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1Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of
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Purpose:Osteoporosis is associated with metabolic alterations, but the causal

roles of serum metabolites on osteoporosis have not been identified.

Methods: Based on the large individual-level datasets from UK Biobank as

well as GWAS summary datasets, we first constructed genetic risk scores

(GRSs) for 308 of 486 human serum metabolites and evaluated the e�ect

of each GRS on 2 major osteoporosis phenotypes, i.e., estimated bone

miner density (eBMD) and fracture, respectively. Then, two-sample Mendelian

Randomization (MR) was performed to validate the casual metabolites

on osteoporosis. Multivariable MR analysis tested whether the e�ects of

metabolites on osteoporosis are independent of possible confounders. Finally,

we conducted metabolic pathway analysis for the metabolites involved in

bone metabolism.

Results: We identified causal e�ects of 18 metabolites on eBMD and 1

metabolite on fracture with the GRS method after adjusting for multiple

tests. Then, 9 of them were further validated with MR as replication, where

comprehensive sensitive analyses proved robust of the causal associations.

Although not identified in GRS, 3 metabolites were associated with at least

three osteoporosis traits in MR results. Multivariable MR analysis determined

the independent causal e�ect of several metabolites on osteoporosis. Besides,

23 bonemetabolic pathways were detected, such as valine, leucine, isoleucine

biosynthesis (p = 0.053), and Aminoacyl-tRNA biosynthesis (p = 0.076), and

D-glutamine and D-glutamate metabolism (p = 0.004).

Conclusions: The systematic causal analyses strongly suggested that blood

metabolites have causal e�ects on osteoporosis risk.
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metabolite, osteoporosis, bone mineral density, Mendelian randomization, genetic
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Introduction

As a systemic metabolic bone disease, osteoporosis is

widespread and associated with increased fracture risk in

post-menopausal women of advanced age. Main causes of

osteoporosis include the defects of bone formation during the

growth period, impaired bone formation due to decreased

osteoblast differentiation, and several pathological processes

leading to increased bone resorption (1). Increasing age, female,

sex hormone deficiency, family history of osteoporosis, excessive

alcohol consumption, smoking, and various chronic medical

conditions are considered osteoporosis risk factors (2).

Metabolites, as mediators, play a particularly important role

in bone metabolism. The metabolic state of the body is a major

determinant of bone health. According to the study of the

ovariectomized rat osteoporosis model, the altered metabolites

were mainly related to the metabolism of energy, lipids, and

amino acids (3). Although several metabolites were observed

to be related to osteoporosis in population-based cohorts (4),

there are still no systematical evaluations of the effects of

metabolites on osteoporosis. In addition, traditional studies

were hard to be used to identify and establish the potentially

causal links between blood metabolites and osteoporosis due

to the unavoidable confounders (5). In recent years, numerous

studies have integrated metabolomics with high-throughput

genotypes to estimate the effects of genetic variants onmetabolic

phenotypes via genome-wide association studies (GWASs), and

identify thousands of genetic loci associated with metabolic

phenotypes (6). Based on large GWAS datasets, recent genetic

risk scores (GRSs) and Mendelian randomization (MR) have

been proved to be powerful in assessing the etiology of complex

diseases, as unknown confounding factors could be effectively

controlled (7). Although previous studies have found several

metabolites causally linked to hip or spine bone miner density

(BMD) (8, 9), the causal roles of metabolites in estimated BMD

(eBMD) and osteoporotic fractures have not been evaluated.

The UK Biobank is a large GWAS dataset in the

world (∼500,000 individuals), which offers unprecedented

opportunities to screen populations for clinical biomarkers

based on the genotype data of the individuals (10). Based on

UK Biobank, we systematically evaluated the causal associations

between bloodmetabolites and osteoporosis in conjunction with

large-scale summary statistics from previous GWAS to identify

common metabolic mechanisms between BMD and fracture.

Specifically, we constructed GRS for each metabolite and

assessed their association with eBMD and fracture separately.

Furthermore, we conducted two-sample MR analyses to explore

the causative metabolites of BMD and fracture. The biological

functions of the identified causal metabolites were annotated

by metabolic pathway analysis. Besides, independent causal

metabolite on osteoporosis was verified by utilizing a novel

multivariate MRmethod. An overview of our research workflow

is presented in Figure 1.

Materials and methods

UK biobank datasets

The individual-level clinical and genetic datasets were

accessed from the UK Biobank (Application 41542), a project

that recruited ∼500,000 individuals aged 40–69 years. (10). The

individuals’ medical records in UK Biobank were based on the

International Classification of Diseases (ICD), Tenth Revision

(ICD-10-CM), and Ninth Revision (ICD-9-CM). BMD-related

variables, including fracture (Field ID: 6151), eBMD (Field ID:

3084, 3148, 4105), age (Field ID: 21003), gender (Field ID:

31), height (Field ID: 50), and weight (Field ID: 21002) and

the top 10 genetic principal components, were extracted for

analyses. For individuals, we have retained individuals of British

ancestry and with genotype data. For SNPs, we performed

quality control, as described previously (11). The genotyping

process and quality control process used in the UKB study

have been described elsewhere (10). Specifically, we restricted

our analysis to high-quality Haplotype Reference Consortium-

imputed autosomal variants. We retained SNPs with MAF

>0.02; imputation information score >0.5; missing ratio >0.95;

and Hardy-Weinberg, p> 1× 10−7. For sample quality control,

we excluded individuals with unsuccessful genotyping, non-

white British, and at least one kinship determined. Finally, our

final genetic analysis included up to ∼330,000 individuals of

independent European ancestry and ∼9,000,000 high-quality

single nucleotide polymorphisms (SNPs).

