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An Approach to Study Species 
persistence in Unconstrained 
Random networks
Samuel M. fischer  1 & Andreas Huth2,3,4

the connection between structure and stability of ecological networks has been widely studied in 
the last fifty years. A challenge that scientists continue to face is that in-depth mathematical model 
analysis is often difficult, unless the considered systems are specifically constrained. This makes it 
challenging to generalize results. Therefore, methods are needed that relax the required restrictions. 
Here, we introduce a novel heuristic approach that provides persistence estimates for random systems 
without limiting the admissible parameter range and system behaviour. We apply our approach to 
study persistence of species in random generalized Lotka-Volterra systems and present simulation 
results, which confirm the accuracy of our predictions. Our results suggest that persistence is mainly 
driven by the linkage density, whereby additional links can both favour and hinder persistence. In 
particular, we observed “persistence bistability”, a rarely studied feature of random networks, leading 
to a dependency of persistence on initial species densities. Networks with this property exhibit tipping 
points, in which species loss can lead to a cascade of extinctions. The methods developed in this paper 
may facilitate the study of more general models and thereby provide a step forward towards a unifying 
framework of network architecture and stability.

The study of ecosystem stability has attracted researchers’ interest for many years1. Since May’s influential paper2, 
a large body of studies have revealed a variety of mechanisms affecting ecosystem stability3. Such analyses are key 
to our understanding of how changes, for example induced by climate change, land use, or invasive species, affect 
species richness and services of ecosystems.

As experiments on ecological networks are costly and limited in scale, many theoretical studies consider ran-
domly generated ecological networks1,3. Thereby, researchers use a toolset reaching from analytical techniques 
applied to abstract models2,4,5 to simulation approaches considering ecological networks with architectures 
matching empirical observations6–8. While more complex models may be better suited to accurately predict the 
behaviour of real ecosystems, abstract and simplified models often allow an in-depth mathematical analysis, 
which in turn can yield a more comprehensive understanding of the principles governing ecosystem stability. 
The results obtained with analytical approaches, however, can be limited by restrictions imposed on the model to 
make the mathematical analysis feasible. Therefore, efforts have been made to apply analytical techniques to more 
intricate models and to relax simplifying assumptions9–11.

Nonetheless, akin to the importance of considering ecologically informed models, it is relevant to assess stabil-
ity with a criterion strongly linked to ecological questions. Many theoretical studies consider asymptotic stability, 
the ability of a system to return to a state after a (small) perturbation2,4,7. This stability measure describes well how 
a system reacts to changes, but other approaches can also provide information about the system’s state before or 
after a disturbance. For that reason, “persistence”12, quantifying how many species coexist in an ecosystem for the 
long term, is actively studied5,8,13–18.

A challenge associated with the study of persistence is that the transient system behaviour can affect how 
many species persist. Depending on the initial condition or the nature of a perturbation, a system may approach 
different states with different sets and numbers of persisting species. Since it is difficult to consider transient 
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behaviour with analytical methods, studies on persistence often use either simulation approaches8,13,14,19,20 or 
consider constrained networks in which a unique set of persisting species can be identified5,16,21. Both methods, 
however, may limit the generality of the results. Consequently, an approach would be desirable that both main-
tains the advantages of analytical techniques while also allowing the study of a broad spectrum of systems. This 
will be the subject of this paper.

To circumvent the restrictions associated both with simulation methods and the classical analytical tech-
niques, we propose a middle way: based on approximations, we derive a heuristic for persistence of species in 
random networks. We test the validity of our estimates with simulations. This allows us both to study the mech-
anisms behind persistence and to predict possible system behaviour without the need of simulating each system 
of interest. To demonstrate the potential of our approach, we develop our heuristic for randomly generated gen-
eralized Lotka-Volterra systems and examine the role of (1) species richness, (2) connectivity, (3) distribution of 
intrinsic growth/death rates, (4) distribution of interaction parameters, and (5) the initial densities of species. 
Thereby, we minimize the effect of model restrictions on our results by ensuring that the considered models are 
able to show a wide range of qualitatively different system behaviour.

Our results suggest that persistence is mainly driven by the linkage density, i.e. the average number of links 
per species. Thereby, addition of links can have both a stabilizing or a destabilizing effect, depending on the dis-
tribution of the intrinsic growth or death rates and the interaction parameters. Intermediate linkage densities can 
lead to local persistence maxima and minima. Furthermore, we identify bistable systems, in which the number 
of coexisting species depends on the initial species densities. These bistable systems have threshold values so that 
addition or removal of links could either lead to persistence of most species or a collapse of the system.

This paper is structured as follows: first we explain the base model of our study. Then we derive a heuristic 
estimate for the proportion of species that coexist in a system. In a next step, we briefly describe the simulation 
approach that we used to assess the accuracy of our estimates and present the simulation results. Lastly, we discuss 
the limitations of our approach and its contributions to the current debate on ecosystem stability.

Methods
In this study, we consider generalized Lotka-Volterra systems:
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dx
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x r a x
(1)

i
i i

j I
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with ∈ = …i I n{1, , }. If the intrinsic growth rate is positive, i.e. >r 0i , then species i can grow independently of 
other species. We therefore call it a “producer”. If <r 0i , then species i cannot survive without interactions with 
other species. Hence, we call it a “consumer”. The parameters aji describe the interactions between species ∈j I  
and species i. The model allows mutualistic, competitive, and predator-prey interactions.

Typically, not all species interact with each other in real ecosystems. Therefore, it is reasonable to set some 
interaction parameters aji to 0. The fraction of existing interactions in relation to the total number of species pairs 
is called the connectivity c of the network.

