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Measurements of interaction intensity are generally achieved by
observing responses to perturbations. In biological and chemi-
cal systems, external stimuli tend to deteriorate their inherent
nature, and thus, it is necessary to develop noninvasive infer-
ence methods. In this paper, we propose theoretical methods
to infer coupling strength and noise intensity simultaneously in
two well-synchronized noisy oscillators through observations of
spontaneously fluctuating events such as neural spikes. A phase
oscillator model is applied to derive formulae relating each of the
parameters to spike time statistics. Using these formulae, each
parameter is inferred from a specific set of statistics. We verify
these methods using the FitzHugh–Nagumo model as well as the
phase model. Our methods do not require external perturbations
and thus can be applied to various experimental systems.

inference method | biological rhythms | coupled oscillators | period
variability | stochastic dynamical systems

Coupled oscillators such as cardiac myocytes (1), heart pace-
makers (2, 3), circadian clocks (2–5), neurons (6–9), electro-

chemical oscillators (10), spin torque oscillators (11–14), crystal
oscillators (15), and nanomechanical oscillators (16) are found in
many disciplines ranging from biology to engineering. Although
these systems are subject to various types of noise, including
thermal, quantum, and molecular noise, they can exhibit syn-
chronization because of coupling between the oscillators. Thus,
coupling and noise are crucial factors in the determination of
multioscillator dynamics (17–19).

Since a noninvasive estimation is desired in many cases, it
is important to develop methods to infer the coupling strength
and noise intensity solely from temporal information on the
oscillation. Such an attempt was made in an experiment with
cultured cardiac myocytes beating spontaneously (1). Therein,
the transition from a desynchronized state to a synchronized state
between two cells was observed within the incubation time. This
suggests that coupling between the cells should increase. How-
ever, this naive expectation is not generally fulfilled, because syn-
chronization is facilitated not only by increased coupling strength
but also by decreased noise intensity (17).

Fig. 1A displays spike time data generated with the FitzHugh–
Nagumo model for cardiac and neural electrical activity (20)
(precisely introduced later). For parameter sets i and ii, the
typical values ζ of the spike time lag, which represent the degree
of synchronization, are approximately equal. From this, the cou-
pling strengths in the two cases may seem similar. However, the
values actually differ by a factor of 2. Thus, an individual statistic
derived from oscillation data can be misleading when attempting
to infer coupling strength. The case of attempting to infer noise
intensity is similar. Hence, in order to infer these properties,
different types of statistics must be combined appropriately.

In this paper, we propose two methods of inferring coupling
strength and noise intensity from data solely based upon the
spike timing of two well-synchronized noisy oscillators. Method I

requires spike timing data from only one of the oscillators, but we
may infer the coupling strength and the noise intensity. Method
II requires spike time data on both oscillators but provides more
precise inferences. We demonstrate our methods using phase
oscillator and FitzHugh–Nagumo models. An example of our in-
ferences from the FitzHugh–Nagumo model is shown in Fig. 1B.
There, the coefficient of variation in periods (1.9 to 4.4%) and the
number of observed spikes (160,000) are comparable to those in
the abovementioned experiment on cardiac cells (1); hence, the
demonstration in the figure is realistic. Although many inference
methods work effectively using data taken from unsynchronized
oscillators (21–23), external perturbations (24–26), and whole
time series (21–23, 27, 28), ours do not require them. Moreover,
we do not need to assume function form. Therefore, our meth-
ods are ready for application to synchronized coupled oscillator
systems in various fields.