Metabolome-wide GWAS data sources

We downloaded summary association statistics from the

most comprehensive genetic study on human metabolism,

which was publicly available on theMetabolomics GWAS Server

(website: http://metabolomics.helmholtz-muenchen.de/gwas/)

(6). Based on 7,824 individuals from 2 European population

cohorts, a total of 486 metabolites were measured by the MS

(Metabolon) platform, and GWAS analyses were performed in

the HapMap2-based-imputed genotype dataset. After excluding

177 unknownmetabolites, 309 knownmetabolites were adopted

in the present study. The known metabolites can be classified

into 60 subclasses and 8 broad classes according to the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

For each metabolite, an average of 2.1 million SNPs were

reserved with GWAS summary statistics. In order to ensure the

rationality of our analysis, we carried out quality control of SNPs,

specifically including removing non-biallelic SNPs, all SNPs with

strand-ambiguous alleles, SNPs without rs IDs, duplicated rs IDs

or base pair position, SNPs not in 1,000 Genomes Project Phase

3, SNPs whose base pair positions or alleles do not match those

in 1,000 GP Phase 3, SNPs with imputation INFO <0.9, and all

SNPs on chromosome X, Y (12).
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FIGURE 1

The overview of the research workflow.

GWAS data sources for osteoporosis
fracture and BMD

The summary association statistics of fracture and eBMD,

including genotyping and imputed data from up to ∼500,000

European participants, were publicly available from the

Genetic Factors for Osteoporosis (GEFOS) Consortium (http://

www.gefos.org/) (13). After quality control, 13,977,204 SNPs

measured for 426,795 (53,184 fracture cases) individuals

and 13,681,377 SNPs measured for 426,824 individuals with

eBMD data were obtained. The fracture was identified by a

questionnaire, and the data were extracted with the ICD-10-CM

codes. Additionally, life-course total body (TB)-BMD and DXA-

BMD atmultiple skeletal sites [lumbar spine (LS)-BMD, forearm

(FA)-BMD, femoral neck (FN)-BMD] were extracted to further

explore the associations with metabolites. GWAS meta-analysis

for TB-BMD involved 30 epidemiological studies and included

66,628 individuals. Genotype imputation was performed using

the 1,000 Genomes Phase 1 v.3 (March 2012) reference panel

for each study, and GWAS analysis contained ∼30,000,000

SNPs. Association analysis was performed after adjusting for

age, weight, height, and genomic principal components, as

well as any other covariates (e.g., recruitment center) (14).

For DXA-BMD, FN-BMD contained 32,735 individuals, LS-

BMD contained 28,498 individuals, and FA-BMD contained

8,143 individuals. All BMD data were normalized to mean

zero and standard deviation 1. Then, the association analyses

were conducted on approximately ∼9,000,000 SNPs, adjusted

for sex, age, age squared, and weight (15). Information of

the above summary data is summarized and presented in

Supplementary Table S1.

Selection of instrumental variables (IVs)

According to the directions (16, 17), IVs for each metabolite

were selected with the clumping procedure at a loose threshold

in PLINK software (version v1.90 b3.38) (18). Specifically,

when clumping, we set the significance threshold at 1.00E-

5, the linkage disequilibrium r2 at 0.1, and used the 500KB

window from 1,000 Genomes Projects as a reference panel.

One of the 309 known metabolites did not have any significant

locus. A total of 3 to 631 independent genetic variants

were selected as IVs for each of the 308 metabolites. The
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SNP information for five identified causal metabolites is also

presented in Supplementary Table S2. Besides, we also selected

IVs of BMD for further reverse-directional MR analysis. The

same threshold of LD r2 and windows as for metabolites was

used, with the exception that the significance threshold was

set at 5E-8. Finally, 307, 14, 23, 25, 105, and 4 SNPs were

retained for eBMD, fracture, FN-BMD, LS-BMD, TB-BMD, FA-

BMD, specifically. To quantitatively verify whether the selected

SNPs were strong instruments, we calculated the proportion

of phenotypic variation explained (PVE) and the F statistic of

instruments for each metabolite.

GRS analysis in UK biobank

To assess the potentially causal role of metabolites in

osteoporosis, the GRS for each metabolite can be calculated by

GRSm =

I∑

i = 1

Xiβ̂i (1)

where β̂i is the estimated effect for ith IV associated with

metabolite m, and Xi is the individual-level genotypes of

the index SNP in the UK Biobank. Then, multivariable

linear regression was utilized to estimate the effect size of

each metabolite on eBMD with the standardized GRS after

adjusting for covariates of age, sex, weight, height, and the

tops 10 principal components. Significant causal metabolites of

osteoporosis were determined by using Bonferroni correction

with p-values< 1.03E-04 (0.05/486) for eBMD and fracture. The

suggestive metabolites were identified at a nominal significance

level (p < 0.05).

Metabolic pathway analysis

To explore the functions of identified metabolites,

MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/) was

used to conduct metabolic pathway analysis (19). To obtain

comprehensive and credible pathway analysis results, all

significant metabolites related to eBMD/fracture or four BMD

traits, respectively (p < 0.05), were used. Herein, two libraries,

including the Small Molecule Pathway database (SMPDB)

and the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database, were utilized, and the significance level of pathway

analysis was set at 0.10.

Estimation of causal e�ect and sensitivity
analyses

Inverse variance-weighted (IVW) analysis was mainly

performed to evaluate the causal effect of potentially

causal metabolites on osteoporosis. Cochran’s Q statistic

and associated p-values were calculated to examine the

heterogeneity and pleiotropy effect. If the null hypothesis

is rejected, which indicates that one or more variants may

be multivariate, random-effect IVW is performed instead

of fixed-effect IVW (20). Additionally, to control for the

horizontal pleiotropy, three complementary sensitive analyses

were conducted: (1) the weighted median-based method,

which gave a consistent estimate when half of the weight

was from valid IVs (21); (2) The mode-based method,

which provides a consistent effect estimate if most of the

genetic variants are valid instruments as the sample size

increases (22); (3) MR-Egger regression, which provides

a powerful method to test the horizontal pleiotropy (23).