The Lotka-Volterra system (1) may permit unbounded growth of species. To keep species densities from 
diverging, we introduce ‘capacities’ Ki at which species stop growing:

= + ∑ < + ∑ < .∈ ∈{dx
dt

x r a x x K r a x( ) if or 0
0 else (2)

i i i j I ji j i i i j I ji j

The bounds Ki can be seen as modelling a strongly non-linear intra-specific competition mechanism. In con-
trast to choosing large intra-specific competition constants aii, the sharp bound does not preclude complex system 
behaviour found in natural systems, such as multistabilty, oscillations, and chaotic dynamics.

It would as well be possible to bound species densities by introducing functional response interaction terms. 
This, however, would require us to specify a trophic network structure before the individual interaction parame-
ters are determined. While possible in principle, this requirement makes it considerably more difficult to describe 
the network generation process in simple mathematical terms. We therefore work with the simple model here.

Rescaling the species densities allows us to set the capacity =K 1i  for all species. This also affects the distribu-
tion of the model parameters. However, we will argue later that the choice of the capacities has minor influence 
on persistence of species. Therefore, we will progress with =K 1i  for increased simplicity.

System (2) has a discontinuous right hand side. This can affect existence and uniqueness of solutions22,23. 
Nonetheless, in Supplementary Appendix A, we show that system (2) with =K 1i  has a unique solution for all 
initial conditions = ∈x x(0) [0, 1]n0 .

To examine the relationship between network structure and persistence of species, we consider systems with 
random parameter values. We assume the following:

 1. The intrinsic growth constants ri are drawn from a normal distribution with mean μr and variance σr
2.

 2. The entries aji of the interaction matrix are drawn from a normal distribution with mean μa and variance 
σa

2.
 3. Each link exists with probability c. That is,  ≠ =( )a c0ji .
 4. The values of the intra-specific interaction constants <a 0ii  are either drawn from a normal distribution 

with variance σa
2 centered and truncated at 0 or chosen deterministically as =a dii .

 5. The initial population densities are drawn such that a constant b determines the proportion of “native” 
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species with high initial densities to “invaders” with low initial densities. For the first ⋅b n species ( ⋅b n 
rounded to the closest integer), x (0)i  follows a uniform distribution on (0, 1], and for the remaining species, 
x (0)i  follows a uniform distribution on ε(0, ]. Thereby, the constant ε 1 is small.

All parameters are independently drawn from their respective distributions. The species richness n, the con-
nectivity c, and the parameters μr, σr

2, μa, and σa
2 give rise to a family of comunity models. Our goal is to examine 

how the choice of these parameters affects the expected fraction P of coexistent species and how this quantity 
depends on the initial condition.

There are different definitions of persistence24. In this paper, we say a species i persists if it has a positive 
long-time average density: ∫ >

→∞
x t dtliminf ( ) 0

T T
T

i
1

0
. This persistence definition is slightly stronger than the weak 

persistence in ref.24.
In Table 1, we provide a list of all the parameters and symbols used in this paper.

Basic assumption and observations. Our goal is to estimate the expected fraction P of species that coex-
ist in a system. To write P as function of the model parameters, we apply a novel heuristic approach. We argue 
that the heuristic provides a valuable approximation that deepens our understanding of persistence in ecological 
networks.

Let us start by considering the average population density

∫= .
→∞

x
T

x t dt: lim 1 ( ) (3)i
T

T
i

0

This limit exists in all systems that approach steady states or limit cycles, and even in some systems with cha-
otic dynamics. Nonetheless, there may be systems (2), in which the limit does not exist. We neglect these cases by 
assuming the following:

Assumption. The all-time average population density xi exists for all species i.

It is intuitive that persistence of a species is linked to its per-capita growth rate. To make this link explicit, let 
us define the non-trunctated per-capita growth rate gi of species i as

∑= +
∈

g r a xx( ):
(4)

i i
j I

ji j
i

with =I I i: \{ }i . Here, we ignore the discontinuity of the original equation (2) and the self-damping term a xii i, 
which does not affect the survival of species i.

Now we consider the long-time average of gi. If xi exists, the average non-trunctated per-capita growth rate

∑= +
∈

g r a x:
(5)

i i
j I

ji j
i

exists as well. This quantity provides us with a useful characterization of persistent species. In Supplementary 
Appendix B, we show that a species persists if and only if >g 0i . The intuition behind the proof is that 
intra-specific competition cannot drive a population to extinction if the population would grow on average oth-
erwise. In the opposite case, the population declines to zero in the limit.

Now suppose we picked a species i from the species pool I. Since the probability that species i persists is equal 
to the expected fraction P of coexisting species, we can write P as a probability:

  ∑= > =





+ >
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∈
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i i
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This equation is the basis of our heuristic.

Heuristic derivation. We proceed by deriving a formula for the right hand side of Eq. (6), which gives us an 
expression for the expected fraction P of persisting species. To do this, we need to approximate the distribution of 
gi. If species i is not affected by any other surviving species, i.e. ∑ =∈ a x 0j I ji ji

, then gi follows the same distribution 
as the growth constants ri. This case is most prevalent in small or sparse networks or in networks in which only 
few species survive. In large and dense networks, however, it is likely that each species i is affected by some other 
species, and gi depends on the distribution of the interaction constants. We will focus on this case first and refine 
our result in the next section by incorporating the possibility that some species are not affected by other species.

