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Intramembrane proteolysis is more than a mechanism to “clean” the membranes

from proteins no longer needed. By non-reversibly modifying transmembrane proteins,

intramembrane cleaving proteases hold key roles in multiple signaling pathways and often

distinguish physiological from pathological conditions. Signal peptide peptidase (SPP)

and signal peptide peptidase-like proteases (SPPLs) recently have been associated with

multiple functions in the field of signal transduction. SPP/SPPLs together with presenilins

(PSs) are the only two families of intramembrane cleaving aspartyl proteases known

in mammals. PS1 or PS2 comprise the catalytic center of the γ-secretase complex,

which is well-studied in the context of Alzheimer’s disease. The mammalian SPP/SPPL

family of intramembrane cleaving proteases consists of five members: SPP and its

homologous proteins SPPL2a, SPPL2b, SPPL2c, and SPPL3. Although these proteases

were discovered due to their homology to PSs, it became evident in the past two decades

that no physiological functions are shared between these two families. Based on studies

in cell culture models various substrates of SPP/SPPL proteases have been identified

in the past years and recently-developed mouse lines lacking individual members of

this protease family, will help to further clarify the physiological functions of these

proteases. In this review we concentrate on signaling roles of mammalian intramembrane

cleaving aspartyl proteases. In particular, we will highlight the signaling roles of PS

via its substrates NOTCH, VEGF, and others, mainly focusing on its involvement in

vasculature. Delineating also signaling pathways that are affected and/or controlled by

SPP/SPPL proteases. From SPP’s participation in tumor progression and survival, to

SPPL3’s regulation of protein glycosylation and SPPL2c’s control over cellular calcium

stores, various crossovers between proteolytic activity of intramembrane proteases and

cell signaling will be described.

Keywords: intramembrane proteolysis, signal peptide peptidase, signal peptide peptidase-like, presenilin, cellular

signaling, GxGD aspartyl proteases

INTRODUCTION

Proteolysis is a non-reversible post-translational protein modification and can regulate the
function of a protein by contributing to either its maturation and activation, or its degradation.
Consequently, the enzymes responsible for proteolysis, the proteases, play a crucial role in
regulating key cellular processes, including molecular signaling both within the cell and
from cell-to-cell.
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Intramembrane proteolysis describes proteolytic processing
within the transmembrane domain of membrane-spanning
proteins (1). Despite that the process of proteolysis was
discovered already in the nineteenth century (2, 3), it had been
considered possible only within a fully aquatic environment for
the great majority of the past. Only within the past 20 years
intramembrane proteolysis became a well-accepted concept and
since then the number of proteins undergoing intramembrane
proteolysis has increased exponentially (1, 4–7).

Intramembrane cleaving proteases (I-CLiPs) are all multipass
transmembrane proteins that cleave their substrates within or
very close to the membrane bilayer by most-likely creating a
cavity, where water can approach the peptide bond allowing
hydrolysis (8–11). I-CLiPs are categorized based on their catalytic
centers. The four classes of I-CLiPs are: aspartyl proteases,
metalloproteases, serine proteases and glutamyl proteases (12,
13).

This review focuses on mammalian intramembrane aspartyl
proteases that, according to a conserved active site motive,
are termed GxGD aspartyl proteases (14). This protease class
comprises two families, the presenilins (PSs) and the signal
peptide peptidases (SPPs). The first family has two members,
PS1 and PS2, while the second family has five members:
signal peptide peptidase (SPP) and its homologous enzymes,
the SPP-like (SPPL) proteases SPPL2a, SPPL2b, SPPL2c, and
SPPL3 (15–17). Since the cleavage mechanism and substrate
selection of these proteases have been covered in great detail
lately (6, 18, 19), this article will concentrate on recent findings
that provide insight in how GxGD proteases affect intra- and
intercellular signaling. To this end, we specifically summarize
cleavage and function of specific validated substrates by aspartyl
intramembrane proteases.

SHEDDING AND INTRAMEMBRANE
PROTEOLYSIS

A large number of human single-pass transmembrane proteins
undergo proteolytic removal of their extracellular domain
(ECD), a process termed ectodomain shedding, before they
become substrates of intramembrane proteases. This ectodomain
shedding is performed by membrane bound and soluble
proteases of the extracellular matrix, termed canonical sheddases.
If the cleaved ECD is secreted from the cell as a soluble
fragment, these proteases are frequently also called secretases.
Some of the most well-studied canonical sheddases that cleave
their substrates within the luminal juxtamembrane domain
include the β-site APP cleaving enzyme 1 and 2 (BACE 1
and 2) and a disintegrin and metalloproteinase (ADAM) family
(20). Following the release of the soluble ectodomain, shedded
substrates comprise a C- or N-terminal membrane-spanning
fragment (CTF or NTF) that is significantly shortened and can
only then undergo intramembrane proteolysis (Figure 1). This
two-step proteolytic cascade is termed regulated intramembrane
proteolysis (RIP) and was first described in 2000 (21).

PS1 and SPPL2b have a strong preference of cleaving
substrates with short ectodomains that do not exceed 60

amino acids in length. In particular, some of the known PS1
substrates, and also tail anchored proteins, which are substrate
to SPP and SPPL2c mediated intramembrane cleavage (22–25),
have a naturally short extracellular domain, and, thus, can be
cleaved directly by the I-CLiP (19). Additionally, some I-CLiPs
are known to directly accept substrates with long and bulky
ECDs. Most of these proteases belong to the family of serine
intramembrane proteases called rhomboids (26), but also SPPL3
is performing direct cleavage of substrates with long ectodomains
(Figure 1) (18, 27–29). These I-CLiPs are referred to as “non-
canonical” sheddases (20).

In addition, multipass TM proteins can also undergo RIP.
For a single pass transmembrane protein, the cleavage within
or at the border of the transmembrane domain leads to the
release of an extracellular fragment at the luminal or extracellular
side, and an intracellular domain (ICD). While, for multipass
transmembrane proteins, the first cut leads to the breakage of a
loop and the second cut takes place within the transmembrane
domain (27).

GxGD ASPARTYL-PROTEASES

PS1 and 2 were the first GxGD aspartyl-proteases discovered.
Their discovery followed the research into the pathogenesis of
Alzheimer’s disease, the most prevalent form of dementia (30–
34).

The second family of GxGD aspartyl-proteases, the
SPP/SPPLs, were discovered by database sequence homology
analysis based on the PS sequence, as well as by biochemical
methods (15–17). All seven humanGxGD aspartyl proteases have
a multi-transmembrane domain protein structure consisting
of nine transmembrane domains (18). The two aspartic acids
that comprise their active site, are located within conserved
transmembrane domain motifs. The first aspartic acid is located
in a YD motif in transmembrane domain 6. The second aspartic
acid is part of the GxGD motif, found in transmembrane
domain 7, which also gives the name to this class of proteases.
These aspartic acids are essential for the catalytic activity
of the proteases, as mutating either of the aspartic residues
almost completely abolishes catalytic activity of the protease
(17, 28, 35–39).