Formulations. We introduce some statistical quantities based on
the spike time data (Fig. 1A). We assume that an oscillator spikes
when its oscillatory variable passes a specific value. Let us denote
the kth spike time of the oscillator by t(k). In the case of the phase
oscillator model, t(k) is defined as the time at which a phase first
passes through 2πk + θcp (0≤ θcp < 2π), where θcp is called the
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Fig. 1. (A) Examples of spike timing generated for coupled cells with the
FitzHugh–Nagumo model in Eq. 14. The SDs, ζ, of the spike time lag between
two oscillators are similar in cases i and ii. (B) Simultaneous inferences of
effective noise intensity aD and effective coupling strength |c|κ for the
FitzHugh–Nagumo model with method II. These inferences were achieved
using only spike time data. Actual values are plotted as crosses. Inferred
values are plotted as squares (for the lowest and third-lowest coupling
strengths) and circles (otherwise). The actual values are very well approxi-
mated in all cases, including D = 0.0002, κ = 0.01 (case i) and D = 0.0004,
κ = 0.02 (case ii). The average period is τ = 126.5.

checkpoint phase. The kth m-cycles period and its variance are
defined as

T (k)
m = t(k) − t(k−m), [1]

Vm = E [(T (k)
m −mτ)2], [2]

where E [· · · ] denotes the statistical average over k and τ is the
average period given by τ = E [T

(k)
1 ]. Note that in this paper,

E [· · · ] denotes both the statistical average over k and the ensem-
ble average, which are identical in the steady state. Note further
that Vm is calculated from the spike time data of one oscillator.
To quantify the relationship between two oscillators, the SD of
time lag between the spikes of the oscillators is defined as

ζ =

√
E [(t

(k)
1 − t

(k)
2 )2], [3]

where t
(k)
i is the kth spike time of the ith oscillator. It should be

noted that in coupled noisy oscillators, phase slips can generally
occur; this occurrence of phase slips demands redefinition of the
time lag. To adequately define the time lag after the phase slips,
we modify the definition of the (k + 1)th spike time when phase
slips occur after the kth spikes of oscillator i and j as follows: when
oscillator i generates l ≥ 2 successive spikes before the (k + 1)th
spike generated by oscillator j, i.e., max(t(k)1 , t

(k)
2 )< t

(k+1)
i <

. . . < t
(k+l)
i < tk+1

j < t
(k+l+1)
i holds true, we regard t

(k+l)
i and

t
(k+1)
j as the corresponding spikes; i.e., we redefine t

(k+1)
i ≡

t
(k+l)
i .

To derive an inference theory, we consider a pair of coupled
phase oscillators subject to noise. When limit cycle oscillators

are weakly coupled to each other and subject to weak noise, the
dynamics can be described by (17, 29)

θ̇1 = ω + κJ (θ1, θ2) + Z (θ1)
√
Dξ1(t),

θ̇2 = ω + κJ (θ2, θ1) + Z (θ2)
√
Dξ2(t),

[4]

where θi is the phase of oscillator i and κ≥ 0 is the coupling
strength. The independent and identically distributed noise ξi(t)
satisfies E [ξi(t)] = 0 and E [ξi(t)ξj (t

′)] = δij δ(t − t ′). The pos-
itive constant D represents the noise intensity. The phase sen-
sitivity function Z (θ) is a 2π-periodic function that quantifies
the phase response to noise. The 2π-periodic function J (x , y)
describes the interaction between oscillators that leads to syn-
chronization. We assume that J (θ, θ) = 0, which is satisfied in
systems with diffusive coupling between chemical oscillators or
gap junction coupling between cells. We focus on systems that
are well synchronized in phase.

Our inference methods are based on the formula of period
variability. In a previous work (30), the following expression for
the variance V1 was derived from the system in Eq. 4 by means
of linear approximation:

V1(θcp) = C1 + C2
d(θcp)

2

ω2
, [5]

where C1 and C2 are independent of θcp and given by
C1 =

D
2

∫ 2π

0

Z(θ)2

ω3 dθ and C2 = (1− exp[cκ])/2. The negative
constant cκ corresponds to the average effective attractive force
between the oscillators over one oscillation period. That is,
c = 1

ω

∫ 2π

0
fY (θ)dθ, where fY (θ)≡ ∂J

∂x

∣∣
x=y=θ

− ∂J
∂y

∣∣∣
x=y=θ

. The

2π-periodic function d(θcp)≡
√
E [‖θ1 − θ2‖2]θ1=θcp

represents

the phase distance from in-phase synchronization, where
‖θ1 − θ2‖ is the phase difference defined on the ring [−π,π).
If xk is the value of x (t) when θ1 first passes through 2πk + θcp,
then E [x (t)]θ1=θcp represents the average of xk over k. Note that
d(θcp) is proportional to

√
D and dependent on κ (30).

