
BRIEF RESEARCH REPORT
published: 12 April 2021

doi: 10.3389/fmed.2021.665057

Frontiers in Medicine | www.frontiersin.org 1 April 2021 | Volume 8 | Article 665057

Edited by:

Mahmood Yaseen Hachim,

Mohammed Bin Rashid University of

Medicine and Health Sciences, United

Arab Emirates

Reviewed by:

Cynthia Koziol-White,

Rutgers, The State University of New

Jersey, United States

Khuloud Bajbouj,

University of Sharjah,

United Arab Emirates

*Correspondence:

Yoshihiko Raita

yraita1@mgh.harvard.edu

Specialty section:

This article was submitted to

Pulmonary Medicine,

a section of the journal

Frontiers in Medicine

Received: 07 February 2021

Accepted: 17 March 2021

Published: 12 April 2021

Citation:

Raita Y, Zhu Z, Camargo CA Jr,

Freishtat RJ, Ngo D, Liang L and

Hasegawa K (2021) Relationship of

Soluble Interleukin-6 Receptors With

Asthma: A Mendelian Randomization

Study. Front. Med. 8:665057.

doi: 10.3389/fmed.2021.665057

Relationship of Soluble Interleukin-6
Receptors With Asthma: A Mendelian
Randomization Study
Yoshihiko Raita 1*, Zhaozhong Zhu 1, Carlos A. Camargo Jr. 1, Robert J. Freishtat 2,3,4,

Debby Ngo 5, Liming Liang 6,7 and Kohei Hasegawa 1

1Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA,

United States, 2Division of Emergency Medicine, Children’s National Hospital, Washington, DC, United States, 3Department

of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States,
4Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences,

Washington, DC, United States, 5 Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center,

Boston, MA, United States, 6 Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology,

Harvard T.H. Chan School of Public Health, Boston, MA, United States, 7Department of Biostatistics, Harvard T.H. Chan

School of Public Health, Boston, MA, United States

Purpose: Emerging evidence suggests a potential role of interleukin-6

pathways—trans-signaling with soluble interleukin-6 receptors—in the asthma

pathobiology. Despite the evidence for their associations with asthma, the causal

role of soluble interleukin-6 receptors remains uncertain. We investigated the relations

of soluble interleukin-6 receptors with asthma and its major phenotypes.

Methods: We conducted a two-sample Mendelian randomization study. As genetic

instruments, we selected 33 independent cis-acting variants strongly associated with

the level of plasma soluble interleukin-6 receptor in the INTERVAL study. To investigate

the association of variants with asthma and its phenotypes, we used genome-wide

association study data from the UK Biobank. We combined variant-specific causal

estimates by the inverse-variance weighted method for each outcome.

Results: Genetically-instrumented soluble interleukin-6 receptor level was associated

with a significantly higher risk of overall asthma (OR per one standard deviation increment

in inverse-rank normalized soluble interleukin-6 receptor level, 1.02; 95%CI, 1.01–1.03;

P = 0.004). Sensitivity analyses demonstrated consistent results and indicated no

directional pleiotropy—e.g., MR-Egger (OR, 1.03; 95%CI, 1.01–1.05; P = 0.002;

Pintercept =0.37). In the stratified analysis, the significant association persisted across

asthma phenotypes—e.g., childhood asthma (OR, 1.05; 95%CI, 1.02–1.08; P < 0.001)

and obese asthma (OR, 1.02; 95%CI 1.01–1.03; P = 0.007). Sensitivity analysis using

16 variants selected with different thresholds also demonstrated significant associations

with overall asthma and its phenotypes.

Conclusion: Genetically-instrumented soluble interleukin-6 receptor level was causally

associated with modestly but significantly higher risks of asthma and its phenotypes. Our

observations support further investigations into identifying specific endotypes in which

interleukin-6 pathways may play major roles.