LOO analysis and the MR pleiotropy residual sum and

outlier (MR-PRESSO) method were utilized to validate

possible horizontal pleiotropic outliers that might affect

the estimation substantially (24). Finally, to ensure the

robustness of our results, we performed MR analysis based

on IVs selected under different thresholds (i.e., P-values

and r2). To rule out the possibly bi-directional association

between metabolites and BMD, we also conducted reverse

MR analysis regarding four BMD traits and identified

metabolites, respectively.

Multivariable MR analysis

We utilized novel multivariable MR analysis to

estimate the independent causal effect of certain

metabolites on BMD after controlling for other significant

metabolites due to the possible horizontal pleiotropy

(25). SNPs associated with these metabolites were used

as IVs, and their corresponding information, as well

as that of BMD, was eventually incorporated into our

MR framework:

λ̂BMD
= λ̂metabolite1β1 + · · · + λ̂metabolitejβj

+ε, ε˜N(0, σ 2) (2)

Here, λ̂ is the marginal effect size of instruments, σ 2

represents the variance for residual term ε, β1 and

βj represent the causal effect of the first and second

metabolites on BMD, respectively. Then, we estimated

the effect size of β1 and βj with the weighted least

squares method.

All statistical analysis was performed with the R

3.5.1 software. An MR analysis was conducted with the

‘MendelianRandomization’ package (version 0.4.3) (26),

and MR-PRESSO was performed with the MR-PRESSO

package (24).

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2022.905178
https://www.metaboanalyst.ca/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu et al. 10.3389/fpubh.2022.905178

Result

Identification of eBMD-associated
metabolites by using GRS analysis

We first calculated the GRSs for 308 known metabolites

from the large-scale UK Biobank database and found significant

associations between these GRSs and eBMD/fracture by

multivariable linear regression analysis after adjusting for

covariates (Figure 2). Suggestive metabolites associated with

osteoporosis, including 72 for eBMD and 28 for fracture,

were identified (Supplementary Table S3). After Bonferroni

correction, a total of 18 known metabolites were significant for

eBMD (p < 1.03E-04) (Figure 2A). Among the 18 metabolites,

8 belong to the lipid pathway, 6 belong to the amino acid

pathway, 3 belong to the peptide pathway, and 1 belongs to

the carbohydrate pathway. For fracture, only one significant

metabolite, i.e., levulinate (4-oxovalerate) from the amino acid

pathway, was identified after Bonferroni correction (Figure 2B).

Metabolic pathway analysis

Metabolic pathway analysis on suggestive GRS-identified

metabolites (72 for eBMD and 28 for fracture) showed that the

eBMD-associated metabolites were enriched in 4 pathways (p

< 0.10), including “Caffeine metabolism” (p = 0.010), “valine,

leucine, isoleucine biosynthesis” (p = 0.053), “Aminoacyl-

tRNA biosynthesis” (p = 0.076) (Supplementary Figure S1A,

KEEG pathways) and “Alpha Linolenic Acid and Linoleic

Acid Metabolism” (p = 0.041, Supplementary Figure S1B,

the SMPDB pathway). The fracture-associated metabolites

were enriched in “Alpha Linolenic Acid and Linoleic Acid

Metabolism” (p = 0.008) and “Methyl histidine Metabolism”

pathways (p= 0.087) (Supplementary Figure S2).

Additionally, metabolites identified with the IVW method

for other traits were found to be enriched in seven metabolic

pathways (Supplementary Table S4).

Validation of causal e�ect of metabolites
on fracture and BMD with MR analysis

The causal relationship between GRS-identified metabolites

and osteoporosis was further estimated by the two-sample MR

method for eBMD/fracture (Supplementary Table S3) and DXA-

BMD (Supplementary Table S5), respectively. The metabolites’

association signal distribution among various sites of BMD

and fracture is presented in Figure 3. For eBMD, 7 metabolites

were significant (p < 0.05) by using the IVW method (Table 1),

including 4 metabolites from the lipid pathway, 2 from

the amino acid pathway, and 1 from the peptide pathway.

Specifically, positively causal effects on eBMD were identified

for four metabolites, including isobutyryl-l-carnitine (βIVW =

0.117, PIVW = 4.08E-07), 1-palmitoleoylglycerophosphocholine

(βIVW = 0.302, PIVW = 0.005), phenol sulfate (βIVW = 0.186,

PIVW = 0.003), and 1-linoleoylglycerophosphoethanolamine

(βIVW = 0.184, PIVW = 0.003). Negatively causal

effects were identified for three metabolites, including

ADpSGEGDFXAEGGGVR (βIVW = −0.207, PIVW = 0.005),

arachidonate (20:4n6) (AA) (βIVW = −0.207, PIVW =

0.005), and 1-arachidonoylglycerophosphocholine (βIVW =

−0.136, PIVW = 8.01E-04). Of the above 7 eBMD-associated

metabolites, 3 were associated with DXA-BMD as well. For

example, ADpSGEGDFXAEGGGVR is negatively associated

with LS-BMD (βIVW = −0.369, PIVW = 1.08E-05), phenol

sulfate is positively associated with TB-BMD (βIVW =

0.164, PIVW = 0.012), and isobutyryl-l-carnitine is positively

associated with FN-BMD (βIVW = 0.144, PIVW = 0.028).

Most of these causal associations identified by using the IVW

method were robust by using other MR methods (Figure 4),

demonstrating the stability of the associations. In addition,

aspartylphenylalanine was identified to be causally associated

with three DXA-BMD (i.e., LS-BMD, FN-BMD, TB-BMD)

(Table 1). Levulinate (4-oxovalerate) is significantly associated

with fracture risk (ORIVW = 0.843, PIVW = 0.032). The scatter

and funnel plots, as presented in Supplementary Figures S3, S4,

ruled out the existence of potential horizontal pleiotropy for all

the identified metabolites.