Another characteristic that is shared by all GxGD aspartyl
proteases, is a conserved PALmotif in transmembrane domain 9.
Mutations in the PAL motif have been shown to negatively affect
the proteolytic ability of at least SPP and PS, however its purpose
has so far only been investigated in the γ-secretase complex
(18, 40–42). The involvement of the PALmotif in the architecture
of the active site and substrate recognition had been speculated
for many years (43). Recent analysis of the 3D structure of
γ-secretase cross-linked with its substrate APP confirmed that
the PAL motif is involved in substrate recognition and even
showed that the PAL motif is directly binding a β-strand of the
substrate (44). It is, thus, tempting to speculate that the PALmotif
functions as a gate keeper for the substrate to enter the active site
and although it has not been investigated so far, it could serve a
similar purpose in SPPLs.
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FIGURE 1 | Intramembrane proteolysis. A transmembrane protein can be cleaved within its transmembrane domain either in a two-step procedure termed regulated

intramembrane proteolysis (RIP) or in one step by non-canonical shedding. During RIP, the full length substrate (yellow) is cleaved first (1.) by a sheddase releasing the

soluble ectodomain and leaving the N-terminal or C-terminal fragment (NTF or CTF) on the membrane. The NTF or CTF is then (2.) cleaved by the intramembrane

cleaving protease (pink), releasing the extracellular peptide and the intracellular domain (ICD). At non-canonical shedding, the full length substrate (green) is directly

cleaved within or at the border of the transmembrane domain releasing the soluble ectodomain and the ICD.

A key difference between the PS and the SPP/SPPL
family, is their reversed membrane topology. The N-termini
of PSs are located in the cytosol, while SPP/SPPLs have
their N-termini in the lumen or extracellular space (45,
46). As this leads to inverted topology of their active sites,
it might account for their specificity of cleaving substrates
with opposite membrane orientation. PSs only cleave type-I
transmembrane proteins, with their N-termini in the lumen
or extracellular space, while SPP/SPPLs only cleave type-II
transmembrane proteins, with their N-termini in the cytosol
(6, 18).

Although some of the SPP/SPPLs are thought to undergo
multimerization and have been observed as homodimers or
tetramers, they most likely do not require additional cofactors
for their catalytic activity (46–48). On the other hand, PSs
are only active as part of the γ-secretase complex and favor
endoproteolysis in their cytosolic loop between transmembrane
domain 6 and 7, forming PS CTF and NTF to be active (19,
49).

The γ-secretase complex is formed by PS1 or 2 together
with three additional proteins, presenilin enhancer 2 (PEN-
2), anterior pharynx defective-1 (APH-1), and nicastrin (NCT)
(Figure 2). PEN-2 is a two-transmembrane domain protein
that is necessary both for endoproteolysis of PSs and for
stabilization of PS CTF and NTF (50–52). APH-1 comprises
seven transmembrane domains and a GxxxG motif is believed to
act as a connecting subunit holding together NCT with PS NTF
and CTF (53). The last member of the complex, NCT, is a single
pass transmembrane protein with a large and heavily glycosylated
ectodomain. Due to the size, position and charge of the NCT’s
ectodomain, it is proposed to act as the “gate keeper” in the

complex, recognizing the substrates and allowing only proteins
with a short ectodomain to enter the active site (54, 55).

Another interesting characteristic of the γ-secretase complex
is its unusually slow proteolysis speed. This characteristic was
initially observed on the processing of the β-amyloid precursor
protein (APP) (56) and was later confirmed on the processing
of the epithelial cell adhesion molecule (EpCAM)-CTF (57). It
is not clear if the low speed is due to substrate recognition,
binding or the proteolysis itself, however similar results had been
obtained previously for rhomboid proteases (58). It has not yet
been investigated whether this applies to the other members of
the GxGD class of proteases but it does not appear as if these
proteases have been purposed for a fast turnover rate.

PS 1 and 2 homologs are roughly 65% identical and both can
be part of γ-secretase complexes, cleaving the same substrates in
vitro (59). Familial mutations causing Alzheimer’s disease have
mainly been detected in PSEN1, the coding gene for PS1 and
to a lesser degree in PSEN2 (30–34). The γ-secretase complex
containing PS1 has been reported to have a higher affinity for
APP, and also to localize to different subcellular compartments
than PS2 containing complexes. PS1 complexes can be detected
on the plasma membrane (Figure 2), while PS2 complexes are
targeted to late endosomes and lysosomes (60, 61).

The key product of γ-secretase cleavage that led to its
discovery is the amyloid β-peptide (Aβ). Aggregation of Aβ

molecules in the central nervous system is a hallmark of
Alzheimer’s disease (14, 62–64). Production of Aβ is a well-
studied process that results from the amyloidogenic processing
of the type-I membrane protein APP, however it is not the
only possible product of the γ-secretase processing (27). During
RIP, APP is initially shedded by either ADAM10 or BACE1
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FIGURE 2 | Localization and characteristics of GxGD aspartyl proteases. PS1 (brown), localizes to the plasma membrane, as part of the γ-secretase complex with

APH-1, PEN2, and NCT. SPP (green) localizes to the ER membrane, as SPPL2c (purple), however despite the in vitro partial overlap of substrates, they do not share

similar substrate spectra in vivo and SPPL2c has a very limited expression pattern in vivo. SPPL2a (red) localizes to the lysosomal/late endosomal membrane and

although in vitro it shares some substrates with SPPL2b (orange), the latter localizes to the plasma membrane. Finally, SPPL3 (blue) is the smallest member and

localizes to the Golgi membrane.

(20). Each sheddase prefers a distinct cleavage site and cleavage
by ADAM10 (α-secretase) (65) releases a longer soluble APP
(sAPPα) and a shortened CTFα. This is considered the non-
amyloidogenic processing as cleavage of CTFα by γ-secretase
releases APP ICD (AICD) and the p3 peptide, which is smaller,
less hydrophobic and less prone to aggregation than Aβ (66). On
the contrary, shedding of APP by BACE1 (β-secretase) releases
a shorter sAPPβ and a longer CTFβ. Processing of CTFβ by
γ-secretase results in release of the same AICD and the Aβ

peptide, which is longer than p3 and prone to aggregation
making this the amyloidogenic processing (10, 67–69). Although
AICD has been suggested to possess transcriptional functions as
seen in other ICDs (70, 71), its fast degradation stands against
those hypotheses.

The SPP/SPPL family members are characterized by more
heterogeneity and less substrate overlapping than the PSs. SPP,
the first discovered protease of this family, is retained to the

endoplasmic reticulum (ER) by a C-terminal KKXX-sequence
(17). From the three SPPL2 proteins, SPPL2a and SPPL2b
share more similarities and some substrate overlap, especially
in vitro. SPPL2a is mostly transported to the lysosomes/late
endosomes via its C-terminal YXXø sorting signal, while SPPL2b
most likely localizes to the plasma membrane (Figure 2) (38,
72). Additionally, their expression patterns within the organism
differ with SPPL2a being expressed more ubiquitously and
SPPL2b mainly in the central nervous system, bone marrow and
lymphoid system (73).