We start approximating the distribution of gi by estimating its mean μg and variance σg
2. Let μx and σx

2 be the 
(unknown) conditional mean and variance of xj given that species j persists. Then μg is given by

  ∑μ

μ μ μ

=
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Here, we used that

E P E μ= ≠ | ≠ =a a a a c( ) ( 0) ( 0) (8)ji ji ji ji a

¯ ¯ ¯ ¯E P E μ= > | > = .x x x x P( ) ( 0) ( 0) (9)j j j j x

In Supplementary Appendix C, we show that the covariance between aji and xj is bounded by a term propor-
tional to 

n
1 . Our proof exploits that the covariance matrix for the aji and xj must be positive semi-definite. As the 

covariance is small in large systems, we can approximate μg neglecting the covariance term.
Similar to the mean μg, we can approximate the variance σg

2. For σg
2, however, bounding the covariance terms 

is more challenging and requires further approximations (see Supplementary Appendix D), which we verified 
numerically (Supplementary Appendix E). We obtain the following equation for the variance:

σ σ μ σ μ σ μ μ ζ= + − + + − + .n cP cP n( 1) (( )( ) ) (10)g r x x a a x a
2 2 2 2 2 2 2

Thereby, ζ represents the unknown covariance terms, which are of constant order of magnitude. Numerical 
estimates suggest that ζ ≥ 0. Though we could show that the variance σg

2 is not dominated by covariance terms, ζ 
may still have a significant impact.

After computing the mean and the variance of gi, we can attempt to approximate the cumulative density func-
tion of gi, which we need to determine  ≥g( 0)i . Recall that = + ∑ ∈g r a xi i j I ji ji

. If the summands a xji j were 
independent of each other, the sum ∑ ∈ a xj I ji ji

 would be approximately normally distributed according to the 
central limit theorem. However, if the summands are positively correlated, their sum will take both more extreme 
values and more values close to zero (see Fig. 1a).

The frequency of extreme values has a large effect on the variance of a random variable. We have already noted 
that the covariance terms do not change the order of magnitude of the variance σg

2. Consequently, the weight that 

Symbol Definition in mathematical terms Definition in words

n Species richness / dimension of the dynamical system

c ≠a( 0)ji  for any i, ∈j I , ≠i j Connectivity of the network / expected fraction of existing links

l −n c( 1) Linkage density / number of links per species

I … n{1, , } Set of species indices

Ii I i\{ } Set of species indices excluding species i

ri Intrinsic growth/death rate of species i

aji Interaction parameter modelling the impact of species j on species i

Ki Capacity of species i

x t( )i Density of species i at time t

g t( )i + ∑ ∈r a x t( )i j Ii ji j Non-truncated per-capita growth rate of species i at time t

xi ∫
→∞

x t dtlim ( )
T T

T
i

1
0

Average density of species i

gi ∫ = + ∑
→∞

∈g t dt r a xlim ( )
T T

T
i i j Ii ji j

1
0

Average non-truncated per-capita growth rate of species i

μr  r( )i  for any ∈i I Mean intrinsic growth/death rate

σr
2  r( )i  for any ∈i I Variance of the intrinsic growth/death rate

μa | ≠a a( 0)ji ji  for any i, ∈j I , ≠i j Mean strength of existing links

σa
2 a a( 0)ji ji| ≠  for any i, ∈j I , ≠i j Variance of the strengths of existing links

μg  g( )i  for any ∈i I Mean of the average non-truncated per-capita growth rate

σg
2 g( )i  for any ∈i I Variance of the average non-truncated per-capita growth rate

μx  | >x x( 0)i i  for any ∈i I Mean of the average density of surviving species

σx
2  | >x x( 0)i i  for any ∈i I Variance of the average density of surviving species

nP  ∈ >i I x( { : 0} )i Expected number of persisting species

P = >x( 0)nP
n i  for any ∈i I Expected fraction of persisting species

N(μ, σ2) Normal distribution with mean μ and variance σ2

μ σS x( ; , )N
2

∫π σ

μ

σ
∞

−

e dt
x

t
1

2

( )2

2 2 Survival function of a normal distribution with mean μ and variance σ2

b Fraction of species with high initial density

ε Extinction threshold / maximal initial density of species with low initial density

T Time horizon of simulations

Table 1. Definitions and explanations of symbols and parameters used in this paper.
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the correlations add on the tails of the distribution is relatively small. Thus, we may ignore these correlations when 
we approximate the cumulative density function of gi (see Fig. 1).

Approximation 1. The average non-truncated growth rate is normally distributed with mean μg and variance σg
2,

∑ μ σ= + ≈
∈

g r a x N( , ),
(11)

i i
j I

ji j
d

g g
2

i

whereby the covariance terms in μg and σg
2 are ignored.

Our expressions for μg and σg
2 contain the unknown mean μx and variance σx

2 of the average density of per-
sisting species. In general, it is difficult to find rigorous approximations of μx and σx

2, as they strongly depend on 
how many species reach the limiting density. Nonetheless, it is possible to obtain reasonable estimates for the 
quantities as we will see below.

If many species grow up to their capacities, they will have either a very high or a moderate average density. 
Therefore, the variance will be large. Since the population densities are constrained to be in the interval (0, 1], the 
variance is bounded by σ μ μ≤ −(1 )x x x

2  and we may approximate σ ω μ μ≈ −(1 )x x x
2

1  with some factor ω1. 
Choosing ω = 11  would be equivalent to assuming that the average densities are Bernoulli distributed. Following 
numerical observations (see Supplementary Appendix E), we set ω =1

1
2

.
If most species densities are bounded, it is reasonable to assume that the average densities of surviving species 

are approximately uniformly distributed around their mean μx. With this assumption, we arrive at σ ω≈
μ

x
2

2 3
x
2

, 
whereby ω2 is again a scaling factor. A choice of ω = 12  is equivalent to assuming that the average densities follow 
a uniform distribution. In simulations ω = 22  appeared to be a good choice (Supplementary Appendix E). Either 
way, the factors ω1 and ω2 have only minor effects on the results. We summarize our approximation below.