Notably, three metabolites were associated with

three or more osteoporosis traits with MR analysis

(Supplementary Table S5), although the associations did

not reach the conservative significance level under Bonferroni

correction with the GRS method. Specifically, epiandrosterone

sulfate is positively associated with eBMD, four DXA-BMDs,

and fracture; and rosterone sulfate is positively associated

with eBMD, fracture, LS- BMD, FN-BMD, and TB-BMD; and

N-acetylornithine is positively associated with eBMD, LS-BMD,

and FN-BMD.

The sensitive analysis of the above-identified metabolites

showed that these associations were robust and would not be

affected by outliers and pleiotropy (Supplementary Table S6).

LOOCV analysis ruled out the potential large effect of most IVs

(Supplementary Table S7). Additional sensitive analysis based

on IVs selected under different thresholds proved robustness

of our results in most situations (Supplementary Table S8).

Furthermore, reverse MR analysis ruled out the possibility

of the causal effect of eBMD on the identified metabolites

(Supplementary Table S9).

Multivariable MR analysis

Multivariable MR analysis with IVs for all identified

metabolites showed that there existed strong evidence of
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FIGURE 2

GRS associations between serum metabolites and eBMD (A) or fracture (B). The x-axis represents the e�ect size, and the y-axis represents the

–log10(p). Five top metabolites with minimal q-values were annotated. Significantly associated metabolites (p < 0.05) were marked with

corresponding pathway information. eBMD, estimated bone mass density.

independent causal effects for ADpSGEGDFXAEGGGVR, 1-

palmitoleoyl glycerophosphocholine, phenol sulfate, isobutyry-

l-carnitine, and 1-arachidonoyl glycerophosphocholine

on eBMD (Figure 5), and the directions of adjusted

causal effects were consistent with univariable MR

analyses. However, the effect of AA and 1-linoleoyl

glycerophosphoethanolamine became insignificant in

multivariable MR analysis, suggesting potential pleiotropic

effects of corresponding IVs. Besides, multivariable MR analysis

for DXA-BMD validated the independent causal effect of

ADpSGEGDFXAEGGGVR, isobutyry-l-carnitine, and phenol

sulfate (Supplementary Table S10).

Discussion

Integrating large-scale GWAS individual-level data and

summary statistics, with an attempt to systematically reveal the

underlying association mechanism among blood metabolites

and osteoporosis from a genetic perspective, this study generated

robust evidence supporting that blood metabolites could

causally affect BMDs and fracture risk. Utilizing genetic variants

as proxies, 18 metabolites were identified as significant for

eBMD and 1 metabolite significant for fracture with the

GRS method. Then, 8 metabolites were further validated

by two-sample MR in different osteoporosis phenotypes (7

for eBMD, 1 for fracture, 2 for LS-BMD, 2 for TB-BMD,

and 2 for FN-BMD). Besides, causal effects of another three

metabolites were identified to consistently influence multiple

BMD traits. Furthermore, multivariable MR analyses have

validated the independent effects of five metabolites on BMD.

Metabolic pathway analysis indicated that the above significant

metabolites were enriched in pathways of “caffeine metabolism,”

“valine, leucine, isoleucine biosynthesis,” “aminoacyl-tRNA

biosynthesis,” “alpha linolenic acid,” “linoleic acid metabolism,”

and other pathways.

In the present study, small peptides, such as

ADpSGEGDFXAEGGGVR, which is derived from the

fibrinogen alpha chain, showed an inverse causal effect on

BMD. Such findings were consistent with the observation

of a significant inverse correlation between fibrinogen and

BMD in a previous clinical study (27). Increases in fibrinogen

peptide in the context of post-menopausal status in animals

promoted inflammation-driven bone resorption by activating

osteoclastogenesis and affecting the number and function of

osteoclasts by modulating IL-6 levels (28). All the above findings

suggested that a higher level of metabolite of fibrinogen exerts

a causal effect on osteoporosis risk by enhancing osteoclast

activation and promoting bone loss.

Aspartyl phenylalanine is a major product of aspartame

after its decomposition by intramolecular cyclization and

demethylation, whereas aspartame is a methyl ester of the N-

L-α aspartyl-L phenylalanine dipeptide (29). Following routine

oral administration of aspartame, osteoarthritis mouse models

presented increased bone density and muscle mass, suggesting

potential therapeutic effects of aspartame in other disease

situations with bone loss (30). A recent study has reported

that supramolecular nanoassemblies of salmon calcitonin and

aspartame have a good osteoinductive capacity, providing a

convenient alternative strategy for osteoporosis therapy (31),

and aspartame was confirmed to improve the biocompatibility

and pharmacodynamics of salmon calcitonin. In contrast, the

use of aspartame was also found to increase the risk of

osteoporosis by interacting with cations (such as Fe2+, Ca2+,

Cd2+, and Zn2+ ions) and excreting them from the body (32).

These inconsistent findings merit further investigation.
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FIGURE 3

Mendelian randomization associations of serum metabolites on five BMD phenotypes that derived from the IVW analysis. IVW, inverse-variance

weighted; eBMD, estimated bone mineral density; TB-BMD, total body bone mineral density; LS-BMD, lumbar spine bone mineral density;

FA-BMD, forearm bone mineral density; FN-BMD, femoral neck bone mineral density.
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There are limited studies investigating the correlations of

epiandrosterone sulfate and androsterone sulfate with bone

metabolism. However, mentioning this marginal association

here is noteworthy since dehydroepiandrosterone sulfate is a

precursor of sulfated adrenal androgen (e.g., epiandrosterone

sulfate, androsterone sulfate). Our findings, together with

previous observational research (33, 34), support associations

between dehydroepiandrosterone sulfate and bone phenotypes.