SPPL2c has a different localization in the cell, as well as in the
whole organism and also differs in its substrate spectrum from
the other two SPPL2 proteases. For a long time, it was considered
to be a pseudogene and a pseudoprotease, as no SPPL2c protein
levels were detected in vivo and no substrates had been identified.
This concept changed last year when two papers demonstrated
SPPL2c protein expression and identified physiological substrates
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of this protease. Expression of the protein in vivo was found
only in a specific cell type within the testis, while its cellular
localization is in the ER/ER-Golgi intermediate compartment
(ERGIC) (Figure 2) (24, 25).

Last but not least, SPPL3 is the smallest member of this family,
it is localized in the Golgi and it is not glycosylated (Figure 2).
In contrast to all other GxGD aspartyl proteases, SPPL3 acts
exclusively as non-canonical sheddase and directly cleaves full-
length substrates with very long ectodomains, resulting in
the release of soluble ectodomains to the Golgi lumen and,
consequently, also to the extracellular space (28, 29, 74).

INTRAMEMBRANE PROTEOLYSIS AND
SIGNALING

Intramembrane proteolysis is capable of directly controlling the
abundance of certain membrane proteins, and thus, also their
local activity. In this scenario, reduced proteolytic cleavage would
result in increased presence of the substrate on the membrane
and vice versa. The accumulating substrate of intramembrane
proteolysis could be either the full length protein, in the case
of non-canonical shedding, or the membrane bound remaining
product of shedding, in the case of RIP. If this substrate’s role
positively impacts on signaling while spanning the membrane,
then reduction of the protease activity, would result in increased
signaling. Such is the case, for example, with signaling induced by
the accumulation of Lectin-like oxidized LDL receptor 1 (LOX1)
NTF when the activity of SPPL2a or SPPL2b is reduced (75).
On the contrary, if this substrate has an inhibitory function
by its presence on the membrane, as for example does FKBP8,
a substrate of SPP, increased proteolysis would decrease its
inhibitory function and boost signaling (76).

However, not all substrates fulfill their functions while
attached to the membrane. In certain cases, cleavage of the
substrate plays an integral part in the signaling cascade and
is needed for a signal to be passed forward via the cleavage
products. In these cases the various products of cleavage can
function as distinct signaling molecules. In such scenarios
reducing proteolytic cleavage would actually inhibit the signal
transmission. For instance, when a transmembrane substrate
undergoes cleavage in the secretory pathway or at the cell surface,
a part of it can be released to the compartment lumen or
extracellular space. In particular protein domains released to the
extracellular space may serve a purpose by binding to a receptor
on a neighboring or even far distant cell in the body. This scenario
is most common for canonical sheddases, such as the shedding
of tumor necrosis factor-α (TNFα) by ADAM17 (77, 78), but is
also a function of non-canonical sheddases, as seen for shedding
of epidermal growth factor (EGF) by rhomboid-related protein
2 (RHBDL2). Although SPPL3 is also a non-canonical sheddase,
no purpose has so far been identified for the secreted extracellular
domains of its substrates (28, 29).

At the same time, intramembrane cleavage also triggers the
release of the substrate’s intracellular domain. Although these
intracellular peptides are often unstable and undergo rapid
degradation, in certain cases they are known to translocate to the

nucleus where they can either directly or in collaboration with
other transcription factors activate or deactivate the transcription
of target genes. A well-known example in this category is the
release of the Notch ICD by γ-secretase, which translocates to the
nucleus and induces the expression of specific genes (79).

Intramembrane proteases can have also an indirect effect
on signaling. Although there are numerous such possibilities,
some key indirect effects of I-CLiPs on signaling include
changes in localization, trafficking and glycosylation of signaling
molecules, as well as influences on calcium signaling. I-CLiPs are
capable of affecting the abundance of key trafficking molecules
by, for example, cleaving key trafficking factors, such as the
soluble N-ethylmaleimide-sensitive factor (NSF) attachment
protein receptor proteins (SNAREs), which are substrates of
both SPP and SPPL2c (25, 80). In that case, increased I-
CLiP activity would result in decreased trafficking of various
cargo molecules and, thus, certain signaling molecules cannot
reach their target localization either within or outside the cell.
Glycosylation of secretory proteins can be affected by, for
example, proteolytically inactivating glycosylating enzymes in the
cell, as is the case with SPPL3 dependent cleavage of glycosidases
and glycosyltransferases (28, 29). Thus, changes of the protease
activity can directly impact on the glycosylation pattern of a cell.

Beside the knowledge of the general impact of intramembrane
cleavage on signaling, some specific cellular processes that are
influenced by GxGD aspartyl proteases have been in focus of
research in the past years.

INTRAMEMBRANE PROTEOLYSIS IN
SIGNALING OF THE VASCULAR SYSTEM

Very recently involvement of SPPL2a/b in the signaling of the
vascular system was discovered (75). In this study, the authors
demonstrate that LOX1 is initially cleaved by either ADAM10
or lysosomal proteases, and the remaining membrane associated
LOX1 NTFs are cleaved by SPPL2a/b. Cleavage of LOX1 NTFs by
SPPL2a/b takes place either on the cell surface or in the lysosomes
and, consequently, leads to the reduction of LOX1NTF levels and
the release of LOX1 ICD into the cytosol. Although the LOX1
ICD function remains enigmatic, accumulation of LOX1 NTF
induces proatherogenic and profibrotic signaling and therefore
their removal is atheroprotective. For more details regarding the
participation of SPPL2a/b in the signaling process of LOX1 and
their atheroprotective function, please refer to a detailed review
by Mentrup et al. included in this issue.

The invariant chain (CD74) of the major histocompatibility
class II complex (MHCII), another substrate of SPPL2a,
appears to be connected to the formation of atherosclerosis,
CD74 has been validated to undergo RIP in vivo being
initially shedded by serine or cysteine proteases, releasing
the CD74 soluble ectodomain (CD74 ECD). SPPL2a then
cleaves the remaining NTF intramembranously releasing the
CD74 ICD (6, 81). The main purpose of CD74 is related
to the function of the immune system, however levels of
CD74 were found to be increased in human atherosclerotic
plaques contributing to the pathology (82). Another study using
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low-density lipoprotein receptor-deficient mice (Ldlr−/−) as a
model of familial hypocholesterolaemia, showed that additional
deficiency of CD74 (Ldlr−/− Cd74−/−) had a protective effect
on atherosclerosis (83). Although it was shown that this effect
most likely was connected to the impairment of the adaptive
immune system, it has so far not been investigated which part
of the CD74 protein is responsible for this effect. It remains
to be seen whether lack of the full length CD74 is necessary,
or targeting the release of one of the products of RIP (CD74
ECD, NTF, or ICD) would be sufficient for the protective role.
The soluble CD74 ECD has already been connected to signaling
functions in context of the macrophage migration inhibitory
factor (MIF) related to cardiovascular diseases (84). The function
of the CD74 intramembrane cleavage products, however, so far,
remains enigmatic.