Through a derivation similar to that of Eq. 5, we derive that
Vm is given by

Vm(θcp) =maD +
[1− exp(mcκ)]

2

[
d(θcp)

ω

]2

, [6]

where a ≡ 1
2

∫ 2π

0

Z(θ)2

ω3 dθ > 0. See SI Appendix, section A for
the derivation. Since a represents an average phase response to
noise, the product aD represents the effective noise intensity
(17). Our purpose is now to infer aD and |c|κ, which are
important values because they determine the strength of the
phase diffusion and the time scale of the synchronization,
respectively (17).
Method I. We use only V1, V2, and V3 for one of the oscillators.
Combining Eq. 6 for m = 1, 2, 3, we can determine the three
unknowns aD, cκ, and (d/ω)2. In particular, we obtain

aD =
−V 2

1 − V 2
2 + V1V2 +V1V3

3(V1 − V2) + V3
[7]

and
|c|κ= log

V2 − 2V1

V3 − 2V2 + V1
. [8]

Note that as shown below, Eq. 8 states that a temporal correlation
decays exponentially with spike times, and the decay constant
is given by the effective coupling strength |c|κ. We define the
temporal correlation as

Gm =
1

n

n∑
k=1

[(T
(k−m)
1 − τ)(T

(k)
1 − τ)]. [9]
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Recall that Vm = 1
n

∑n
k=1(

∑m
i=1 T

(k−i+1)
1 −mτ)2. When n is

sufficiently large, i.e., n � |m| and n � |T (k)
1 − τ |2/Vm for any

k, we obtain

Gm =
1

2
(Vm+1 − 2Vm + Vm−1), [10]

where m ≥ 1. Thus, the numerator and the denominator in
Eq. 8 represent the correlations G1 and G2, respectively, i.e.,
exp (|c|κ) =G1/G2.
Method II. We additionally use ζ, which is the SD of the spike
time lags. When D and κ are sufficiently small, we can assume
that θ̇i = ω +O(D ,κ). Using this approximation, we can express
Vm as

Vm =maD +
ζ2

2
[1− exp(mcκ)], [11]

where O(D ,κ)ζ2 is neglected. In terms of V1, V2, and ζ, the two
unknowns aD and cκ are given by

aD = V1 −
√

ζ2

2
(2V1 − V2) [12]

and

|c|κ=− log
(
1−

√
2

ζ2
(2V1 − V2)

)
. [13]

Our formulae in Eqs. 7, 8, 12, and 13 are independent of the
checkpoint phase, whereas Vm and ζ are not (30).

Numerical Results. We demonstrated the validity of the inference
methods with numerical experiments. First, we again employed
the phase oscillator model in Eq. 4. We assumed J (x , y) =
z (x )[h(x )− h(y)], which represents gap junction coupling or
diffusive coupling (17, 29). We set z (θ) = sin θ for 0≤ θ < π and
z (θ) = 0 for π ≤ θ < 2π, with h(θ) = cos θ. The region satisfying
z (θ) = 0mimics the refractory stage that exists for many chemical
and biological oscillators. We set Z (θ) = 1 and ω = 2π. Under
these assumptions, a = 1

2
1

(2π)2
, |c|= 1

2
, and τ = 1. For ξ1(t) and

ξ2(t) we assumed white Gaussian noise.
We prepared 16 parameter sets, each with a different

combination of coupling strength and noise intensity given by
κ= 0.25 · 2πnκ and D = 0.002 · (2π)2nD , where nκ,nD =
1, 2, 3, 4. We integrated Eq. 4 using the Euler scheme with a time
step of 5× 10−4. The initial conditions were θ1(0) = θ2(0) = 0.
In this simulation, we fixed the checkpoint phase at θcp = π/2 and
observed the spike timing for 102 ≤ t ≤ 106. Three realizations
were simulated for each parameter set. By using the Vm of
one oscillator, we obtained three pairs of inferred parameters.
By using the Vm of the other oscillator, we obtained three
additional pairs. Thus, we have six pairs of inferred values for
each parameter set.