Kim et al. reported that the reduced adrenal androgen

dehydroepiandrosterone-sulfate (DHEA-S) may contribute to

lower trabecular bone score (TBS) in patients with subclinical

hypercortisolism (SH) (33). Similarly, Ahn et al. nicely used

cross-sectional data of a prospective multicenter project and

noted that reduced DHEA-S in post-menopausal women and

men may contribute to BMD reduction in Asians with SH

(34). Consistent with a previous one-sample MR study (9), we

found that sulfated adrenal androgens play a causal role in

BMD changes. SNP rs474229 in the CYP3A43 gene was found

to be a shared IV for these two sulfated adrenal androgens,

while CYP3A43 could encode a member of the cytochrome

P450 superfamily of enzymes that play a role in catalyzing

reactions involved in drug metabolism, as well as the synthesis

of cholesterol, steroids, and other lipids. Moreover, it is well-

known that androgens play an active role in bone metabolism,

promoting the acquisition of bone mass at puberty and

contributing to the maintenance of bone mass later. However,

whether the elevated levels of these two sulfated adrenal

androgens reflect an elevated synthesis of endogenous androgen,

thereby indirectly promoting bone metabolism, or whether they

can directly affect bone metabolism is unknown yet.

In our MR analysis, AA involved in the metabolism of

(alpha) linolenic acid is identified to be negatively associated

with all BMD traits except for FA-BMD and positively correlated

with fracture risk. Pathway analysis demonstrates that AA

is involved in the alpha linolenic acid and linoleic acid

metabolism pathways, which are protective of bone health (35).

At the same time, a derivative of AA, 1-arachidonoyl glycero

phosphocholine is determined to be positively associated with

osteoporosis risk in GRS and MR analysis. Many studies found

that AA affects bone metabolism through various mechanisms,

mainly via the OPG/RANKL/NF-κB pathway mediated by

PGE2/EP4 to promote osteoclastogenesis as well as by regulating

the imbalance of osteogenic and adipogenic differentiation

of MSCs (with the increased ability to differentiate into

adipocytes). Consistently, the AA level was abnormally elevated

in ovariectomized osteoporotic rats, implying that increased

biosynthesis of unsaturated fatty acids could lead to osteoporosis

(36). Harris et al. found an inverse association between

dietary polyunsaturated fatty acid (PUFA) intake and BMD

in post-menopausal women receiving hormonal therapy (37).

However, several studies contradicted our results, which could

be attributed to unavoidable confounders in population studies

during the long-term development of osteoporosis (38, 39).
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FIGURE 4

A forest plot about associations between 7 causal metabolites and eBMD. (A) ADpSGEGDFXAEGGGVR; (B) 1-palmitoleoyl glycerol

phosphocholine; (C) arachidonate (20:4n6); (D) phenol sulfate; (E) 1-linoleoyl glycerophosphoethanolamine; (F) isobutyryl-l-carnitine; (G)

1-arachidonoyl glycerol phosphocholine. IVW, inverse-variance weighted.

FIGURE 5

E�ects of five significant causal metabolites on eBMD were estimated by using the multivariate MR regression.

Consistent with our result, a high concentration of N-

acetylornithine (NAC) is associated with an increased risk

of high bone turnover, which is a major determinant of

osteoporosis in late post-menopausal women (40). On one

hand, supplementation with NAC can treat OVX-induced

osteoporosis in a mouse model of bilateral ovariectomy

by simultaneously reducing osteoclast bone resorption,

reactive oxygen species (ROS), and DNA damage (41).

On the other hand, NAC (ROS scavenger) may inhibit

the differentiation and mineralization of osteoblastic

cells via ROS-dependent signaling pathways (42). During

bone remodeling, bone is continuously renewed and

mediated through the balance between osteoblastic bone

formation and osteoclastic bone resorption, which might be

mediated by NAC through the dual roles of ROS in bone

homeostasis (43).
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Although few studies had focused on the relationship

between osteoporosis and the remaining metabolites

identified in the present research, there is an inextricable

association between them. As we all know, 1-palmitoleoyl-

glycerophosphocholine derives from a palmitoleic acid

and inhibits RANKL-induced osteoclastogenesis and bone

resorption through inhibition of NF-κB and MAPK signaling

pathways (44). As a derivative of linoleic acid, 1-linoleoyl glycero

phosphoethanolamine is significantly negatively associated with

osteoporosis risk. Conjugated linoleic acid has been frequently

proved to decrease adipose mass and improve bone health in

mice (45). Therefore, further validation by bio functional assays

is required, which is beyond the scope of this study.

Metabolic pathways enriched by most identified metabolites

(with a nominally significant association with eBMD) in

our results were consistent with previous reports, which

might play roles in the development of osteoporosis. Notably,

the caffeine metabolism pathway (metabolites: paraxanthine,

theobromine, and 1-Methyluric acid) was highlighted as

potential targets in both pathways analysis (i.e., SMPDB and

KEGG), which has previously been reported to play a crucial

role in the development of osteoporosis in previous studies

(46). Furthermore, fatty acid-related pathways (such as Alpha

Linolenic Acid and Linoleic Acid Metabolism and Fatty Acid

Biosynthesis), amino acid metabolism (e.g., Arginine and

Proline Metabolism), as well as Bile Acid Biosynthesis, were

overlapping signals of the results of both enrichment analyses,

whichmay be potential biochemical mechanisms of osteoporosis

(36). Besides, metabolites identified for DXA-BMD were proved

to be involved in multiple amino acid metabolism pathways and

lipid pathways. However, the relationship between aminoacyl-

tRNA biosynthesis, as well as some other pathways (such as

Biotin Metabolism) and osteoporosis, has not been determined

yet and still awaits investigation.

Compared with previous studies, our research identified

different features for osteoporosis based on the large-scale

eBMD and fracture data sets. The study from the TwinsUK

cohort included 6,055 women (9) and found four biomarkers

causally associated with BMD. Two of them were confirmed

in our analysis (i.e., androsterone sulfate and epiandrosterone

sulfate), whereas others did not reach the significance threshold

of 0.05 in GRS or MR analysis. The study from Framingham

Heart Study recruited around 5,000 subjects for discovery and

replication analysis and reported significant metabolites (8),

but none of them were significant herein in our analysis.

Comparatively speaking, the present research contained a total

of ∼400,000 samples with genome-wide genotyping scans,

which could greatly improve statistical power. Therefore, the

present findings should be quite convincing.