The formation of the vascular system is crucial both during
development and regeneration, while it can be detrimental
under pathological conditions, such as cancer (85, 86). New
blood vessels are created via endothelial cell sprouting and
proliferation, a process that needs to be tightly regulated
via cell-to-cell communication (87, 88). Endothelial cells are
activated by angiogenic signals, primarily through vascular
endothelial growth factor A (VEGF-A), becoming the tip cells of
angiogenesis. This initiates the expression of a series of proteins
including VEGF receptors 2 (VEGFR2) and delta-like-4 (Dll4)
(Figure 3). Some of these proteins act as signaling molecules
on neighboring endothelial cells suppressing their activation and
turning them to stalk cells, defining the new vessel. The main
mechanism by which this is achieved is the activation of the
NOTCH receptors on stalk cells by their ligands, such as Dll,
which in turn can have an effect on the expression of VEGFR on
neighboring tip cells (89).

PSs, as part of the γ-secretase complex, are connected to the
vascular system and angiogenesis through a number of their
substrates that include the receptors Notch, VEGFR-1 and others
(5). In addition, non-proteolytic functions of presenilin related
to its phosphorylation or the translocation of these receptors have
also been discussed in the context of vasculature and angiogenesis
but will not be covered further here (90–92).

The Notch signaling pathway is highly conserved in evolution
and it has been studied in great depths. It has a clear connection
to both the physiological formation of the vascular system,
promoting the formation of arteries (93), but also to pathological
angiogenesis, as seen in breast cancer and other types of cancer
(94–96). The importance of the NOTCH pathway in the health of
the vascular system can be confirmed as defects in this pathway
can cause Cerebral Autosomal Dominant Arteriopathy with
Subcortical Infarcts and Leukoencephalopathy (CADASIL) (91).

After activation of one of the four Notch receptors by
a neighboring cell presenting one of Notch’s transmembrane
ligands, Dll 1, 3 or 4, Notch is cleaved first by ADAM10 and then
by γ-secretase, releasing the Notch ICD (NICD) into the cytosol.
NICD can translocate to the nucleus and bind the transcription
factor CSL acting then as a transcriptional activation complex
leading to the expression of downstream HES and HEY family
genes (Figure 3) (79). It has been shown that Dll4 is the
principle Notch ligand expressed by vascular epithelial cells and

its haploinsufficiency is enough to cause a lethal phenotype in
mice (97–99). Interestingly, inhibition of Notch CTF cleavage
by a γ-secretase inhibitor is enough to reproduce an effect in
Notch signaling similar to Dll4 haploinsufficiency (100). These
results clearly demonstrate that γ-secretase cleavage is performed
following the activation and shedding of the Notch receptor and
is indispensable for the Notch ICD dependent signaling. In line
with this, deletion of PS1 in mice (PS1−/− mice) is sufficient
to reproduce the embryonically lethal phenotype observed in
Notch−/− mice (101–103). While PS2−/− mice are viable with a
minor motor phenotype (104), PS1−/− suffer embryonic death
with severe axial skeleton (102) and central nervous systems
defects (101), as observed in Notch−/− mice (105, 106).

Interestingly, Notch ligands, including Dll and Jagged (Jag),
have also been suggested to undergo RIP, with ADAM17
performing the first cut and γ-secretase releasing their ICDs
(107). Although it is very stimulating that Notch and its ligands
can undergo cleavage by the same machinery, the purpose of
this mechanistic overlap or the fate of the released ligand ICDs
remains unclear.

VEGFR1 is highly similar to VEGFR2 and has a very high
affinity for VEGF, however its kinase activity is significantly
reduced and plays a more variable role as it can regulate the
VEGFR2 induced angiogenesis (108, 109). Pigment epithelium-
derived factor (PEDF) is the most potent endogenous negative
regulator of blood vessel growth and its ability to block
the formation of new vessels seems dependent to VEGFR1
expression (90). Interestingly, it has been reported that VEGFR1
is not only cleaved by γ-secretase as part of RIP, but it also
appears that this cleavage can be boosted by PEDF (90). Increased
activity of γ-secretase in response to PEDF treatment could help
VEGFR1 fulfill its purpose as negative regulator of VEGFR2-
induced angiogenesis by participating in the trafficking and
intracellular translocation of VEGFR1 CTF and inhibiting the
phosphorylation of VEGFR1 following VEGF binding (92).
Although γ-secretase has an effect on VEGFR1 function and
leads to the production of a VEGFR1 ICD from the VEGFR1
CTF that is then degraded by the proteasome, the purpose and
extent of this regulation, as well as whether γ-secretase has indeed
a role in trafficking and phosphorylation is so far not clear under
physiological conditions (92).

As PSs are involved in vasculature signaling and pathological
angiogenesis is essential in the formation and progression of
tumors, it is of great interest to understand how PSs and
SPP/SPPLs may affect cancer progression.

INTRAMEMBRANE PROTEOLYSIS IN
CANCER-ASSOCIATED SIGNALING

Pathological angiogenesis is needed for tumors to grow, as
they require a high supply of nutrients and oxygen. The
Notch receptor plays a key role for the formation of new
vessels and it has been shown since many years that it is
also an important contributor during malignant angiogenesis
in both hematopoietic and solid tumors (110). Ligand-
induced Notch signaling is often increased and dysregulated
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FIGURE 3 | Role of γ-secretase in Notch signaling. Vascular endothelial growth factor A (VEGF-A) (orange) activates endothelial cells transforming them to tip cells

during angiogenesis. Binding of VEGF-A to VEGF receptor 2 (VEGFR2) (green) induces expression of delta-like-4 (Dll4) (purple). Dll4 acts as a signaling molecule,

binding to the Notch receptor (red) on neighboring endothelial cells. This activates the Notch receptor and induces its cleavage by ADAM10, releasing the ectodomain

that gets internalized attached on Dll4. The remaining Notch CTF is cleaved by γ-secretase, releasing the Notch ICD (NICD) into the cytosol of the endothelial cell.

NICD translocates to the nucleus and binds transcription factor CSL (blue), switching it from a repressor to an activator and thus, inducing the expression of HES and

HEY family genes. This suppresses activation of the Notch expressing endothelial cell, turning it to a stalk cell and defining the new vessel.

during pathological neoangiogenesis and targeting this signaling
pathway can be achieved by targeting either the receptor itself
(pan-Notch inhibitors and specific Notch receptor antibodies)
or targeting ligands that are specific to the angiogenetic
functions. As the most common ligands of Notch during
angiogenesis that are also found to be upregulated in cancer,
Dll4 and Jag1 have both been targeted for treatment of breast
cancer tumors, with Dll4 being a more established focus
point (111, 112).