The results of the simultaneous inferences of noise intensity
and coupling strength with methods I and II are shown in Fig. 2 A
and B, respectively. In Fig. 2A, the inferred values approximately
reproduce the actual values even though only one oscillator was
observed. The error in the inference increases as the coupling or
noise intensity is increased. In Fig. 2B, the inferences by method
II are obviously an improvement on the results of method I.

We emphasize that a naive use of the statistical values Vm

and ζ will not yield successful inferences of noise intensity and
coupling strength. The correlation between V1 and aD is shown
in Fig. 3A, and that between 1/ζ and |c|κ is shown in Fig. 3B.
We found that their correlation coefficients were 0.96 and 0.70,
respectively. In contrast, the correlation coefficient between the
actual and inferred noise intensities (coupling strengths) for
method II was 0.99 (0.99), as shown in Fig. 3C (Fig. 3D). This fact
indicates that our methods are superior to the naive use of Vm

and ζ. In addition, the naive use provides only relative intensities,
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Fig. 2. Simultaneous inferences of effective noise intensity aD and effective
coupling strength |c|κ obtained with (A) method I and (B) method II. Actual
values are plotted as crosses. Inferred values are plotted as squares (for
|c|κ = 0.25π, 0.75π) and circles (otherwise).

whereas our methods directly infer the absolute values of aD
and |c|κ.

Next, we demonstrated the inference method for a more re-
alistic system. Specifically, we employed the coupled FitzHugh–
Nagumo oscillators, described by

v̇i = vi(vi − α)(1− vi)− wi + κ(vj − vi) +
√
Dξi(t),

ẇi = ε(vi − βwi),
[14]

for (i , j ) = (1, 2) and (2, 1). We set α=−0.1, β = 0.5, and
ε= 0.01. Each ξi(t) was the same as that in the inferences
discussed above. This system shows limit cycle oscillation with
a period τ � 126.5 when noise and coupling are absent.

The actual values of a and c for this system were obtained as
follows: to calculate a, we numerically integrated the function
Z representing the phase response to noise, and to calculate c,
we observed the relaxation of the phase difference between two
oscillators in a system with a fixed κ but without noise. The phase
difference is expected to exponentially decrease by a factor of
exp(cκ) each period. We adopted the value of |c|κ obtained from
this relaxation as the effective coupling strength.

We prepared 16 parameter sets with D = 10−4nD and κ=
10−2nκ, where nD ,nκ = 1, 2, 3, 4. We integrated Eq. 14 using
the Euler scheme with a time step of 10−3. In this simulation,
the checkpoint threshold was fixed at vcp = 0.6, and the kth
spike time t(k) was defined as the time at which v first passes
through vcp in the kth oscillation. We observed the spike timing
for 2× 103 ≤ t ≤ 2× 107. The observed number of oscillations
was about 1.6× 105, corresponding to a day in the experiment on
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comparison, the inferred values of (C) aD and (D) |c|κ with method II are
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methods achieved precise inferences, V1 and 1/ζ did not.

cardiac myocytes (1). Three realizations were simulated for each
parameter set.

The results of simultaneous inferences for the FitzHugh–
Nagumo model with methods I and II are shown in Fig. 4
and Fig. 1B, respectively. Fig. 4 reveals that precise inferences
were obtained with method I, except in the case of the greatest
coupling strength, even though data on only one oscillator were
employed. Fig. 1B reveals that better inferences were obtained
with method II because the additional information raised the
precision of each inference. The errors tend to be large when the
coupling or noise intensity is large, as also observed in the case
of the phase oscillator model.
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Fig. 4. Simultaneous inference of effective noise intensity aD and effective
coupling strength |c|κ for the FitzHugh–Nagumo model with method I.
Actual and inferred values are plotted in the same manner as Fig. 1B. The
inferences were successful overall, although the errors became larger as the
coupling strength was increased.