In summary, based on the publicly available metabolomics

data, the present study supported that the altered levels of

metabolites, such as lipid and amino acid, play a role in the

progression of osteoporosis as well as in the development

of a bone fracture. The causal associations identified at the

genetic variant level will provide a metabolomics perspective

on screening and identifying significantly altered metabolites

that influence the development of osteoporosis, in parallel

with mining and identifying specific metabolic pathways that

may be targeted for treatment or intervention in osteoporosis.

In turn, it is promising to better predict which individuals

will suffer an upcoming event of rapid bone loss or even

develop osteoporosis, and to help people predisposed to

osteoporosis achieve normal bone metabolism through dietary

and pharmacologic interventions. However, several limitations

exist in our research. First, due to the lack of data, it is

infeasible for us to evaluate the relationship between GRS of

metabolites on DXA-BMD. Second, the present analysis was

conducted on European ancestry, and the findings, probably,

cannot be extended to other ethnicities/races. Finally, we could

not evaluate metabolite GRSs constructed due to the lack of

individual level data.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://www.ukbiobank.ac.uk; http://

www.gefos.org/; http://metabolomics.helmholtz-muenchen.de/

gwas/. All codes and data sets used in the research are available

at https://github.com/biostatYu/MRcode/.

Ethics statement

The studies involving human participants were reviewed

and approved by North West Multi-centre Research Ethics

Committee (MREC). The patients/participants provided their

written informed consent to participate in this study.

Author contributions

F-YD, S-FL, R-RC, and X-HY conceived the design of

the study. X-HY and LZ obtained the data. R-RC and X-HY

cleared up the datasets and mainly performed the data analyses.

F-YD, S-FL, R-RC, Y-QY, and X-HY drafted and revised the

manuscript. All authors approved the manuscript and provided

relevant suggestions.

Funding

This study was supported by Natural Science Foundation

of China (81872681, 82173529, 82173598, and 82103922), the

Science and Technology Project of Suzhou (SS202050 and

SYS2019024), and the QingLan Project of Higher Education of

Frontiers in PublicHealth 10 frontiersin.org

https://doi.org/10.3389/fpubh.2022.905178
https://www.ukbiobank.ac.uk
http://www.gefos.org/
http://www.gefos.org/
http://metabolomics.helmholtz-muenchen.de/gwas/
http://metabolomics.helmholtz-muenchen.de/gwas/
https://github.com/biostatYu/MRcode/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu et al. 10.3389/fpubh.2022.905178

Jiangsu Province, a Project of the Priority Academic Program

Development of Jiangsu Higher Education Institutions and

Postgraduate Research & Practice Innovation Program of

Jiangsu Province (KYCX22_3227).

Acknowledgments

We thank all the GEFOS consortium studies for making

the summary association statistics data publicly available, and

we are grateful to all the investigators and the participants in

UK Biobank for the public individual-level data sets and their

contribution to those studies.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fpubh.

2022.905178/full#supplementary-material

References

1. Black DM, Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N Engl J
Med. (2016) 374:254–62. doi: 10.1056/NEJMcp1513724

2. Ensrud KE, Crandall CJ. Osteoporosis. Ann Intern Med. (2017) 167:Itc17–
32. doi: 10.7326/AITC201708010

3. Xue L, Wang Y, Liu L, Zhao L, Han T, Zhang Q, et al. A HNMR-based
metabonomics study of postmenopausal osteoporosis and intervention effects
of Er-Xian Decoction in ovariectomized rats. Int J Mol Sci. (2011) 12:7635–
51. doi: 10.3390/ijms12117635

4. Wang J, Yan D, Zhao A, Hou X, Zheng X, Chen P, et al. Discovery of potential
biomarkers for osteoporosis using LC-MS/MS metabolomic methods. Osteoporos
Int. (2019) 30:1491–9. doi: 10.1007/s00198-019-04892-0

5. Holmes MV, Asselbergs FW, Palmer TM, Drenos F, Lanktree MB, Nelson CP,
et al. Mendelian randomization of blood lipids for coronary heart disease. Eur
Heart J. (2014) 36:539–50. doi: 10.1093/eurheartj/eht571

6. Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos
R, Huang J, et al. An atlas of genetic influences on human
blood metabolites. Nat Genet. (2014) 46:543–50. doi: 10.1038/n
g.2982

7. Elliott J, Bodinier B, Bond TA, Chadeau-Hyam M, Evangelou E, Moons
KGM, et al. Predictive accuracy of a polygenic risk score-enhanced prediction
model vs a clinical risk score for coronary artery disease. JAMA. (2020) 323:636–
45. doi: 10.1001/jama.2019.22241

8. Liu L, Wen Y, Zhang L, Xu P, Liang X, Du Y, et al. Assessing the associations
of blood metabolites with osteoporosis: a mendelian randomization study. J Clin
Endocrinol Metab. (2018) 103:1850–5. doi: 10.1210/jc.2017-01719

9. Moayyeri A, Cheung CL, Tan KC, Morris JA, Cerani A, Mohney RP,
et al. Metabolomic pathways to osteoporosis in middle-aged women: a genome-
metabolome-wide mendelian randomization study. J Bone Miner Res. (2018)
33:643–50. doi: 10.1002/jbmr.3358

10. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The
UK Biobank resource with deep phenotyping and genomic data. Nature. (2018)
562:203–9. doi: 10.1038/s41586-018-0579-z

11. Yang S, Zhou X. Accurate and scalable construction of polygenic
scores in large biobank data sets. Am J Hum Genet. (2020) 106:679–
93. doi: 10.1016/j.ajhg.2020.03.013

12. Shi H, Kichaev G, Pasaniuc B. Contrasting the genetic architecture of 30
complex traits from summary association data. Am J Hum Genet. (2016) 99:139–
53. doi: 10.1016/j.ajhg.2016.05.013

13. Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, et al. An
atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. (2019)
51:258–66. doi: 10.1038/s41588-018-0302-x