It has been shown that ligand-induced signaling via the
Notch receptor requires cleavage by γ-secretase for the
production of NICD that then translocates to the nucleus
and affects transcription (Figure 3) (79). Consequently, γ-
secretase inhibitors are being evaluated for their ability to block
this signaling pathway showing positive results in preventing
tumor promotion and inducing tumor cell death both in
vitro and in vivo (113–117). However, Notch inhibition via γ-
secretase mainly works with additional treatments as it can
only be tolerated for short times. This is partly due to the
numerous substrates cleaved by γ-secretase, leading to many
side-effects after prolonged inhibition (118, 119). Another
important reason for balancing the intensity and extent of γ-
secretase inhibition are the tumor-suppressing roles of Notch,
due to its participation in definitive haematopoiesis (120) and

T-cell development (121, 122). It has already been shown in
mouse models that γ-secretase inactivation by NCT deletion can
cause chronic myelomonocytic leukemia in a Notch-dependent
manner (123).

Another family of molecules involved in signaling that are
tightly connected to cell proliferation, differentiation, apoptosis
and, thus, also cancer are the receptor tyrosine kinases (RTKs)
(124). Half or more of the known RTKs to date are also substrates
of γ-secretase following initial shedding by ADAM10 or 17
(Figure 4A). γ-secretase releases RTK ICDs, which include the
tyrosine kinase domain and can translocate to the nucleus or
are subject to proteosomal degradation. In the nucleus, the RTK
ICDs can interact with transcriptional regulators to affect cell
proliferation, survival and differentiation, while translocation to
the proteasome results in rapid degradation (Figure 4A). ErbB-4
was the first RTK discovered to be cleaved by γ-secretase via RIP
generating the ErbB4 ICD (E4ICD) (125). Nuclear translocation
of the E4ICD regulates the transcription of genes related to the
pro-apoptotic function of ErbB4, while inhibition of γ-secretase
blocks the effect on gene expression (125–127). Many more
RTKs have been identified as γ-secretase substrates, including
EphA4, EphB2, IGF-1R (128, 129). As altered RTK signaling has
been linked to carcinogenesis, with for example increased E4ICD
promoting growth of breast cancer cells in vitro and in vivo in
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FIGURE 4 | Intramembrane proteolysis in cancer related signaling. (A) Receptor tyrosine kinase, ErbB4 (green) is shedded by ADAM10 or 17 and is then cleaved by

γ-secretase releasing ErbB4 ICD (E4ICD). The ICD includes the tyrosine kinase domain and can either get degraded by the proteasome or translocate to the nucleus.

Increased nuclear translocation of E4ICD in breast cancer cells boosts transcription of genes related to survival and growth. (B) FKBP8 (blue) is a tail anchored type-II

transmembrane protein in the ER and a physiological inhibitor of the mTORC pathway. SPP can directly cleave FKBP8 and increase of SPP expression by tumor cells

can lead to strong reduction of FKBP8 levels and a strong activation of the mTORC pathway. Through its transcriptional functions, mTORC can increase transcription

of genes boosting cell growth, migration and invasion of tumor cells. (C) Heme oxygenase-1 (HO-1) (pink) is a tail anchored enzyme located in the ER. HO-1 can be

cleaved by SPP and the ICD released in the cytosol can translocate to the nucleus. Increased expression of SPP in tumor cells, results in increased nuclear HO-1 ICD,

which boost tumor growth and survival.

mice, dysregulation of the RIP process could promote tumor
progression (129, 130).

The participation of γ-secretase activity in cancer progression
is not limited to the already mentioned substrates. Numerous
more proteins that are involved in the pathology of cancer
progression have been shown to undergo cleavage by γ-
secretase, as part of a more complex mechanism. Some notable
substrates include CD44 (131), E-cadherin (132), and epithelial
cell adhesion molecule (EpCAM) (133). However, despite the
anti-tumor effect of γ-secretase inhibitors, their adverse effects
due to cleavage of multiple substrates make their use in patient
treatment very complicated (116).

In addition to PS, also SPP has been implicated in
development and progression of cancer. For instance, its
expression levels are found to negatively correlate with overall
survival and recurrence free survival in lung and breast cancer
(76). Two different substrates of SPP have been identified that
could be responsible for this effect: heme oxygenase-1 (HO-1)
and FKBP8. HO-1 is an enzyme attached to the ERmembrane via
a C-terminal tail anchor and is responsible for heme-degradation.
It is stress-inducible, cytoprotective and highly expressed in
numerous cancers, promoting the tumour’s survival, growth
and angiogenesis (134, 135). Part of HO-1’s cancer boosting
activity is unrelated to its enzymatic activity, but attributed to
the nuclear translocation of HO-1 ICD (Figure 4C). As HO-1

is cleaved by SPP within its membrane-spanning domain, HO-1
ICD production and nuclear translocation is reduced with SPP
knockdown and increased with SPP overexpression. Increased
expression of SPP by the tumor cells, would thus increase the
cleavage of HO-1, protecting the tumor from cellular stress and
boosting its growth (Figure 4C) (22, 23).

FKBP8 is a non-canonical member of the FK-506-binding
protein (FKBP) family, a tail anchored type-II transmembrane
protein located in the ER and an endogenous inhibitor of the
mTORC pathway (Figure 4B) (136). FKBP8 was identified as an
SPP substrate via a proteomic approach (76). Cleavage of FKBP8
by SPP leads to an overactivation of the mTORC pathway, which
in turn causes an increase in cell growth, migration and invasion
of tumor cells. This effect could be rescued by suppression of the
mTORC pathway demonstrating the involvement of SPP in the
mTORC signaling pathway (Figure 4B) (76).

As levels of SPP have been proven to be upregulated in
different forms of cancer and often correlate with poor prognosis
for the patient, while inhibition of SPP activity in vitro seems to
suppress the tumor growth (76, 137), it is of interest to consider
inhibition of SPP as a treatment method. Despite ongoing
research in the field of SPP/SPPL inhibition, the identification
or synthesis of specific inhibitors has been unfruitful so far. 1,3-
di-(N carboxybenzoyl-leucyl-L-leucyl) amino acetone [(Z-LL)2-
ketone] is one of the best inhibitors of SPP, which was also

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 December 2020 | Volume 7 | Article 591787

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Papadopoulou and Fluhrer GxGD Proteases in Signaling

used to isolate and identify the protease (17, 138). Although
(Z-LL)2-ketone spares the activity of γ-secretase, SPPL2c and
SPPL3, it inhibits SPPL2a and SPPL2b dependent cleavage (37,
39, 139, 140) making it an unsuitable inhibitor for treatment.
A lot of research has been done in an effort to develop specific
SPPL2a inhibitors (141, 142) and some of these inhibitors are
also targeting SPP while having decreased affinity to other
proteases, such as γ-secretase (143). The research on these
inhibitors and their structures could be used as a solid basis
to develop specific SPP inhibitors in the future. However, even
when a specific SPP inhibitor is discovered, its use would
have to be carefully considered and restricted due to the
numerous important physiological functions of SPP. These
functions include cleavage and removal of signal peptides (144),
participation in endoplasmic reticulum-associated degradation
(ERAD) (145) and others.