Discussion and Conclusion
We developed methods to infer coupling and noise intensities in
two well-synchronized oscillators. Our methods successfully pro-
vide precise inference not only for the phase oscillator model but
also for the FitzHugh–Nagumo model, which is a representative
model of neural and cardiac oscillations. Here we discuss the
robustness, limitations, and possible extensions of our methods.

One of the main factors that hamper the inference is the
finiteness of sample data. In our numerical demonstrations, the
number n of the observed spikes was ∼ 105 or 106. This number
would be feasible for the observation of cardiac myocytes as
it approximately corresponds to the number of beats in a day.
However, this number may be difficult to achieve in some sys-
tems; therefore, it is important to check the robustness of our
methods against smaller sample sizes. In SI Appendix, section B,
we present the dependence of the inferred noise and coupling
intensities on n in the FitzHugh–Nagumo model with two pa-
rameter sets. It indicates that although the absolute values of the
inferred values are imprecise, relative relation between the two
parameter sets can be inferred even for n = 103. There, we also
present a convenient method to estimate the inference error from
a single dataset by utilizing the bootstrap method (31).

The inference error is expected to be significant when the
system is far from the in-phase state because our methods are
based on the linear approximation around the in-phase state.
This failure of the linear approximation typically arises when
noise and/or oscillator inhomogeneity are strong. We numerically
checked the robustness of method I against strong noise using the
phase oscillator model with a fixed coupling strength; a detailed
description has been provided in SI Appendix, section C. The
noise effect on synchronization is conveniently captured by the
order parameter r for the synchronization (see SI Appendix for
details). The actual and inferred intensities versus the observed
order parameter r are shown in SI Appendix, Fig. S2. As ob-
served, the inference error is not significantly large for aD/τ2 =
0.008. With this noise strength, we obtained r � 0.84, at which
the typical phase difference between oscillators is approximately
π/3; the system is not significantly close to the in-phase state.
Moreover, with such strong noise, phase slips occur occasionally;
therefore, there is a small discrepancy between the time-average
frequencies of the oscillators for a finite observation time.
Despite the phase slip occurrence, method I is still adequately
effective. We also investigated the effect of oscillator inhomo-
geneity in SI Appendix, section D. We numerically confirmed
that method I provides precise inference unless the difference
between the oscillator frequencies is too large. These results
indicate that method I is effective even when the synchronization
is somewhat violated by the noise or inhomogeneity. It should be
noted that method II uses the time lag between two oscillators;
our definition of the time lag would not be appropriate for the
case where the phase slips occur frequently. Therefore, we leave
it as an open problem for investigation in future studies.

Strong coupling also hampers the inference due to the small-
ness of emcκ terms in Eqs. 6 and 11. Because these terms rapidly
decay as κ increases, the inference of coupling intensities become
difficult for large κ. As is clearly observed in Fig. 2, the inference
gets worse for higher κ values. By comparing Fig. 2 A and B, we
also notice that the error in Fig. 2B (thus method II) is smaller
for high κ values. One reason for this is that method II avoids
using e3cκ.

For strong coupling and/or noise, the trajectory of each oscilla-
tor largely deviates from the limit cycle orbit of the unperturbed
oscillator. Subsequently, the inference error is expected to in-
crease owing to the following reasons. First, the phase oscillator
models do not approximate the dynamics of limit cycle oscillators
well (17). Our formulae are based on the phase oscillator model
and, thus, cannot precisely predict the behavior of the limit cycle
oscillators. Second, a spike time is defined in different manners
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between a phase oscillator and a limit cycle oscillator: a spike
time in the phase oscillator is defined by a time passing a certain
phase, whereas that of the limit cycle oscillator is defined as a time
at which an oscillator passes a certain linear cross-section defined
arbitrarily in the one-oscillator state space (32). According to the
phase reduction theory (17), the linear cross-section in the state
space generally differs from the isochron, which is defined as a
curved cross-section comprising isophase points. The inference
error involved with this discrepancy is expected to be larger as
the trajectory is farther from the limit cycle orbit.