Keywords: interleukin-6, soluble interleukin-6 receptor, trans-signaling pathway, asthma, Mendelian

randomization, GWAS, UK Biobank
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INTRODUCTION

Amongmany immune components involved in the pathobiology
of asthma, recent research has suggested a potential role of
interleukin-6 (IL-6) signaling—the classic and trans-signaling
pathways (1). The trans-signaling pathway starts with coupling
with IL-6 and soluble IL-6 receptor (sIL-6R), and formation
of a complex with the ubiquitously expressed membrane-
bound glycoprotein 130, thereby activating downstream pro-
inflammatory cascades—e.g., Janus kinase-signal transducer and
activator of transcription (JAK-STAT) pathway (1). This IL-
6 trans-signaling pathway plays major roles in a range of
inflammatory conditions (e.g., rheumatic diseases, inflammatory
bowel diseases, obesity), and is the target of anti-IL-6 therapies
(e.g., tocilizumab) (1).

Epidemiologic studies have found associations of an increased
IL-6 level in the serum, sputum, and bronchoalveolar lavage
fluid with asthma prevalence and its severity (2–4). Genome-
wide association studies (GWAS) have also reported that the
single nucleotide polymorphism (SNP) rs2228145 (Asp358Ala)—
a variant in IL6R that increases IL-6R shedding and promotes
IL-6 trans-signaling—is associated with asthma prevalence,
asthma severity, and lower pulmonary function (5, 6). Moreover,
rs4129267—which has a perfect linkage disequilibrium with
rs2228145 above in European subjects—is also known as an
asthma susceptibility locus (7). Despite the evidence on these
associations which may suffer from unmeasured confounding,
the causal role of sIL-6R in asthma (and hence the potential
role of anti-IL-6R therapies) remains uncertain. To address the
knowledge gap in the literature, we performed an instrumental
variable analysis with genetic instruments (i.e., Mendelian
randomization) to examine the effect of sIL-6R on asthma and
its major phenotypes.

METHODS

This is a two-sample Mendelian randomization study using
GWAS summary statistics from two large cohort studies—
the INTERVAL study (8) and UK Biobank (9–12). Detailed
Methods can be found in the Supplementary Material. In brief,
Mendelian randomization can provide unbiased causal estimates
in an observation study because the genetic polymorphisms
associated with the exposure (sIL-6R levels) are allocated
randomly at conception and its causal inference is less susceptible
to confounding and reverse causation (13).

DATA SUMMARY

The Interval Study
The INTERVAL study is a prospective cohort study that recruited
approximately 50,000 blood donors aged ≥18 years. For the
proteomic profiling, randomly selected two non-overlapping
sub-cohorts of 2,731 and 831 participants of European ancestry
were enrolled. The levels of 2,994 plasma proteins were measured
by the use of SomaLogic assays. A genome-wide protein
quantitative trait loci (pQTL) analysis of 2,994 plasma proteins
in 3,301 healthy adults of European ancestry was conducted

(8). Overall, 1,927 significant (PGWAS <1.5×10−11) associations
between 764 genomic regions and 1,478 proteins were identified.
The summary statistics data are publicly available at http://www.
phpc.cam.ac.uk/ceu/proteins/.

The UK Biobank
The UK Biobank is a prospective cohort study that enrolled
approximately 500,000 adults (aged 40–69 years at enrollment in
2006–2010), and collected comprehensive phenotypic data and
performed genome-wide genotyping (9). The current analysis
restricted the sample to 394,256 subjects of European ancestry
to minimize population stratification (46,799 cases with asthma
and 347,457 controls). In the current study, the primary
outcome was (overall) asthma (n = 46,799). The secondary
outcomes were six major asthma phenotypes: (1) childhood
asthma (defined as age of onset ≤12 years; n = 9,676) (12),
(2) adult-onset asthma (defined as age of onset ≥26 years; n
= 22,294) (12), (3) allergic asthma (defined as asthma with
an allergic disease—eczema, food allergy, and/or allergy rhinitis
[identified by data fields 6152, 20002, 41202, 41204]; n =

23,183) (10, 11), (4) non-allergic asthma (defined as asthma
without any allergic disease; n = 23,616), (5) obese asthma
(defined as BMI of ≥30 kg/m2; n = 13,550), and (6) non-
obese asthma (defined as BMI of <30 kg/m2; n = 33,095).
We also identified shared controls (n = 347,457) with high-
quality genotyping and complete phenotype and covariate data
for GWAS association analysis. All participants from this study
provided UK Biobank-acquired informed consent and provided
data according to the UK Biobank protocol. The institutional
review board of Harvard University and Massachusetts General
Hospital approved the study.