INTRAMEMBRANE PROTEOLYSIS IN
SIGNALING OF THE IMMUNE SYSTEM

Multiple members of the SPP/SPPL family have been shown
to be involved in proper function of the immune system. In
most cases, the exact mechanism on how SPP/SPPL proteases
affect survival, maturation and function of certain immune
cells remains elusive, as is the case with SPPL3’s function in
natural killer (NK) cells. SPPL3 deficiency results in impairment
of NK cell maturation in a cell autonomous manner that is
dependent on the catalytic function of SPPL3 (146). In NK-
cell specific conditional knockout mice, not only the number of
peripheral NK cells was reduced, but also the remaining cells
had reduced cytotoxicity and expression of numerous NK cell
surface receptors (19, 146). Although, it has been shown that
the proteolytic activity of SPPL3 is necessary for the correct
maturation of NK cells suggesting the existence of one or more
specific substrates involved in this process, these substrates have
not been identified so far (146). As NK cells play an important
role in natural cancer immunosurveillance, SPPL3 malfunction
could be connected to decreased NK cell numbers and thus
decreased immunosurveillance (147).

In addition, SPP has also been demonstrated to affect the
function of NK cells, but in this case an indirect mechanism
was identified. SPP affects the presentation of histocompatibility
antigens on the cell surface of healthy cells. Lack of such
antigens makes cells a target for NK cells, as they are
considered unhealthy. SPP generates these peptides that then
bind to HLA-E receptors and are presented on the cell surface,
in different ways. Either by cleaving the signal peptide of
polymorphic major histocompatibility (MHC) class-I molecules
in the ER in collaboration with signal peptidase (148), or
from non-MHC-signal peptides (149), or independently of
signal peptidase, directly from multipass TM proteins (150).
SPP, thus, contributes to multiple mechanisms for providing
signals for the circulating NK cells. As NK cells rely on
these signals to recognize the organism’s cell as healthy,
lack of such peptides on the cell surface would cause the
circulating NK cells to attack and kill these cells (151, 152).

Thus, lack of SPP activity could cause the immune system to
attack cells that are otherwise healthy due to lack of “self-
recognition” peptides.

SPPL2a has been found to play a crucial role within the
immune system. Compromise of the SPPL2a proteolytic activity
causes a defect in the maturation of splenic B cells and
conventional dendritic cells (cDCs) (139, 153–155). The substrate
of SPPL2a responsible for this phenotype is CD74, the first
verified SPPL2a substrate in vivo (139, 153, 154). CD74 is a type-
II TM protein expressed in antigen presenting cells. It acts as
a chaperone for the MHC class II complexes, assuring that no
premature peptides bind to the complex. In order for antigen-
derived peptides to bind to MHC class II, CD74 is degraded. To
this end, it undergoes RIP being cleaved first by serine or cysteine
proteases, such as cathepsin S, producing the membrane bound
CD74 NTF. This NTF is then cleaved in the transmembrane
domain by SPPL2a (Figure 5A) (6, 81). Although the CD74
ICD generated from this proteolytic cleavage can translocate to
the nucleus and potentially affect the NF-κB signaling pathway
(Figure 5A) (156), lack of CD74 ICD is not responsible for
the observed phenotype. Instead, the phenotype is caused by
the accumulation of CD74 NTF upon SPPL2a deficiency, which
in turn causes structural changes in endocytic compartments
and disturbances of trafficking (Figure 5B) (139, 154). As a
result of this, presence of the key B cell maturation receptors
BAFF and B cell antigen receptor (BCR) on the cell surface
is reduced (Figure 5B). Reduced signaling from these receptors
would account for the reduced differentiation and maturation
(139, 154). Removing expression of both SPPL2a and CD74,
rescues the structural changes in the subcellular compartments
and the maturation of B cells in mice. This phenotype is also
partly conserved in humans as mutations that reduce SPPL2a
expression cause an accumulation of CD74 NTF in B cells.
Although no maturation defect was observed in humans, the
partial loss of cDCs seen in mice was observed in human samples
and is thus conserved in both species (155, 157).

Additional known SPPL2a and/or SPPL2b substrates are also
involved in proper function of the immune system, such as
TNFα and Fas ligand (FasL), however cleavage of these substrates
has only been validated in cell culture model systems so far
(37–39). Fas ligand (FasL) is a type-II transmembrane protein
with very restricted expression that belongs to the superfamily
of TNF cytokines. Its binding to the Fas receptor induces
apoptotic cell death, and mutations on either the ligand or the
receptor can cause autoimmune lymphoproliferative syndrome
(ALPS) (158). FasL can undergo RIP, being cleaved initially by
ADAM10 and then SPPL2a, which releases the FasL ICD. This
ICD can translocate to the nucleus where it performs reverse
signaling, reducing the activation-induced proliferation in B and
T cells (39, 159). Even though the physiological relevance of the
release of the FasL ICD by SPPL2a remains unclear, the reverse
signaling performed by the ICD could be important in preventing
hyperactivation of the immune system and/or terminating
an immune response following antigen stimulation (159). In
this case decreased SPPL2a proteolytic activity would prolong
immune responses possibly also leading to autoimmunity or
allergies, while increased cleavage by SPPL2a could stop the
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FIGURE 5 | Role of SPPL2a in the maturation of B cells. (A) CD74 (purple) is a type-II TM protein expressed in B cells and other antigen presenting cells. It acts as a

chaperone for the MHC class II complexes, and is degraded in lysosomes (pink) for antigen-derived peptides to bind to MHC class II. CD74 is cleaved first by serine or

cysteine proteases, which release the ectodomain and generate membrane bound CD74 NTF. CD74 NTF is then processed by SPPL2a releasing the CD74 ICD

which can translocate to the nucleus and affect NF-κB signaling. (B) Lack of SPPL2a (SPPL2a−/− ) causes an accumulation of CD74 NTF, which disrupts proper

trafficking within the cell and blocks B cell receptors from reaching the cell surface resulting in inhibition of B cell differentiation and maturation.

immune response before the threat is under control, showing the
importance of fine-tuning such processes.

TNFα is a type II transmembrane protein that undergoes
RIP being cleaved first by ADAM17, releasing soluble TNFα,
and then by SPPL2a/b releasing TNFα ICD (37, 38). Soluble
TNFα is a proinflammatory cytokine, the release of which
can be induced in macrophage cell systems by stimulating
the cells with lipopolysaccharide (LPS). It has been reported
that TNFα ICD, released by SPPL2a/b, can stimulate the
expression of Interleukin 12 (IL-12), another proinflammatory
cytokine. IL-12, is released by LPS-stimulated dendritic cells,
but inhibition or downregulation of SPPL2a and/or SPPL2b,
led to an inhibition of IL-12 production by stimulated mature
dendritic cells (mDCs). Additional treatment with TNFα ICD
rescued IL-12 expression upon stimulation (38). However,
it remains unclear whether such a mechanism can be seen
in vivo.