Finally, we discuss some extensions of our theory. Although
our proposed methods are for two coupled oscillators, their
extensions to the case of a population of oscillators with
all-to-all coupling is straightforward, as briefly explained in
SI Appendix, section A. In addition, it is important to consider

the presence of common noise (33, 34) because it ubiquitously
exists as, e.g., environmental noise. This extension is also straight-
forward, as shown in SI Appendix, section E. A further extension
of our methods to the systems subjected to colored noise (35)
is a significant challenge. Such an extension would contribute to
the inference of coupled chaotic oscillators (33, 36–38) as chaotic
oscillators can be regarded as a periodic oscillator subjected to
colored noise. These extensions are expected to enhance the
applicability of our methods.

Data Availability. All study data are included in the article and/or
SI Appendix.

ACKNOWLEDGMENTS. We thank Hiroshi Ito for providing helpful com-
ments. This work was supported by Japan Society for the Promotion of
Science KAKENHI Grants JP11J11148, JP19K03663, and JP21K12056.

1. Y. Yamauchi, A. Harada, K. Kawahara, Changes in the fluctuation of interbeat
intervals in spontaneously beating cultured cardiac myocytes: Experimental and
modeling studies. Biol. Cybern. 86, 147–154 (2002).

2. A. T. Winfree, The Geometry of Biological Time (Springer, New York, ed. 2, 2001).
3. L. Glass, Synchronization and rhythmic processes in physiology. Nature 410, 277–284

(2001).
4. S. M. Reppert, D. R. Weaver, Coordination of circadian timing in mammals. Nature

418, 935–941 (2002).
5. A. Murugan et al., Roadmap on biology in time varying environments. Phys. Biol.

18, 041502 (2021).
6. C. D. Acker, N. Kopell, J. A. White, Synchronization of strongly coupled excitatory

neurons: Relating network behavior to biophysics. J. Comput. Neurosci. 15, 71–90
(2003).

7. T. P. Vogels, K. Rajan, L. F. Abbott, Neural network dynamics. Annu. Rev. Neurosci.
28, 357–376 (2005).

8. Y. Penn, M. Segal, E. Moses, Network synchronization in hippocampal neurons. Proc.
Natl. Acad. Sci. U.S.A. 113, 3341–3346 (2016).

9. A. Gelastopoulos, N. J. Kopell, Interactions of multiple rhythms in a biophysical
network of neurons. J. Math. Neurosci. 10, 19 (2020).

10. I. Z. Kiss, C. G. Rusin, H. Kori, J. L. Hudson, Engineering complex dynamical structures:
Sequential patterns and desynchronization. Science 316, 1886–1889 (2007).

11. W. H. Rippard et al., Injection locking and phase control of spin transfer nano-
oscillators. Phys. Rev. Lett. 95, 067203 (2005).

12. S. Kaka et al., Mutual phase-locking of microwave spin torque nano-oscillators.
Nature 437, 389–392 (2005).

13. F. B. Mancoff, N. D. Rizzo, B. N. Engel, S. Tehrani, Phase-locking in double-point-
contact spin-transfer devices. Nature 437, 393–395 (2005).

14. M. Keller, A. Kos, T. Silva, W. Rippard, M. Pufall, Time domain measurement of phase
noise in a spin torque oscillator. Appl. Phys. Lett. 94, 193105 (2009).

15. H. Zhou, C. Nicholls, T. Kunz, H. Schwartz, “Frequency accuracy & stability dependen-
cies of crystal oscillators” (Tech. Rep. SCE-08-12, Systems and Computer Engineering,
Carleton University, 2008).