Statistical Analysis
As the genetic instruments, we identified 33 independent
cis-acting variants strongly associated with plasma sIL-6R
levels (PGWAS <5×10−6, r2 <0.1, 250kb from IL6R;
Supplementary Table 1) in the INTERVAL study (mean age,
44 years; female, 49%) (8). All variants had an F-statistic of
>10, without a significant association with major confounders
(such as education status, smoking, and physical activity;
Supplementary Table 1) nor a known pleiotropy in Ensembl,
GWAS catalog, and PhenoScanner. Separately, using the UK
Biobank data, we computed the GWAS statistics for asthma and
six major asthma phenotypes, as previously described (10–12).

To investigate the association of variants with outcomes, we
used GWAS summary statistics of the UK Biobank. We weighted
the magnitude of association of each variant with outcomes
by that with sIL-6R, and combined causal estimates of sIL-
6R on each outcome by the inverse-variance weighted meta-
analysis method with a random-effects model (14, 15) by using
MendelianRandomization package (16).

In the sensitivity analyses, we first applied MR-Egger
regression (17), MR Pleiotropy RESidual Sum and Outlier (MR-
PRESSO) test (18), and MR weighted median method (19). MR-
Egger regression detects pleiotropy based on the assumption that
the pleiotropic associations are independent from the genetic
associations with the exposure (i.e., the instrument strength

Frontiers in Medicine | www.frontiersin.org 2 April 2021 | Volume 8 | Article 665057

http://www.phpc.cam.ac.uk/ceu/proteins/
http://www.phpc.cam.ac.uk/ceu/proteins/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Raita et al. Soluble Interleukin-6 Receptors With Asthma

independent of direct effect [InSIDE] assumption) and provides
corrected estimates.MR-PRESSO test (18) detects violation of the
restriction exclusion criterion assumption and provides corrected
estimates by removing variants which exhibit pleiotropy. MR
weighted median method provides consistent estimates even
when 50% of the information comes from invalid variants. We
conducted MR-Egger regression and weighted median method
using MendelianRandomization package (16) and MR-PRESSO
using MRPRESSO package (18). Second, we also used more-
stringent PGWAS (PGWAS <5×10−8) and linkage disequilibrium
(r2 <0.02) thresholds to select genetic instruments in order to
examine the robustness of the inferences. We analyzed the data
using R version 3.6.3 (R foundation for Statistical Computing,
Vienna, Austria).

RESULTS

Higher genetically-instrumented sIL-6R levels were associated
with a modestly but significantly increased risk of overall
asthma (OR per one standard deviation increment in inverse-
rank normalized sIL-6R level, 1.02; 95%CI, 1.01–1.03; P =

0.004; Figure 1) with the use of inverse-variance weighted meta-
analysis method. Of the 33 genetic instruments, rs4129267—
an asthma susceptibility locus7 with a linkage disequilibrium
of r2 =1 with rs2228145 (Asp358Ala) (6)—had the largest
weight on the Mendelian randomization estimate. The sensitivity
analysis (Table 1) not only demonstrated consistent results—
MR-Egger (OR, 1.03; 95%CI, 1.01–1.05; P = 0.002), MR-
PRESSOcorrected (OR, 1.03; 95%CI, 1.02–1.04; P < 0.001), and
MR weighted median (OR, 1.03; 95%CI, 1.02–1.04; P < 0.001),
but also indicated no directional pleiotropy in MR-Egger test
(Pintercept =0.37). Although the sensitivity analyses using MR-
PRESSO suggested potential pleiotropy (Pglobal =0.02), the
correctedMR-PRESSO yielded an estimate that is consistent with

the primary analysis (OR, 1.03; 95%CI, 1.02–1.04; P < 0.001)
after removing variants with potential pleiotropy.