14. Medina-Gomez C, Kemp JP, Trajanoska K, Luan JA, Chesi A, Ahluwalia
TS, et al. Life-course genome-wide association study meta-analysis of total body
BMD and assessment of age-specific effects. Am J Hum Genet. (2018) 102:88–
102. doi: 10.1016/j.ajhg.2017.12.005

15. Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ, et al.
Whole-genome sequencing identifies EN1 as a determinant of bone density and
fracture. Nature. (2015) 526:112–7. doi: 10.1038/nature14878

16. Yang J, Yan B, Zhao B, Fan Y, He X, Yang L, et al. Assessing the causal effects of
human serum metabolites on 5 major psychiatric disorders. Schizophr Bull. (2020)
46:804–13. doi: 10.1093/schbul/sbz138

17. Yu XH, Cao RR, Yang YQ, Lei SF. Identification of causal metabolites
related to multiple autoimmune diseases. Hum Mol Genet. (2022) 31:604–
13. doi: 10.1093/hmg/ddab273

18. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al.
PLINK: a tool set for whole-genome association and population-based linkage
analyses. Am J Hum Genet. (2007) 81:559–75. doi: 10.1086/519795

19. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst
4.0: towardsmore transparent and integrativemetabolomics analysis.Nucleic Acids
Res. (2018) 46:W486–94. doi: 10.1093/nar/gky310

20. Burgess S, Small DS, Thompson SG. A review of instrumental variable
estimators for Mendelian randomization. Stat Methods Med Res. (2017) 26:2333–
55. doi: 10.1177/0962280215597579

21. Bowden J, Smith GD, Haycock PC, Burgess S. Consistent estimation in
mendelian randomization with some invalid instruments using a weighted median
estimator. Genet Epidemiol. (2016) 40:304–14. doi: 10.1002/gepi.21965

22. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary
data Mendelian randomization via the zero modal pleiotropy assumption. Int J
Epidemiol. (2017) 46:1985–98. doi: 10.1093/ije/dyx102

23. Burgess S, Thompson SG. Interpreting findings from Mendelian
randomization using the MR-Egger method. Eur J Epidemiol. (2017)
32:377–89. doi: 10.1007/s10654-017-0255-x

24. Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread
horizontal pleiotropy in causal relationships inferred from Mendelian
randomization between complex traits and diseases. Nat Genet. (2018)
50:693. doi: 10.1038/s41588-018-0099-7

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2022.905178
https://www.frontiersin.org/articles/10.3389/fpubh.2022.905178/full#supplementary-material
https://doi.org/10.1056/NEJMcp1513724
https://doi.org/10.7326/AITC201708010
https://doi.org/10.3390/ijms12117635
https://doi.org/10.1007/s00198-019-04892-0
https://doi.org/10.1093/eurheartj/eht571
https://doi.org/10.1038/ng.2982
https://doi.org/10.1001/jama.2019.22241
https://doi.org/10.1210/jc.2017-01719
https://doi.org/10.1002/jbmr.3358
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1016/j.ajhg.2020.03.013
https://doi.org/10.1016/j.ajhg.2016.05.013
https://doi.org/10.1038/s41588-018-0302-x
https://doi.org/10.1016/j.ajhg.2017.12.005
https://doi.org/10.1038/nature14878
https://doi.org/10.1093/schbul/sbz138
https://doi.org/10.1093/hmg/ddab273
https://doi.org/10.1086/519795
https://doi.org/10.1093/nar/gky310
https://doi.org/10.1177/0962280215597579
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1093/ije/dyx102
https://doi.org/10.1007/s10654-017-0255-x
https://doi.org/10.1038/s41588-018-0099-7
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu et al. 10.3389/fpubh.2022.905178

25. Burgess S, Thompson SG. Multivariable mendelian randomization: the use
of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol. (2015)
181:251–60. doi: 10.1093/aje/kwu283

26. Yavorska OO, Burgess S. MendelianRandomization: an R package for
performing Mendelian randomization analyses using summarized data. Int J
Epidemiol. (2017) 46:1734–9. doi: 10.1093/ije/dyx034

27. Chen JT, Kotani K. Inverse correlation between fibrinogen and bone mineral
density in women: preliminary findings. J Formos Med Assoc. (2016) 115:54–
6. doi: 10.1016/j.jfma.2015.07.023

28. Cole HA, Ohba T, Nyman JS, Hirotaka H, Cates JM, Flick MJ,
et al. Fibrin accumulation secondary to loss of plasmin-mediated fibrinolysis
drives inflammatory osteoporosis in mice. Arthritis Rheumatol. (2014) 66:2222–
33. doi: 10.1002/art.38639

29. Lin SY, Cheng YD. Simultaneous formation and detection of the reaction
product of solid-state aspartame sweetener by FT-IR/DSC microscopic system.
Food Addit Contam. (2000) 17:821–7. doi: 10.1080/026520300420385

30. Manion CV, Hochgeschwender U, Edmundson AB, Hugli TE, Gabaglia
CR. Dietary aspartyl-phenylalanine-1-methyl ester delays osteoarthritis and
prevents associated bone loss in STR/ORT mice. Rheumatology. (2011) 50:1244–
9. doi: 10.1093/rheumatology/ker089

31. Yu P, Xu Z, Zhai X, Liu Y, Sun H, Xu X, et al. Supramolecular nanoassemblies
of salmon calcitonin and aspartame for fibrillation inhibition and osteogenesis
improvement. Int J Pharm. (2021) 593:120171. doi: 10.1016/j.ijpharm.2020.120171

32. Mahnam K, Raisi F. A theoretical and experimental study of calcium, iron,
zinc, cadmium, and sodium ions absorption by aspartame. J Biol Phys. (2017)
43:87–103. doi: 10.1007/s10867-016-9435-2

33. Kim BJ, Kwak MK, Ahn SH, Kim JS, Lee SH, Koh JM. The association of
cortisol and adrenal androgen with trabecular bone score in patients with adrenal
incidentaloma with and without autonomous cortisol secretion. Osteoporos Int.
(2018) 29:2299–307. doi: 10.1007/s00198-018-4608-4