Approximation 2. If many surviving species grow to their capacity, it is σ μ μ≈ −(1 )x x x
2 1

2
, otherwise σ μ≈x x

2 2
3

2.

To derive an estimate of μx and to find out whether species are likely to reach their limiting densities, let us 
consider a species i that is known to never hit its limiting density. Then it must hold

= − .g a x0 (12)i ii i

Applying conditional expectation yields

  = − | > = | > − | >g a x x g g a x x0 ( 0) ( 0) ( 0), (13)i ii i i i i ii i i

whereby we used that >x 0i  is equivalent to >g 0i . For each given P and μx, the distribution of gi can be esti-
mated according to Approximation 1, which implies that  | >g g( 0)i i  is the mean value of a truncated normal 
distribution. If aii is chosen deterministically or with small variance, we can furthermore approximate 
  μ| > ≈a x x a( 0) ( )ii i i ii x. This in combination with Approximation 2 allows us to solve Eq. (13) numerically for 
μx for each given P.

It can happen that Eq. (13) does not have a solution in the admissible interval (0, 1]. This indicates that the species 
hit their density bounds. In this case there is little we can know about μx other than that it is relatively large. Therefore, 
we may consider different large values of μx to assure that our results are not sensitive to an arbitrary choice of μx. 
Numerical simulations (Supplementary Appendix E) also support choosing a large value of μx (e.g. μ = .0 8x ).

(a) (b) (c) (d)

Figure 1. Probability density function 
¯fgi
 (a,c) and cumulative density function Fgi

 (b,d) of the distribution of gi 
for a system with few persisting species (a,b) and many persisting species (c,d). The shaded areas correspond to 
histograms of the gi values obtained in simulations. The solid lines depict our approximation of the 
distributions. In the system with few coexisting, our approximation of the cumulative density function is precise 
(b) even though the observed probability density function differs significantly from our approximation (a). In 
the case with many persisting species, the observed and approximate distribution are very close. Refer also to 
Supplementary Appendix F for details on the method used to generate the figures.
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Applying the findings and approximations above, we can write μ P( )g  and σ P( )g
2  as functions of the expected 

fraction P of coexisting species. With (6) and (11), we arrive at an implicit equation,

μ σ=P S P P(0; ( ), ( )), (14)g gN
2

which can be solved for P numerically. Here, SN is the survival function (complementary cumulative density 
function) of the normal distribution, which results from integrating over the positive branch of the probability 
density function of gi. The functions μ P( )g  and σ P( )g

2  are computed according to Eqs. (7) and (10), respectively.

Refined heuristic. In the previous section, we derived a heuristic for the expected fraction P of species coex-
isting in large and dense systems. In these networks, it is likely that every species is affected by some other species. 
In sparse networks, however, some species may not be affected by any other species. Survival of such isolated 
species does not depend on the distribution of the interaction constants aji. Below, we derive a refined model that 
accounts for isolated species.

If a species i is not affected by any other surviving species, then it survives if and only if it is a primary 
producer:

 
μ σ

| = >

= .

i r
S

( survives not affected) ( 0)
(0; , ) (15)

i

r rN
2

On the other hand, if species i is affected by some surviving species, then i’s survival is given by the sign of the 
per-capita growth rate

  ∑| =





+ ≥ | ∃ ∈ ≠






.

∈
i r a x j I a x( survives affected) 0 : 0

(16)
i

j I
ji j i ji j

i

The right hand side of Eq. (16) is well approximated by the probability that we have estimated in the previous 
section.

Approximation 3.  μ σ| ≈i survives affected S n n( ) (0; ( ), ( ))g P g PN
2 .

To derive the probability that species i is affected by some other species, we consider a network in which nP 
species coexist. Recall that c is the probability that a link exists, i.e. = ≠c a( 0)ji . Hence, the probability that a 
species i is affected by some other persisting species is approximately

 | ≈ − −
≈ − −

n c
cn

(affected species survive) 1 (1 )
1 exp( ) (17)

P
n

P

P

and

P E≈ − −cn(affected) (1 exp( )) (18)P

≤ − −cnP1 exp( ) (19)

by Jensen’s inequality. As we do not know the distribution of −cnexp( )P , we apply a first-order Taylor expansion 
to estimate the expected value on the right hand side of (18) and arrive at the right hand side of (19).

Approximation 4. P E≈ − − ≈ − −affected cn cnP( ) (1 exp( )) 1 exp( )P .

This approximation is imprecise, if cn is large and P is small. Though it is possible to correct for the error introduced 
by this approximation, we refrain from making our model more complicated here. Instead we note that our heuristic 
will provide upper or lower bounds on P dependent on whether  | > |i i( survives affected) ( survives not affected) 
or not, respectively.

Putting the pieces together, we obtain

= | + − |
= | + | − | (20)

P i i
i i i
(affected) ( survives affected) (1 (affected)) ( survives not affected)
( survives affected) (not affected)( ( survives not affected) ( survives affected))

   
   

µ σ µ σ µ σ≈ + − − . (21)S P P cnP S S P P(0; ( ), ( )) exp( )( (0; , ) (0; ( ), ( )))g g r r g gN
2

N
2

N
2

The solutions of this equation constitute our heuristic persistence estimates. Figure 2 depicts the rationale 
behind Eq. (20) as a flow chart.

