 1% in DS2. We note that the recall values of most classes remain the same
until they reach 90% of the pruning ratio, while some classes increased slightly, such as
classes 5 and 8, and decreased by a little in others, such as classes 1,3, and 4. Furthermore,
Figure 7 shows the level of retrieval recall values at different pruning ratios for each class at
the top 5% in DS2. The recall values of most classes remain the same until they reach 90%
of the pruning ratio, except for class 6, which remains until more than 95% of the pruning
ratio, while some classes decreased by a little, such as class 4, or increased slightly, such
as class 5.

Figure 8 shows the level of retrieval recall values at different pruning ratios for each
class at the top 1% in DS3. We note that the recall values of most classes remain the same
until they reach 80% of the pruning ratio, while some classes increased slightly, such as
class 4, a more than 95% pruning ratio, and decreased by a little in others, such as classes 1,
7, and 8. Furthermore, Figure 9 shows the retrieval recall values at different pruning ratios
for each class at the top 5% in DS3. The recall values of most classes remain the same until
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they reach 80% of the pruning ratio, except for class 4, which increased until more than
95%, while some classes decreased by a little, such as classes 1, 3, 7, and 8.
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Figure 5. The level of retrieval recall values at different percentages of pruning at the top 5% in MDDR-DR1.
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Figure 6. The level of retrieval recall values at different percentages of pruning at the top 1% in DDR-DR2.
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Figure 10. The level of retrieval recall values at different percentages of pruning at the top 1% in MUV dataset.
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Figure 11. The level of retrieval recall values at different percentages of pruning at the top 5% in MUV dataset.



Molecules 2021, 26, 6669 19 of 25

Molecules 2021, 26, x FOR PEER REVIEW 20 of 25 
 

 

12. Moreover, Figure 13 shows the retrieval recall values at different pruning ratios for each 
class at the top 5% in DUD. The recall values of most classes remained the same until they 
reached 80% of the pruning ratio, while some classes increased slightly, such as classes 11 
and 12, and decreased by a little in others, such as classes 3 and 10. 

 
Figure 12. The level of retrieval recall values at different percentages of pruning at the top 1% in DUD dataset. 

 
Figure 13. The level of retrieval recall values at different percentages of pruning at the top 5% in DUD dataset. 

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.98

Re
tr

ie
va

l R
ec

al
l  

Pruning Ratio

Pruning Curve in DUD at 1%

Class1 Class2 Class3 Class4 Class5 Class6

Class7 Class8 Class9 Class10 Class11 Class12

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.98

Re
tr

ie
va

l R
ec

al
l  

Pruning Ratio

Pruning Curve in DUD at 5%

Class1 Class2 Class3 Class4 Class5 Class6

Class7 Class8 Class9 Class10 Class11 Class12

Figure 12. The level of retrieval recall values at different percentages of pruning at the top 1% in DUD dataset.

Molecules 2021, 26, x FOR PEER REVIEW 20 of 25 
 

 

12. Moreover, Figure 13 shows the retrieval recall values at different pruning ratios for each 
class at the top 5% in DUD. The recall values of most classes remained the same until they 
reached 80% of the pruning ratio, while some classes increased slightly, such as classes 11 
and 12, and decreased by a little in others, such as classes 3 and 10. 

 
Figure 12. The level of retrieval recall values at different percentages of pruning at the top 1% in DUD dataset. 

 
Figure 13. The level of retrieval recall values at different percentages of pruning at the top 5% in DUD dataset. 

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.98

Re
tr

ie
va

l R
ec

al
l  

Pruning Ratio

Pruning Curve in DUD at 1%

Class1 Class2 Class3 Class4 Class5 Class6

Class7 Class8 Class9 Class10 Class11 Class12

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.98

Re
tr

ie
va

l R
ec

al
l  

Pruning Ratio

Pruning Curve in DUD at 5%

Class1 Class2 Class3 Class4 Class5 Class6

Class7 Class8 Class9 Class10 Class11 Class12

Figure 13. The level of retrieval recall values at different percentages of pruning at the top 5% in DUD dataset.