34. Ahn SH, Kim JH, Cho YY, Suh S, Kim BJ, Hong S, et al. The
effects of cortisol and adrenal androgen on bone mass in Asians with
and without subclinical hypercortisolism. Osteoporos Int. (2019) 30:1059–
69. doi: 10.1007/s00198-019-04871-5

35. Bellissimo MP, Ziegler TR, Jones DP, Liu KH, Fernandes J, Roberts JL,
et al. Plasma high-resolution metabolomics identifies linoleic acid and linked
metabolic pathways associated with bone mineral density. Clin Nutr. (2021)
40:467–75. doi: 10.1016/j.clnu.2020.05.041

36. Si Z, Zhou S, Shen Z, Luan F. High-throughput metabolomics discovers
metabolic biomarkers and pathways to evaluating the efficacy and exploring

potential mechanisms of osthole against osteoporosis based on UPLC/Q-
TOF-MS coupled with multivariate data analysis. Front Pharmacol. (2020)
11:741. doi: 10.3389/fphar.2020.00741

37. Harris M, Farrell V, Houtkooper L, Going S, Lohman T. Associations
of polyunsaturated Fatty Acid intake with bone mineral density in
postmenopausal women. J Osteoporos. (2015) 2015:737521. doi: 10.1155/2015/7
37521

38. Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker
KL. Plasma phosphatidylcholine concentrations of polyunsaturated
fatty acids are differentially associated with hip bone mineral density
and hip fracture in older adults: the Framingham Osteoporosis
Study. J Bone Miner Res. (2012) 27:1222–30. doi: 10.1002/jbm
r.1581

39. Virtanen JK, Mozaffarian D, Willett WC, Feskanich D. Dietary intake of
polyunsaturated fatty acids and risk of hip fracture in men and women. Osteoporos
Int. (2012) 23:2615–24. doi: 10.1007/s00198-012-1903-3

40. Baptista AL, Padilha K, Malagrino PA, Venturini G, Zeri AC, Dos Reis
LM, et al. Potential biomarkers of the turnover, mineralization, and volume
classification: results using nmrmetabolomics in hemodialysis patients. JBMR plus.
(2020) 4:e10372. doi: 10.1002/jbm4.10372

41. Zhou X, Wang Z, Ni Y, Yu Y, Wang G, Chen L. Suppression effect
of N-acetylcysteine on bone loss in ovariectomized mice. Am J Transl Res.
(2020) 12:731–42.

42. Arakaki N, Yamashita A, Niimi S, Yamazaki T. Involvement of
reactive oxygen species in osteoblastic differentiation of MC3T3-E1 cells
accompanied by mitochondrial morphological dynamics. Biomed Res. (2013)
34:161–6. doi: 10.2220/biomedres.34.161

43. Tao H, Ge G, Liang X, Zhang W, Sun H, Li M, et al. ROS signaling cascades:
dual regulations for osteoclast and osteoblast. Acta Biochim Biophys Sin. (2020)
52:1055–62. doi: 10.1093/abbs/gmaa098

44. Van Heerden B, Kasonga A, Kruger MC, Coetzee M. Palmitoleic acid inhibits
RANKL-induced osteoclastogenesis and bone resorption by suppressing NF-κB
and MAPK signalling pathways. Nutrients. (2017) 9:441. doi: 10.3390/nu9050441

45. Park Y, Kim J, Scrimgeour AG, Condlin ML, Kim D, Park Y.
Conjugated linoleic acid and calcium co-supplementation improves
bone health in ovariectomised mice. Food Chem. (2013) 140:280–
8. doi: 10.1016/j.foodchem.2012.12.067

46. Rapuri PB, Gallagher JC, Kinyamu HK, Ryschon KL. Caffeine intake
increases the rate of bone loss in elderly women and interacts with vitamin D
receptor genotypes. Am J Clin Nutr. (2001) 74:694–700. doi: 10.1093/ajcn/74.5.694

Frontiers in PublicHealth 12 frontiersin.org

https://doi.org/10.3389/fpubh.2022.905178
https://doi.org/10.1093/aje/kwu283
https://doi.org/10.1093/ije/dyx034
https://doi.org/10.1016/j.jfma.2015.07.023
https://doi.org/10.1002/art.38639
https://doi.org/10.1080/026520300420385
https://doi.org/10.1093/rheumatology/ker089
https://doi.org/10.1016/j.ijpharm.2020.120171
https://doi.org/10.1007/s10867-016-9435-2
https://doi.org/10.1007/s00198-018-4608-4
https://doi.org/10.1007/s00198-019-04871-5
https://doi.org/10.1016/j.clnu.2020.05.041
https://doi.org/10.3389/fphar.2020.00741
https://doi.org/10.1155/2015/737521
https://doi.org/10.1002/jbmr.1581
https://doi.org/10.1007/s00198-012-1903-3
https://doi.org/10.1002/jbm4.10372
https://doi.org/10.2220/biomedres.34.161
https://doi.org/10.1093/abbs/gmaa098
https://doi.org/10.3390/nu9050441
https://doi.org/10.1016/j.foodchem.2012.12.067
https://doi.org/10.1093/ajcn/74.5.694
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Systematic evaluation for the causal effects of blood metabolites on osteoporosis: Genetic risk score and Mendelian randomization
	Introduction
	Materials and methods
	UK biobank datasets
	Metabolome-wide GWAS data sources
	GWAS data sources for osteoporosis fracture and BMD
	Selection of instrumental variables (IVs)
	GRS analysis in UK biobank
	Metabolic pathway analysis
	Estimation of causal effect and sensitivity analyses
	Multivariable MR analysis

	Result
	Identification of eBMD-associated metabolites by using GRS analysis
	Metabolic pathway analysis
	Validation of causal effect of metabolites on fracture and BMD with MR analysis
	Multivariable MR analysis

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