In the stratified analysis, the significant association persisted
across the asthma phenotypes (Figure 2)—e.g., childhood
asthma (OR, 1.05; 95%CI, 1.02–1.08; P < 0.001) and obese
asthma (OR, 1.02; 95%CI, 1.01–1.03; P = 0.007). Likewise,
the sensitivity analysis also demonstrated consistent results
(Table 1)—e.g., MR-Egger for childhood asthma (OR, 1.04;
95%CI, 1.00–1.08; P= 0.04), MR-PRESSO for obese asthma (OR,
1.02; 95%CI, 1.00–1.03; P = 0.001), and MR weighted median
for childhood asthma (OR, 1.04; 95%CI, 1.02–1.07; P < 0.001).
Although the sensitivity analyses using MR-PRESSO suggested
potential pleiotropy for allergic asthma (Pglobal =0.02) and
non-obese asthma (Pglobal =0.004), the corrected MR-PRESSO
yielded an estimate that is consistent with the primary analysis—
allergic asthma (OR, 1.03; 95%CI, 1.02–1.05; P < 0.001) and non-
obese asthma (OR, 1.03; 95%CI, 1.02–1.04; P < 0.001)—after
removing variants with potential pleiotropy.

Lastly, the sensitivity analysis using 16 variants selected by the
use of more stringent thresholds—PGWAS <5×10−8 and linkage
disequilibrium (r2 < 0.02)—also demonstrated significant
associations with overall asthma (OR, 1.03; 95%CI, 1.02–1.04;
P < 0.001; Supplementary Figure 1) and its phenotypes—e.g.,
childhood asthma (OR, 1.05; 1.01–1.09; P = 0.01) and obese
asthma (OR, 1.03; 95%CI, 1.01–1.05; P = 0.01; Figure 3).

DISCUSSION

In this two-sample Mendelian randomization study, we
demonstrated that higher genetically-instrumented sIL-6R levels
were associated with a modestly but significantly increased
risk of overall asthma. The sensitivity analyses also showed
consistent results. Our results are in line with recent findings
that higher circulating IL-6 levels are associated with a greater

FIGURE 1 | Mendelian randomization estimates for the effect of soluble interleukin-6 receptors on overall asthma outcome. The size of the squares is proportional to

the weight of the Mendelian randomization estimate for each variant, with the horizontal lines indicating their 95% confidence intervals. The center of the diamond

represents the combined Mendelian randomization point estimate with the lateral tips indicating its 95% confidence interval, estimated by the inverse variance

weighted method. The odds ratios were estimated per one standard deviation increment in the inverse-rank normalized sIL-6R level. CI, confidence interval; IVW,

inverse variance weighted.
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exacerbation risk both in children (20) and adults (21, 22).
Additionally, genetic studies showed the associations of IL6R-
related polymorphisms with asthma prevalence and severity,
and lower pulmonary function (5, 6). For example, the Severe
Asthma Research Program (SARP) cohorts found that rs2228145
is associated with a higher serum sIL-6R level, greater asthma
severity, and lower pulmonary function in patients with severe
asthma (6). However, their subsequent study also reported
discordant results—e.g., no association of sIL-6R level with
severity or exacerbation risk (22). The apparent discrepancies
between these reports may be attributable to the differences
in study design, setting, sample, analytical assumptions, or
any combination of these factors. Regardless, the validity of
the current study is buttressed by the use of the Mendelian
randomization design. This design can mitigate unmeasured
confounding and reverse causation that occur with conventional
observational studies (13). The current analysis meets the
assumptions of Mendelian randomization design in that we
identified the genetic variants that are strongly associated with
the sIL-6R level (the relevance assumption) and do not share
common causes with asthma (the independence assumption),
and in that we ensured no effects of known or unknown
pleiotropy (the exclusion restriction assumption) (23). The
current analysis using the data of two large cohorts corroborates
the earlier reports, and extends them by investigating potential
causal effects of sIL-6R on asthma and its phenotypes.