16. M. H. Matheny et al., Phase synchronization of two anharmonic nanomechanical
oscillators. Phys. Rev. Lett. 112, 014101 (2014).

17. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, New York,
1984).

18. D. J. Needleman, P. H. E. Tiesinga, T. J. Sejnowski, Collective enhancement of
precision in networks of coupled oscillators. Physica D 155, 324–336 (2001).

19. H. Kori, Y. Kawamura, N. Masuda, Structure of cell networks critically determines
oscillation regularity. J. Theor. Biol. 297, 61–72 (2012).

20. R. Fitzhugh, Impulses and physiological states in theoretical models of nerve mem-
brane. Biophys. J. 1, 445–466 (1961).

21. I. T. Tokuda, S. Jain, I. Z. Kiss, J. L. Hudson, Inferring phase equations from multivari-
ate time series. Phys. Rev. Lett. 99, 064101 (2007).

22. J. Miyazaki, S. Kinoshita, Determination of a coupling function in multicoupled
oscillators. Phys. Rev. Lett. 96, 194101 (2006).

23. M. G. Rosenblum, A. S. Pikovsky, Detecting direction of coupling in interacting
oscillators. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 045202 (2001).

24. R. F. Galán, G. B. Ermentrout, N. N. Urban, Efficient estimation of phase-resetting
curves in real neurons and its significance for neural-network modeling. Phys. Rev.
Lett. 94, 158101 (2005).

25. M. Timme, Revealing network connectivity from response dynamics. Phys. Rev. Lett.
98, 224101 (2007).

26. K. Ota, M. Nomura, T. Aoyagi, Weighted spike-triggered average of a fluctuating
stimulus yielding the phase response curve. Phys. Rev. Lett. 103, 024101 (2009).

27. T. Stankovski, A. Duggento, P. V. McClintock, A. Stefanovska, Inference of time-
evolving coupled dynamical systems in the presence of noise. Phys. Rev. Lett. 109,
024101 (2012).

28. T. Stankovski, T. Pereira, P. V. McClintock, A. Stefanovska, Coupling functions: Uni-
versal insights into dynamical interaction mechanisms. Rev. Mod. Phys. 89, 045001
(2017).

29. A. T. Winfree, Biological rhythms and the behavior of populations of coupled
oscillators. J. Theor. Biol. 16, 15–42 (1967).

30. F. Mori, H. Kori, Period variability of coupled noisy oscillators. Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 87, 030901 (2013).

31. B. Efron, R. J. Tibshirani, An Introduction to the Bootstrap (CRC Press, 1994).
32. F. Mori, A. S. Mikhailov, Precision of collective oscillations in complex dynamical

systems with noise. Phys. Rev. E 93, 062206 (2016).
33. C. Zhou, J. Kurths, I. Z. Kiss, J. L. Hudson, Noise-enhanced phase synchronization of

chaotic oscillators. Phys. Rev. Lett. 89, 014101 (2002).
34. J. N. Teramae, D. Tanaka, Robustness of the noise-induced phase synchronization in

a general class of limit cycle oscillators. Phys. Rev. Lett. 93, 204103 (2004).
35. R. Tönjes, Synchronization transition in the Kuramoto model with colored noise.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 055201 (2010).
36. H. Fujisaka, T. Yamada, Stability theory of synchronized motion in coupled-oscillator

systems. Prog. Theor. Phys. 69, 32–47 (1983).
37. L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64,

821–824 (1990).
38. M. G. Rosenblum, A. S. Pikovsky, J. Kurths, Phase synchronization of chaotic oscilla-

tors. Phys. Rev. Lett. 76, 1804–1807 (1996).

Mori and Kori
Noninvasive inference methods for interaction and noise intensities of coupled
oscillators using only spike time data

PNAS 5 of 5
https://doi.org/10.1073/pnas.2113620119

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113620119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113620119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113620119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113620119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113620119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113620119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113620119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113620119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113620119/-/DCSupplemental
https://doi.org/10.1073/pnas.2113620119