Figure 4 shows the level of the retrieval recall values at different pruning ratios for
each class at the top 1% in DS1. We note that the recall values of most classes remain the
same until they reach 80% of the pruning ratio, while some classes increased slightly, such
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as class 7, and decreased by a little in others, such as classes 2 and 9. Furthermore, Figure 5
shows the level of retrieval recall values at different pruning ratios for each class at the top
5% in DS1. The recall values of most classes remain the same values until they reach 80%
of the pruning ratio, while some classes decreased, such as classes 2 and 10.

Figure 6 shows the level of retrieval recall values at different pruning ratios for each
class at the top 1% in DS2. We note that the recall values of most classes remain the same
until they reach 90% of the pruning ratio, while some classes increased slightly, such as
classes 5 and 8, and decreased by a little in others, such as classes 1, 3, and 4. Furthermore,
Figure 7 shows the level of retrieval recall values at different pruning ratios for each class
at the top 5% in DS2. The recall values of most classes remain the same until they reach
90% of the pruning ratio, except for class 6, which remains until more than 95% of the
pruning ratio, while some classes decreased by a little, such as class 4, or increased slightly,
such as class 5.

Figure 8 shows the level of retrieval recall values at different pruning ratios for each
class at the top 1% in DS3. We note that the recall values of most classes remain the same
until they reach 80% of the pruning ratio, while some classes increased slightly, such as
class 4, a more than 95% pruning ratio, and decreased by a little in others, such as classes 1,
7, and 8. Furthermore, Figure 9 shows the retrieval recall values at different pruning ratios
for each class at the top 5% in DS3. The recall values of most classes remain the same until
they reach 80% of the pruning ratio, except for class 4, which increased until more than
95%, while some classes decreased by a little, such as classes 1, 3, 7, and 8.

Figure 10 shows the level of retrieval recall values at different pruning ratios for each
class at the top 1% in MUV. We note that the recall values of most classes remained the
same until they reached 60% of the pruning ratio, while some classes increased slightly,
such as classes 3 and 10, and decreased by a little in others, such as class 8. Moreover,
Figure 11 shows the retrieval recall values at different pruning ratios for each class at the
top 5% in MUV. The recall values of most classes remained the same until they reached
60% of the pruning ratio, while some classes increased slightly, such as classes 1,3 and 5,
and decreased by a little in others, such as classes 3 and 4.

Furthermore, Figure 12 shows the level of retrieval recall values at different pruning
ratios for each class at the top 1% in DUD. We note that the recall values of most classes
remained the same until they reached 80% of the pruning ratio, while some classes increased
slightly, such as classes 4,6, and 9, and decreased by a little in others, such as classes 3, 8,
and 12. Moreover, Figure 13 shows the retrieval recall values at different pruning ratios
for each class at the top 5% in DUD. The recall values of most classes remained the same
until they reached 80% of the pruning ratio, while some classes increased slightly, such as
classes 11 and 12, and decreased by a little in others, such as classes 3 and 10.

Moreover, the Kendall W concordance test has been used; Table 16 shows the ranking
of the enhanced Siamese multilayer perceptron method based on previous studies of TAN,
BIN, SQB, and SDBN using Kendall W test results for MDDR-DS1, MDDR-DS2, MDDR-
DS3, MUV, and DUD at the top 1% and 5%. The first method is the benchmark method,
which is the Tanimoto coefficient TAN; the second method is Bayesian inference [24]; the
third method is quantum similarity search SQB-Complex [28]; the last method is multi-
descriptor-based on Stack of deep belief networks SDBN [31]. The results of the Kendall W
test of the top 1% for all used datasets show that the values of associated probability (p)
are less than 0.05. This indicates that the enhanced Siamese multilayer perceptron method
is significant in the top 1% for all cases. As a result, the overall ranking of all methods
indicates that the enhanced Siamese multilayer perceptron method is superior to previous
studies and benchmark TAN. The overall ranking for methods showed that MLP has the
top ranks among other methods. This is the same as with the results of the Kendall W test
of the top 5%; the results show that the values of associated probability (p) are less than
0.05. This indicates that the enhanced Siamese multilayer perceptron method is significant
in the top 5%. As a result, the overall ranking of all methods indicates that the enhanced
Siamese multilayer perceptron method is superior to previous studies for all datasets and
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the overall ranking for the method showed that Siamese multilayer perceptron method
has the top ranks among other methods, except in DR2, in which the BIN method was
better than MLP. Figures 14 and 15 show the ranking of the enhanced Siamese multilayer
perceptron method based on TAN, BIN, SQB, and SDBN using the Kendall W test results
for DS1, DS2,DS3, MUV, and DUD at the top 1% and 5%.