Simulation method. We briefly outline the simulation approach that we used to verify the heuristic esti-
mates. We applied Monte Carlo simulations to determine how many species are expected to persist in the ran-
domly assembled networks. We examined networks varying in the following properties: (1) species richness n (2) 
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connectivity c, (3) mean μr and variance σr
2 of the growth rates ri, (4) mean μa and variance σa

2 of the interaction 
parameters aji, (5) the fraction b of initial high-density species.

For each set of network properties, we randomly generated 1000 networks and solved the respective dynami-
cal system (2) for =T 1000 time steps with a fourth order Runge-Kutta method with step size 0.01. For each 
network, we noted which proportion of the species had an average density larger than ε = .0 001 during the last 
quarter of the simulated time interval; i.e. in 





T T,3
4

. We took the average of these proportions for all 1000 net-
works and obtained by this means an estimate of the expected number P of coexisting species.

This approach is computationally costly. Hence, we focused on few combinations of the parameters μr, σr
2, μa, 

and σa
2 (given in Fig. 3). For each parameter tuple μ σ μ σΘ = ( , , , )r r a a

2 2 , we simulated networks with many combi-
nations of species richness n and connectivity c. We considered 10 different values for n and c, respectively. 
Thereby, we let n range from 4 to 80 and c range from 0.001 to 1 in approximately equidistant steps. We performed 
a Monte Carlo simulation for each of the 100 combinations of n and c.

To test how the results depend on the initial condition, we examined the networks in a colonization scenario 
(b = 0) and in a scenario with high initial densities (b = 1), respectively. Furthermore, we considered different 
choices for the intra-specific competition terms aii. In most of our simulations, we drew the parameters aii from a 
normal distribution with variance σa

2 centred and truncated at 0. However, to test the validity of our heuristic in 
scenarios where species do not hit the sharp density bound, we also simulated systems with specific, strongly 
negative values =a dii .

To validate our model in the broadest-possible range of scenarios, we tested Θ-tuples for which our heuristic 
predicted qualitatively different results. Furthermore, we verified that our simulation time horizon T was suffi-
ciently large by extending T to 2000. Finally, we tested how our results would change if we exchanged the normal 
distribution for the parameters ri and aji with a uniform distribution with similar mean and variance. In total, we 
simulated and analysed more than 2 million networks.

Results
theoretical results. The heuristic we derived provides us with estimates of how many species coexist in a 
system with given properties. In this section, we analyse our heuristic (21) and describe how the different network 
characteristics affect persistence. A summary of the possible qualitative complexity-persistence relationships can 
be found in Table 2.

We start by considering the species richness n and the connectivity c. With n and c, we can compute the 
expected number of links per species = − ⋅l n c: ( 1) , which is called the linkage density. The right hand side of 
Eq. (21) can be written in terms of the linkage density l and the connectivity c. It can be shown that c has only a 
marginal effect on P under the new parameterization. This implies that persistence is mainly driven by the linkage 
density l and not by size or the connectivity of the network.

Figure 2. Flow chart for the refined persistence heuristic. To persist, a species must either be a primary 
producer without strong predators or competitors, or the species must be a consumer with strong mutualistic 
partners or prey in sufficient abundance. The probability P that a species persists can be determined by 
computing the products of the corresponding probabilities along the paths that lead to persistence.
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To understand how the linkage density affects persistence, we consider the limit cases with small and large 
linkage densities. If no links exist, i.e. =l 0, Eq. (21) turns into an explicit equation in which P is equal to the 
expected number of producers. As more links are added, the proportion of producers becomes irrelevant and 
persistence depends only on the distribution of the interaction constants aji. In the limit of many links per species, 
i.e. → ∞l , all species survive if μ >a

1
2

, and all species go extinct if μ <a
1
2

 (see examples in Fig. 3). Only if μ =a
1
2

, 
the variance (10) becomes much larger than the mean (7) and half of all species persist.

For intermediate linkage densities, the heuristic predicts a wide range of possible dependencies of P on l. If the 
linkage density is small, P increases with l if the the probability of a positive link is larger than the probability of a 

Figure 3. Proportion P of coexistent species as function of the linkage density l. Each subfigure corresponds to 
networks with different distributions of growth and interaction constants, respectively. Each marker represents 
a network with specific species richness n and connectivity c. The blue dots refer to networks with high initial 
species densities ( =b 1), and orange triangles to networks with very low initial densities (colonization scenario, 

=b 0). The green squares in (e) depict an intermediate scenario with = .b 0 4. The solid lines show our heuristic 
estimates. In all subfigures except for (f), the species densities hit the density bound, and the variable μx cannot 
be determined exactly. In these cases, multiple lines depict the heuristic estimates for different values of μx. The 
opacity of the lines corresponds to the values for μx ranging from 0.4 to 1 (high values correspond to low 
transparency). It is visible that predictions with high values of μx meet our observations best, in general. The 
number E denotes the mean error between observations and predictions (μ = .0 8x  in all subfigures except (f)). 
In (e), we computed the error for the scenario =b 1 only.
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positive growth rate, i.e.  > > >a r( 0) ( 0)ji i . In the opposite case, P decreases with l. This criterion holds 
independently of whether the links are positively or negatively biased on average. Hence, local persistence min-
ima and maxima are possible (see examples in Fig. 3c,d). Since persistence increases at small linkage densities if 
few primary producers are present, whereas negatively biased links decrease persistence at high linkage densities, 

 > > > >a r( 0) ( 0)ji i
1
2

 implies that P has a local maximum at intermediate linkage densities. With similar 
reasoning we find that P has a local minimum if  > > > >r a( 0) ( 0)i ji

1
2

.
The curvature of P l( ) depends on the distribution of the intrinsic growth/death rates ri and how quickly they 

are dominated by the interaction terms. For example, if the intrinsic growth rates have a strong negative bias, i.e. 
μ 0r  and σr

2 is small, then a small number of interactions does not suffice to keep species alive. However, the 
chances of survival increase rapidly once there are sufficiently many links to overcome the negative growth bias. 
Therefore, the right hand side of our persistence heuristic (21) increases strongly sigmoidly with l in these cases.