IMPACT OF INTRAMEMBRANE
PROTEOLYSIS ON SUBCELLULAR
TRAFFICKING

Trafficking clearly holds a key role in signaling, as the signaling
molecules and receptors need to be present in the correct time

and place, both for a signal to be sent but also to be received and
processed. SPP/SPPLs do not only affect trafficking indirectly,
like in case of CD74, but also directly by cleaving proteins that
are central mediators of trafficking. This has been shown for
SPP and for SPPL2c, both of which localize to the ER but with
SPPL2c being expressed only in a very specific cell type in testis.
SPP and SPPL2c are capable of cleaving SNAREs, which are
required for targeted and successful fusion of membrane vesicles
at their destination and in their majority are tail-anchored
type-II (type IV) transmembrane proteins (Figure 6A) (24, 25,
80).

As cleavage of SNARE proteins would cause an inhibitory
effect on vesicular trafficking, the wide expression of SPP
across species and cell types predisposes for a limited number
of substrates in the SNARE family (18). Indeed, so far only
one member of the SNARE family, syntaxin 18 (Stx18), has
been validated as an SPP substrate (Figure 6B). Nevertheless,
given the crucial role of Stx18 in the organization of
the ER membranes, ectopic expression of SPP led to a
reorganization of ER morphology that could be rescued by co-
expression of Stx18 (80). However, the physiological relevance
of this phenotype under endogenous conditions remains
unclear (19).

Contrary to SPP, SPPL2c expression is extremely restricted.
After remaining elusive for many years, expression was finally
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FIGURE 6 | Role of SPP and SPPL2c in membrane trafficking. (A) Under physiological conditions, vesicular transport is responsible for transport of proteins between

the different membrane organelles of the cell, such as the transport of glycosyltransferases (GTs) (green) from the ER to the Golgi. SNARE proteins assure the

specificity of trafficking by controlling membrane fusion. One type of SNAREs, the vesicle-associated membrane proteins (VAMPs) (dark blue), accompany the vesicle,

while another type, the syntaxins (Stx) (light blue), is located at the target membrane and awaits the vesicle. Only the correct combination of these two SNAREs

enables the fusion of the vesicle to the target membrane. (B) SPP overexpressed in vitro or SPPL2c expressed physiologically in vivo in spermatids, can cleave some

of those SNARE proteins, leading to a blockade of the transport between ER and Golgi, an accumulation of the vesicle cargo in the ER and even structural changes of

cellular compartments.

reported just last year, in testis of male mice and humans,
specifically in elongated spermatids, where it resides either
in the ER or pre-Golgi compartments (24). The high levels
of SPPL2c expression found in this limited number of cells
that undergo significant reorganization to form mature sperm,
induces compartment reorganization by impairing vesicular
trafficking. Ectopically expressed SPPL2c in HEK 293 cells has
been shown to cleave numerous SNARE proteins, including
Stx5, Stx8, Stx18, VAPA, VAPB, and others, while Stx8 was
also identified as an SPPL2c substrate in vivo in mouse
testis (25). Cleavage of SNARE proteins in HEK293 leads to
reduced vesicle transport from the ER, reduced maturation
and glycosylation of various secretory and membrane proteins
(Figure 6B). Prolonged expression of SPPL2c causes structural
alterations on the compartments of the secretory pathway,
in particular the ER and the Golgi (25). The pronounced
effects of SPPL2c expression on the secretory pathway most
likely explain its very restrictive endogenous expression. SPPL2c
deficiency in mice leads to reduced mobility of sperm, altered
glycosylation pattern of the glycocalyx and apparent defects in
the formation of the acrosome (24, 25). As SPPL2c expression
was observed in the very same cell type in human samples
(24), it is very plausible that it could be involved in male
infertility and would be worth investigating. Furthermore, based
on the results from mating SPPL2c deficient mice, it appears that
SPPL2c would also play a role in the fertility of female mice
(24). So far, the limited amount of mature oocytes produced
in every cycle and their short life span has not allowed for
further research into this aspect, it does remain, however, of

high interest as it might be connected to infertility problems
in humans.

IMPACT OF INTRAMEMBRANE
PROTEOLYSIS ON CALCIUM SIGNALING

Calcium (Ca2+) acts as a very important second messenger,
which is induced by various intracellular signaling cascades.
Changes in the intracellular Ca2+ concentrations are involved
in a variety of cellular processes in both physiological and
pathological conditions (160). PS, SPPL3 and SPPL2c have all
been associated to calcium-dependent signaling (24, 161). For
SPPL3 this effect has been linked to the modulation of NFAT
transcription factor activity, but was shown to be independent
of its proteolytic function. This is the only non-proteolytic
function attributed not only to SPPL3, but to any of the
members of the SPP/SPPL family. SPPL3 presence reportedly
enhances the interaction between stromal interaction molecule
1 (STIM1) and Orai, thus enhancing the store-operated Ca2+

entry (SOCE) leading to Ca2+ influx. The interaction of these
two proteins and subsequent Ca2+ influx play a key role in the
transmission of signaling from the T-cell receptor (TCR) to the
NFAT transcription factors (161). This effect though it boosts the
response to TCR signaling, has so far only been confirmed in cell
culture models and its physiological relevance remains unclear.

PSs, as part of the γ-secretase complex, have also been
implicated in the regulation of intracellular Ca2+ levels and
Ca2+ signaling (162–164). Although this mechanism appears
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FIGURE 7 | Role of SPPL2c in Ca2+ signaling. (A) In wildtype (WT) mice, SPPL2c (purple) is expressed in the ER of elongated spermatids, where it cleaves

phospholamban (PLN) (blue), a tail anchored type II-transmembrane protein. PLN is involved in the regulation of Ca2+ (green) transport from the cytosol to the ER and

vice versa. (B) Lack of SPPL2c in knockout (KO) mice, leads to reduced cleavage of PLN, which disturbs the intracellular Ca2+ balance. Reduced levels of cytosolic

Ca2+ were detected in elongated spermatids lacking SPPL2c expression.

independent of the proteolytic function of γ-secretase, it is
affected by PS mutations that are linked to familial Alzheimer’s
disease (FAD) (165, 166). PSs are suggested to be involved in
this phenotype by a multitude of mechanisms. PSs can form
ER Ca2+ leaking channels, the function of which is disturbed
by the FAD mutations (162). They can also interact with the
sarco ER Ca2+-ATPase (SERCA) pumps (163) and lastly, release
Ca2+ from stores through the inositol trisphosphate receptor
(InsP3R) by agonistic activation (164). The participation of PS in
physiological Ca2+ signaling and the disturbance of the balance
by the presence of FAD mutations is considered as a possible
contributor to Alzheimer’s disease pathology but remains under
debate in the field.