Table 16. Ranking of enhanced Siamese multilayer perceptron method based on previous studies
TAN, BIN, SQB, and SDBN using Kendall W test results.

DataSet Retrieval Percentage W P Rank Methods

DS1

1% 0.593 0.00003

MLP 4.27
SDBN 4.00

BIN 3.27

SQB 1.73

TAN 1.73

5% 0.588 0.000033

MLP 4.64
SDBN 3.73

BIN 2.82

TAN 2.27

SQB 1.55

DS2

1% 0.3673 0.0053

MLP 3.70
BIN 3.65

SDBN 3.40

SQB 2.85

TAN 1.40

5% 0.34321 0.00821

BIN 4.15
SQB 3.55

SDBN 2.90

MLP 2.70

TAN 1.70

DS3

1% 0.698 0.0000129

MLP 4.60
SDBN 4.10

BIN 2.80

SQB 1.90

TAN 1.60

5% 0.784 0.000002584

MLP 4.90
SDBN 4.10

SQB 2.10

TAN 2.00

BIN 1.90
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Table 16. Cont.

DataSet Retrieval Percentage W P Rank Methods

MUV

1% 0.867 1.35 × 10−9

MLP 3.88
BIN 3.12

SQB 1.65

TAN 1.35

5% 0.702 8.24 × 10−8

MLP 3.74
BIN 3.03

SQB 1.82

TAN 1.41

DUD

1% 0.3115 2.38 × 10−2

MLP 2.50
SQB 2.08

TAN 1.42

5% 0.58333 0.0009118

MLP 2.67
SQB 2.17

TAN 1.17
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5. Conclusions

Many techniques for capturing the biological similarity between a test compound and
a known target ligand in LBVS have been established. LBVS is based on the premise that
the target-binding behavior of related property compounds will be related. In spite of the
good performances of the above methods compared to their prior, especially when dealing
with molecules that have structurally homogenous active elements, the performances are
not satisfied when dealing with molecules that are structurally heterogeneous. The main
goal of this research was to improve the retrieval effectiveness of the similarity model,
especially with molecules that are structurally heterogeneous. In this study, the Siamese
multilayer perceptron similarity model has been enhanced by using two distance layers
with a fuse layer that combines the results from two distance layers, and then multiple
layers were added after the fusion layer, followed by pruning of the nodes that contribute
less or nothing to the network during inference according to their signal-to-noise ratio. The
results showed that the significance of the proposed method obviously outperformed the
standard Tanimoto coefficient (TAN) and previous studies (BIN, SQB, and SDBN) at the top
1% and 5% for MDDR-DS1, MDDR-DS3, DUD, and MUV, which include heterogeneous
classes. Additionally, the proposed method has the top rank for the top 1% MDDR-DS2,
which include homogeneous classes. Besides that, it is possible to reduce the number of
nodes in the Siamese multilayer perceptron model while still keeping the effectiveness of
recall on the same level when pruning 60% of nodes in MUV, 90% in DS2, and 80% in DS1,
DS3, and DUD. Multiple molecular descriptors will be tested in this proposed method as
future work.

Supplementary Materials: The following are available online, Support Information which contains
Table S1: The structure-activity classes of the MUV dataset, Table S2: The MDDR-DS1 structure
activity classes, Table S3: The MDDR-DS2 structure activity classes, Table S4: The MDDR-DS3
structure activity classes, Table S5: DUD structure activity classes. Also Experiment Results of
proposed method in each query with pruning in excel file.
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