The shape of the right hand side of Eq. (21) has a strong influence on the system dynamics (see Fig. 4). If the 
function increases sigmoidly, Eq. (21) can have up to three solutions, one of which must be repelling (see Fig. 4b). 
In these cases, the number of persisting species depends on the initial condition.

We may call parameter combinations at which Eq. (21) has exactly two solutions bifurcation points. At these 
points in the parameter space, the number of solutions of (21) transitions between one and three (see Fig. 4b). 
Consequently, small alterations of the system can have a strong effect: removal of a few links can lead to an almost 
complete collapse of the system, whereas addition of links can give rise to a large system that would break down 
otherwise (see example in Fig. 3e). Note that this bistable system behaviour can only occur in systems with many 
consumers heavily reliant on other species. According to our heuristic, systems with many primary producers 
will never be bistable (see Fig. 4c). That is, addition of a link may have detrimental, but not fatal consequences on 
average.

While the distributions of the parameters ri and aji play a major role in the persistence heuristic, the value of 
the sharp capacity K and the intra-specific competition constants aii effect persistence only through the average 
densities of surviving species. If the aii are not strong enough to bound species densities, the effect of these param-
eters can be neglected. Instead, the capacities Ki govern the mean average density μx of surviving species. Hence, 
choosing different values for the capacities Ki, possibly at random, would only require us to adjust our constant 
estimate for μx. This is easy to do and does not affect the qualitative system dynamics.

Only if intra-specific competition is sufficiently large to bound the species densities, the aii affect the average 
density of surviving species μx. In that event, stronger competition leads to smaller average densities, and inter-
actions between species have a smaller weight compared to intrinsic growth and death. Consequently, persis-
tence does not change as rapidly with the linkage density, and bistable behaviour is suppressed21 (see example in 
Fig. 3f). However, strong competition can also induce bistable behaviour when the self-damping is overruled by 
positive interactions, and the Eq. (13) for μx has two zeros.

Simulation results. In the previous section, we have outlined the persistence predictions of our heuristic. In 
this section, we present simulation results that allow us to assess the precision of the predictions.

In most instances, the simulation results matched our heuristic predictions well (see Fig. 3). Especially in 
networks with high persistence predictions, the heuristic was very precise (Fig. 3a–c,f). In networks with small 
predicted P, our heuristic correctly predicted the order of magnitude of P and the shape of the persistence curve 
P l( ). However, the predicted persistence values deviated from the observed values by up to 0.2 (Fig. 3d).

Complexity-Persistence 
Relation Condition Description

Monotonously increasing  > ≤ > ≥( )r a( 0) 0i ji
1
2

Persistence increases with the linkage density. Thereby, P 
converges to 1 if μ > 0a  and to 1

2
 if μ = 0a .

Monotonously decreasing  > ≥ > ≤( )r a( 0) 0i ji
1
2

Persistence decreases with the linkage density. Thereby, P 
converges to 0 if μ < 0a  and to 1

2
 if μ = 0a .

Constant  > = > =( )r a( 0) 0i ji
1
2

Half of the species persist regardless of the linkage density.

Local persistence 
minimum  > > > >( )r a( 0) 0i ji

1
2

For networks with small linkage density, addition of links 
has negative effects on persistence. If the linkage density is 
large, persistence increases with the linkage density and P 
approaches 1.

Local persistence 
maximum  > < > <( )r a( 0) 0i ji

1
2

For networks with small linkage density, addition of links 
has positive effects on persistence. If the linkage density is 
large, persistence decreases with the linkage density and P 
approaches 0.

Persistence bistability

Eq. (21) has multiple solutions for networks 
with high linkage densities; this requires 
 > < >( )r a( 0) 0i ji , 

 ( )r a( )i ji . 
Alternatively: Eq. (13) has one solution at 
low linkage densities and no solution at high 
linkage densities; this requires  a( ) 0ii .

In networks with small linkage density, few species persist. If 
the linkage density is sufficiently large, P can take a large or a 
small value, dependent on the initial condition. The system 
exhibits points of no return and the removal of species can 
result in system collapse. The higher the linkage density the 
greater the probability that the larger persistence value is 
attained. Bistability can be suppressed by choosing strongly 
negative intra-specific competition constants aii, which 
however induce bistability at high linkage densities.

Table 2. Possible qualitative complexity-persistence relationships.
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In networks for which we obtained a unique persistence estimate, the fraction b of initial native species had a 
small effect on the results. In colonization scenarios ( =b 0), simulated persistence was slightly lower. As sug-
gested by the heuristic, this was different in “bistable persistent” networks, that is, networks for which our persis-
tence model (21) has multiple solutions. Despite predicting the qualitative behaviour correctly, the heuristic failed 
to predict precisely at which linkage density the community would collapse or allow colonization if <b 1. In 
addition, the simulations showed a less sharp threshold than estimated.

Extending the time horizon T did not have a notable effect in our simulations except with bistable networks, 
in which the ascend at the threshold value became sharper with a longer time horizon. Similarly, simulations 
in which the parameters were drawn form a uniform distribution did not differ from simulations using normal 
distributions with equal means and variances.