In case of SPPL2c, the effect on calcium-signaling is dependent
on cleavage of its in vivo validated substrate phospholamban
(PLN) (24). PLN is a small tail anchored protein that resides in
the ER and can regulate the transport of Ca2+ in and out of the ER
(Figure 7). In wildtype elongated spermatids, the physiological
expression of SPPL2c results in cleavage of PLN and a particular
Ca2+ balance in those cells (Figure 7A) (24). In mice that lack
SPPL2c, PLN levels were increased and cytosolic Ca2+ levels were
found to be decreased (Figure 7B). This finding might be related
to the movement capabilities of mature spermatids (24).

IMPACT OF INTRAMEMBRANE
PROTEOLYSIS ON PROTEIN
GLYCOSYLATION

Glycans are attached to a large number of cellular proteins,
mainly transmembrane and secreted proteins, in a variety of
combinations and positions. In many cases this can affect the
function and localization of these proteins, including functions
like cell-cell recognition and communication (167). The precise
pattern of glycosylation needs to be tightly regulated as altered

glycosylation patterns have been linked to numerous pathologies
(168), including cancer (169, 170) and Alzheimer’s disease (171).
SPPL3 and SPPL2c have both been shown to affect protein
glycosylation, in a direct and indirect manner, respectively
(25, 28).

SPPL3 directly cleaves numerous type-II TM glycosidases
and glycosyltransferases in the Golgi (Figure 8). Cleavage takes
place within or in close proximity to the TM domain of the
protein and leads to the release of a soluble domain, which
can be found in the supernatant of cell culture models, but
also in human body fluids like blood (Figure 8A) (172–175). Of
note, the secreted ectodomain of the glycan modifying enzymes
contains the active site responsible for protein-glycosylation.
Although these soluble glycosylating enzymes remain in principle
active, the lack of nucleotide activated sugar donors in the
extracellular compartment renders them most likely inactive
(168, 176, 177). Thus, by controlling the amount of numerous
active glycosylating enzymes in the Golgi, SPPL3 can affect the
global glycosylation pattern of a cell and consists an easy switch to
alter this pattern by affecting a single protein. It has been shown
in cell culture and in vivo that lack of SPPL3 activity leads to
an accumulation and/or decreased secretion of glycan modifying
enzymes and, consequently, to hyperglycosylation of a variety
of cellular glycoproteins (Figure 8B). While increased activity
of SPPL3 has the opposite effect and results both in increased
secretion of the soluble glycosidases and hyperglycosylation of
glycoproteins (Figure 8C) (28, 29).

The most well-characterized substrate of SPPL3
is N-acetylglucosaminyltransferase V (GnTV), a
Golgi localized enzyme that belongs to the family of
N-acetylglucosaminyltransferases (GnTs) that are responsible for
N-acetylglucosamine (GlcNAc) branching during the formation
of complex N-glycans (Figure 8) (28, 178). Interestingly, levels
of GnTV have also been found to increase in early stages of
many cancers (179, 180). Often the increase of GnTV negatively
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FIGURE 8 | Role of SPPL3 in glycosylation. (A) Glycosyltransferases and glycosidases (GT) (green), are transported from the ER to the Golgi in their immature form

(imGT). On their passage through the Golgi stacks they mature (matGT). In their mature form they can either add complex N-glycans to glycoproteins (gray), or get

cleaved by SPPL3 (blue), resulting in the release of a soluble GT (sGT) that contains the catalytic site. Glycoproteins are then transported to the plasma membrane and

their function or time-of-stay at the surface is affected by levels of glycosylation. SPPL3 can affect the balance of this glycosylation. (B) Reduced levels of SPPL3, lead

to an accumulation of matGTs in the Golgi that results in hyperglycosylation of glycoproteins. (C) Increased levels of SPPL3, lead to increased secretion of sGTs and

reduced mature enzymes in the Gogli, thus hypoglycosylation of glycoproteins is observed.

correlates with patient survival, this is however seen only in
specific types of cancer, such as renal cancer (181). Increased
presence and activity of GnTV leads to hyperglycosylation of
specific cell surface receptors. This increases their presence on
the plasma membrane and is connected to cancer growth and
metastasis through enhanced growth factor signaling (179).
Recent studies are trying to target GnTV in an effort to treat
cancer (182). Presence of SPPL3 can strongly affect levels of
endogenous GnTV with MEF cells from SPPL3 knockout mice
clearly accumulating mature GnTV (28). Reduction of SPPL3
activity would thus, not only interfere with NK cell maturation,
but also negatively affect the cellular glycosylation pattern setting
up a favorable environment for tumorigenicity. SPPL3 could
indeed be involved in tumorigenicity as some single nucleotide
polymorphisms (SNPs) in the coding region of SPPL3 have
recently been linked to breast cancer as a risk factor (183).

SPPL2c can also affect the glycosylation pattern of
glycoproteins, though through a different pathway than
SPPL3 as it has been shown that these two proteases do not
have substrate overlap (25). Nonetheless, through the cleavage of
SNARE molecules SPPL2c disrupts the trafficking of glycosidases
and glycosyltransferases (Figure 6). As these proteins need to
reach the trans-Golgi compartment in order to fully mature
and interact with their substrates, numerous glycoproteins with
complex N-glycans are hypoglycosylated and do not mature
properly upon ectopic expression of SPPL2c (25). This indirect
effect of SPPL2c expression on protein glycosylation most likely
is also involved in the maturation process of spermatids (25).
Under physiological conditions, SPPL2c contributes to the

complex and specific glycosylation pattern of the glycocalyx that
surrounds mature sperm and is necessary for species specificity
in mating, as it ensures the fusion of the ovum with the sperm
(184). A lectin microarray analysis of mature sperm showed a
difference in the sperm glycan fingerprint when SPPL2c was
knocked-out (25). As SPPL2c is physiologically expressed in
humans it would be of interest to check if any variations in
the proteases expression and/or function can be connected
to infertility. Interestingly, the SPPL2C gene is found to be
affected in patients suffering from the Koolen-de Vries 17q21
microdeletion syndrome (185, 186). Six genes are in total affected
by this deletion that results mainly in mental retardation,
however one of the male patients was also found to be infertile
(187). The restricted expression of SPPL2c in the organism
makes it very unlikely for the protease to contribute to the
mental phenotype, however it remains highly probable that it
contributes to the fertility phenotype. Further research on the
topic and analysis of samples from individuals suffering from
infertility could be of great interest.

CONCLUSION

In the past 20 years, a lot of progress has been made in the
field of intramembrane proteolysis in general and in context of
GxGD aspartyl proteases in particular. With the identification
of multiple substrates for these proteases, we now better
understand their connection to multiple pathways including
the vascular system, cancer progression and many more. We
can also appreciate the complexity of their function and the
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difficulties in targeting specific protease-substrate combinations.
However, in addition to the research performed this far, in
order to best understand and target GxGD aspartyl proteases, we
would need not only specific inhibitors, like the ones developed
by Novartis for SPPL2a (141–143), but also an even more
comprehensive understanding of their physiological activity. The
lethal phenotype demonstrated by mice lacking some of these
proteases in the early developmental stages had posed an obstacle
in the past years, nonetheless, the generation of conditional
knockout mouse lines will enable leaps of progress in this field.
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