The mechanisms underlying our findings remain to be
elucidated. For example, inflammatory signals (e.g., C-reactive
protein, chemokine ligand 1, IL-1β , IL-8, tumor necrosis factor,
bacterial lipopolysaccharides) promote alternative mRNA
splicing and shedding of IL-6R from the cell surface, thereby
producing sIL-6R and activating the IL-6 trans-signaling
pathway (24–29). An analysis of U-BIOPRED data reported
that adult patients characterized by IL-6 trans-signaling-related
epithelial gene signature had upregulated innate immune
pathways, type 2 inflammation-independent eosinophilia,
increased submucosal inflammation and airway remodeling,
and higher asthma exacerbation rate (25). In patients with
obese asthma, their airway inflammation is characterized by
dominance of neutrophils and macrophages—major sources of
sIL-6R in both lungs (5) and adipose tissue (30). Experimental
asthmamodels also demonstrated that IL-6R inhibitors attenuate
the airway inflammatory response characterized by mixed
granulocytic infiltration with elevated IL-6 and IL-6R levels
(31). These data collectively present a rationale for targeting
the IL-6 trans-signaling pathway in asthma. We acknowledge
that, in the current analysis, the observed magnitude of
estimates was nominally small. Nevertheless, our findings
encourage further investigations into identifying patients
with specific asthma endotype(s) in which IL-6 pathways
play major roles [e.g., patients with adiposopathy—“sick
fat” (30)].

This study has potential limitations. First, misclassification of
asthma and its phenotypes is possible, while it is unrelated to
the measured sIL-6R levels in the current two-sample design.
Therefore, this independent non-differential misclassification
would have biased the inferences toward the null. Second, the
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FIGURE 2 | Mendelian randomization estimates for the effect of soluble interleukin-6 receptors on asthma and its phenotypes. By using the inverse variance weighted

method, the combined causal effect of sIL-6R on the asthma (overall) outcome and six asthma phenotypes was estimated. The odds ratios were estimated per one

standard deviation increment in the inverse-rank normalized sIL-6R level. CI, confidence interval.

FIGURE 3 | Mendelian randomization estimates for the effect of soluble interleukin-6 receptors on asthma and its phenotypes using different thresholds. This

sensitivity analysis used 16 variants selected with the use of more-stringent PGWAS (PGWAS <5 × 10−8) and linkage disequilibrium (r2 < 0.02) thresholds. By using the

inverse variance weighted method, the combined causal effect of sIL-6R on the asthma (overall) outcome and six asthma phenotypes was estimated. The odds ratios

were estimated per one standard deviation increment in the inverse-rank normalized sIL-6R level. CI, confidence interval.

small sample size of patients with moderate-to-severe asthma
precluded us from robustly examining this specific group
that may benefit more from anti-IL-6 therapies. Third, as
with any Mendelian randomization study, survivor (selection)

bias is possible. However, participants from the INTERVAL
study (mean age, 44 years) and UK Biobank (mean age,
57 years) were not in age ranges where survivor bias
imposes a substantial impact. Fourth, the current study design
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using summary statistics precluded us from evaluating a
potential non-linear relationship of sIL-6R with the asthma
outcomes. Fourth, the influence of genetic instruments may be
abated or buffered by feedback mechanisms or developmental
processes. Yet, such mechanisms would have diminished the
genetic effects, thereby biasing the inferences toward the
null. Lastly, to minimize the population stratification bias, we
restricted the study sample to individuals of European ancestry.
Therefore, the inferences may not be generalizable to other
racial/ethnic populations.

In conclusion, the current Mendelian randomization
study using two large cohort data demonstrated that
higher genetically-instrumented sIL-6R levels are associated
with a significantly but modestly increased risk of overall
asthma. The observation was consistent across the asthma
phenotypes and different assumptions. Our inferences
support further research into delineating the roles of IL-6
pathways in the asthma pathobiology and identifying patients
with a distinct endotype who would benefit most from
anti-IL-6 therapies.
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