Discussion
We introduced a novel heuristic approach to estimate the fraction of persisting species in complex dynamical 
systems. Applying the method to a model of ecological networks, we showed that the heuristic can provide valu-
able ecological insights. Similar to earlier studies, our results suggest that the linkage density is a major driver of 
stability or persistence2,7,25,26. However, we did not observe a generally applicable complexity-stability relation-
ship. Instead, an increase of species richness and connectivity favoured or hindered persistence depending on the 
fraction of primary producers and the distribution of the interaction parameters.

While it has been shown earlier that the impact of complexity on persistence depends on the sign of the mean 
interaction strength16, our study adds on to earlier results by also identifying more subtle system behaviour. For 
example, even if a high linkage density will result in the majority of the species going extinct, a small number 
of links can have a positive effect on persistence. Introduction of a moderate number of species with a negative 
average impact can increase persistence if these species serve as resources for some species that would go extinct 
otherwise, e.g. due to lack of food. Similarly, introduction of a small number of species from which most other 
species benefit can decrease persistence if the species in the original network would have persisted anyway.

An interesting phenomenon we observed is persistence bistability, i.e. the existence of systems in which per-
sistence depends on the initial species densities. Thereby, persistence bistability refers to the number or fraction of 
persisting species, not their density or identity. A system can be multistable and still have a unique set of persisting 
species. Similarly, multistable systems may have distinct, but on average equally sized sets of persisting species. 
In a system exhibiting persistence bistability, however, different numbers of species will persist depending on the 
initial conditions. Hence, persistence bistability is a special case of multistability.

Species in systems exhibiting persistence bistability heavily rely on multiple other species, and if one of these 
species goes extinct, this triggers a “snowball-effect”, a cascade of extinctions. Conversely, such networks cannot 
establish, unless all the required species are present in sufficient density. This can make it difficult to restore these 
systems after disturbances. The behaviour of persistence bistable systems may be understood as bootstrap perco-
lation27,28, modelling systems in which ‘sites’ are ‘activated’, if enough neighbouring sites are active.

As bistable systems exhibit “points of no return”, identifying such systems can be of high importance in con-
servation and restoration ecology29–31. For our model, our heuristic allows us to characterize systems with per-
sistence bistability precisely, and some identified principles may even hold with higher generality. For example, 
persistence bistability requires that most of the species in the network are consumers. In the opposite case, in 
which the network consists mostly of producers, introduction of species may have detrimental but not devastating 

(a) (b) (c)

Figure 4. Left hand side (dashed black line) and right hand side (solid coloured lines) of Eq. (21) as functions of 
P. Each subfigure represents systems with specific distributions of the model parameters, respectively. The three 
coloured lines in each subfigure stand for networks differing in linkage density l: purple: l = 15; green: l = 25; 
yellow: l = 35. Our persistence estimates are the points where the solid lines intersect with the dashed line, 
respectively. The systems in (a,c) have unique persistence estimates. For the systems depicted by the green and 
yellow curve in (b), we obtain multiple possible persistence estimates. Note that if the solid lines are decreasing 
(c), the persistence estimate is always unique. The horizontal axis includes impermissibly high values of P to 
better depict the general shape of the curves. (Parameters: (a) μ = −1r , σ = 1r

2 , μ = .0 1a , σ = .0 01a
2 ; (b) 

μ = −1r , σ = .0 1r
2 , μ = .0 1a , σ = .0 01a

2 ; (c) μ = 1r , σ = .0 1r
2 , μ = − .0 1a , σ = .0 01a

2 . The remaining parameters 
are similar in all Figures: = .c 0 5, μ = .0 8x ).
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effects. We suggest that it would be worthwhile to grant higher attention to the phenomenon of persistence bista-
bility in the complexity-stability debate, and our study provides a tool to analyse systems with this behaviour.

Application in invasion ecology: biotic resistance and invasional meltdown hypothesis. Our 
results suggest that the probability that a species survives in a random system is barely affected by its initial den-
sity, unless the systems exhibit persistence bistability. Therefore, our heuristic can be applied to scenarios in which 
species invade pre-existing ecosystems. Hence, our study may contribute to the invasion ecology debate on the 
impact of primary invasions on the success of secondary invasions32. The biotic resistance hypothesis33–35 suggests 
that introduction of a primary invasive species decreases the likelihood of successful secondary invasions. In con-
trast, the invasional meltdown hypothesis36 states that introduction of invasive species increases the vulnerability 
of the system and therefore facilitates secondary invasions. Both competing theories have been supported and 
challenged by empirical findings32,37.

According to our heuristic, primary invaders can either improve or decrease the chances of secondary inva-
sions, dependent on how the primary invaders affect the linkage density and the distribution of interaction 
strengths. Note, however, that our model does not distinguish between successful and unsuccessful primary 
invaders. That is, even if a primary invader is unsuccessful and has a small but positive density, it may affect the 
success of future invasions. To study the impact of successful primary invaders only, the respective conditional 
probability for persistence must be found. This is a task for future research.

the heuristic approach. We obtained the results presented above by applying a novel heuristic approach. 
Compared to analytical methods, the heuristic approach is less rigorous and leaves more room for inaccuracies. 
Nonetheless, our heuristic results matched numerical results remarkably well, and the resulting equation for 
persistence allows an in-depth mathematical analysis with reasonable effort. This, in turn, can increase our under-
standing of the general mechanisms behind persistence. The basic idea of considering time-averages to study 
extinction of species in dynamical systems is well established21,38.

Though other analytical techniques used to study persistence may yield similar insights as our approach and 
be more precise, our method has the advantage that it permits the analysis of systems that are not guaranteed to 
have a unique set of persisting species. This increase in generality has considerable advantages. First, it allows us 
to study systems with more complicated model behaviour, such as systems with persistence bistability. Second, 
the wide range of permissible model parameters makes it possible to compare purely competitive or mutualistic 
systems to predator-prey or unrestricted systems. Thus, the heuristic approach may have the potential to synthe-
size earlier theoretical results obtained for distinct classes of systems3.

Our approach allowed us also to reproduce and generalize some earlier findings on diagonally stable systems. 
These systems are known to have a unique globally attractive equilibrium21. For such systems, the fraction of 
persisting species has been shown to be 1/2 independent of the size and connectivity of networks as long as the 
intrinsic growth rates ri and the interaction parameters aji are sampled from distributions symmetric around 05. 
This agrees with our heuristic estimate. Furthermore, persistence has been studied in competitive networks with 
random growth constants ri and deterministic competition parameters aji

5. Our heuristic adds on to these results 
by predicting how persistence changes if the aji are chosen at random.

Sources of inaccuracies. Our heuristic estimates for the fraction of coexisting species agree well with the 
results obtained in numerical simulations. This indicates that our simplifications do not have a strong effect on 
the results. The existence assumption for the mean species densities is known to hold in many systems of interest, 
including systems in which the sharp threshold is not hit21 and systems approaching some kind of steady state 
or limit cycle. We have not observed any indication that the assumption undermines the applicability of our 
heuristic.

Nonetheless, some considerable inaccuracies occurred in large systems with a dominance of negative links 
and therefore small fraction of persisting species. A closer investigation of these systems showed that the errors 
are due to the poor approximation of the mean of the exponential term in our heuristic (Approximation 4). This 
weakness can be corrected for with additional approximations.

Large quantitative deviances between the heuristic estimates and the simulation results occurred only when 
we attempted to find the tipping point linkage densities in bistable systems. The exact initial densities of the spe-
cies are relevant in these scenarios. As our heuristic is based on the long-time behaviour of the system, it does 
not provide a clear relationship between initial conditions and persistence. Nevertheless, the heuristic correctly 
identified the parameter ranges that lead to persistence bistability.

Ecological limitations and possible extensions. We considered a class of rather abstract ecosystem 
models in this paper. Thus, the studied systems might lack features found in natural systems, and simulation 
approaches7,13,14 may remain the tool of choice to analyse models with strong focus on realism. Nonetheless, we 
argue that many of our model’s limitations either have a minor effect on the results or can be accounted for by 
adjusting the heuristic to fit more intricate models.

First, our model does not bound the strengths of species interactions with functional response terms. Instead, 
we inhibited unbounded species growth by introducing a simple density bound without a clear mechanistic jus-
tification. However, our heuristic can be directly applied to a slightly adjusted model with bounded interactions 
instead of a sharp density bound (see Supplementary Appendix G). Therefore, we hypothesize that introduction 
of functional response will only affect the quantitative but not the qualitative results of this study. Nevertheless, 
it would be desirable and, we believe, possible to adjust our heuristic to study models with functional response. 
Despite this potential for improvement, our heuristic can be directly applied to Lotka-Volterra systems that are 
stable by construction. Thus, our work adds on to earlier studies of these systems5,16.
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Second, the interaction constants are unlikely to be independent in real ecosystems, and predator-prey 
dependencies may occur with a different frequency than mutualistic or competitive interactions26,39,40. However, 
we conjecture that introduction of correlations between interaction terms will not undermine the applicability of 
our heuristic. This would go in line with earlier results finding that correlations between interaction parameters 
do not change persistence in systems with zero-mean interaction distributions5. The task of future research would 
be to adjust our covariance bounds to confirm that the computed expected values are not significantly affected 
by these terms.

Third, the topological structure of natural systems is rarely random as assumed here41,42, since trophic, mutu-
alistic, and competitive interactions impose a certain structure on networks43,44 and the network structure is 
dependent on the ecological processes behind the network assembly20. This limitation may be the hardest to 
address, because our heuristic exploits an exchangeability property often not found in systems with a more 
realistic structure. Since the network structure affects stability8,13,14,39,45, it will be a worthwhile task for future 
research to apply our heuristic approach to models with a more realistic network structure. A first step in this 
direction is to split the network into multiple similar subnetworks. As this model modification does not affect 
the exchangeability assumption, our heuristic can be almost directly applied to bipartite networks with similar 
species groups. A further step would be to study networks with different classes of species. The result would be a 
heuristic consisting of a system of equations. Though such an equation system may be harder to analyse than the 
simple one-dimensional heuristic derived in this paper, it may still be possible to gain significant insights with 
this approach.

conclusion
The main result of this paper is that a simple heuristic suffices to predict important aspects of the complex behav-
iour of large dynamical systems. The derivation of our heuristic is based on approximations, but the precision of 
our estimates throughout our simulations is remarkable. Our heuristic predicted the correct qualitative system 
behaviour in all simulations we conducted.

The heuristic approach allows the study of persistence in ecological networks without strong restrictions on 
model parameters. Thus, the method is suitable to compare different classes of ecosystems and to investigate 
phenomena that were hard to analyse with classical techniques. We hope therefore that future studies will build 
on our observations and apply our method to more sophisticated models. The results could synthesize earlier 
findings on ecosystem stability and may be a step forward to a general framework of complexity and stability.

Data Availability
No datasets were generated or analysed during the current study.
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