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ARTICLE INFO ABSTRACT

Keywords: Degeneration in the substantia nigra (SN) pars compacta (SNc) underlies motor symptoms in Parkinson’s disease
Parkin.son’s. disease (PD). Currently, there are no neuroimaging biomarkers that are sufficiently sensitive, specific, reproducible, and
Neuroimaging o ) accessible for routine diagnosis or staging of PD. Although iron is essential for cellular processes, it also mediates
gz;nt1tat1ve susceptibility mapping neurodegeneration. MRI can localize and quantify brain iron using magnetic susceptibility, which could
Midbrain potentially provide biomarkers of PD.

We measured iron in the SNc, SN pars reticulata (SNr), total SN, and ventral tegmental area (VTA), using
quantitative susceptibility mapping (QSM) and R2* relaxometry, in PD patients and age-matched healthy con-
trols (HCs). PD patients, diagnosed within five years of participation and HCs were scanned at 3T (22 PD and 23
HCs) and 7T (17 PD and 21 HCs) MRI. Midbrain nuclei were segmented using a probabilistic subcortical atlas.
QSM and R2* values were measured in midbrain subregions. For each measure, groups were contrasted, with Age
and Sex as covariates, and receiver operating characteristic (ROC) curve analyses were performed with repeated
k-fold cross-validation to test the potential of our measures to classify PD patients and HCs. Statistical differences
of area under the curves (AUCs) were compared using the Hanley-MacNeil method (QSM versus R2*; 3T versus
7T MRI).

PD patients had higher QSM values in the SNc at both 3T (pagj = 0.001) and 7T (pag; = 0.01), but not in SNr,
total SN, or VTA, at either field strength. No significant group differences were revealed using R2* in any
midbrain region at 3T, though increased R2* values in SNc at 7T MRI were marginally significant in PDs
compared to HCs (pagj = 0.052). ROC curve analyses showed that SNc iron measured with QSM, distinguished
early PD patients from HCs at the single-subject level with good diagnostic accuracy, using 3T (mean AUC =
0.83, 95 % CI = 0.82-0.84) and 7T (mean AUC = 0.80, 95 % CI = 0.79-0.81) MRI. Mean AUCs reported here are
from averages of tests in the hold-out fold of cross-validated samples. The Hanley-MacNeil method demonstrated
that QSM outperforms R2* in discriminating PD patients from HCs at 3T, but not 7T. There were no significant
differences between 3T and 7T in diagnostic accuracy of QSM values in SNc.

Abbreviations: ANTs, Advanced Normalization Tools; AUC, Area under the curve; BeaST, Brain Extraction based on nonlocal Segmentation Technique; CIT168,
California Institute of Technology 168; DaT, Dopamine transport; TE, Echo time; FoV, Field of view; FSL, FMRIB Software Library; FLIRT, FMRIB’s Linear Image
Registration Tool; GRE, Gradient recalled echo; HC, Healthy control; LEDD, Levodopa equivalent daily dosage; MoCA, Montreal Cognitive Assessment; MDS,
Movement Disorder Society; UPDRS-III, Unified Parkinson’s Disease Rating Scale Motor Subscale; PD, Parkinson’s disease; ppb, parts per billion; QSM, Quantitative
susceptibility mapping; ROC, Receiver operating characteristic, RM-ANCOVA, Repeated measures analysis of covariance; TR, Repetition time; SNc, Substantia nigra
pars compacta; SNr, Substantia nigra pars reticulata; T1w, T1-weighted; VTA, Ventral tegmental area.
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This study highlights the importance of segmenting midbrain subregions, performed here using a standardized
atlas, and demonstrates high accuracy of SNc iron measured with QSM at 3T MRI in identifying early PD patients.
QSM measures of SNc show potential for inclusion in neuroimaging diagnostic biomarkers of early PD. An MRI
diagnostic biomarker of PD would represent a significant clinical advance.

1. Introduction

Parkinson’s disease (PD) is a progressive, neurodegenerative disor-
der, causing an array of motor and non-motor symptoms (Barone et al.,
2009). Currently, there are no objective tests to diagnose or stage PD
that are used in routine clinical practice (Mitchell et al., 2021). This
aging-associated disorder is the fastest growing neurological disease in
the world (Okunoye et al., 2022)Movement disorder neurologists are
already outpaced at current PD prevalence, even ahead of the antici-
pated surge in cases, without commensurate training of new PD spe-
cialists (Miller and O’Callaghan, 2015; Ratliff et al., 2022). The
availability of accurate and commonly-available diagnostic tests would
improve clinical management, facilitating participation of generalists in
managing this disease (Kim et al., 2019) Furthermore, this development
is critical for advancing discovery of disease-modifying therapies and a
cure for PD.

Early loss of dopaminergic neurons in the substantia nigra (SN) pars
compacta (SNc) is widely accepted as the cause of motor deficits in PD
(Ayton and Lei, 2014; Prasad et al., 2018). The N1 nigrosome is the first
subregion within the SNc to degenerate (Perez Akly et al., 2019). In
contrast, the SN pars reticulata (SNr) neurons are impacted non-
specifically in later stages, potentially providing a negative control in
early stages of PD (Hardman et al.,, 1996; McRitchie et al., 1996).
Finally, the adjacent ventral tegmental area (VTA) underlies non-motor
symptoms that develop in later stages of PD, with measures of this region
potentially providing an index of PD progression (Alberico et al., 2015).
Dissimilarities in degeneration of SNc, SNr, and VTA neuronal pop-
ulations may arise from disparities in handling of calcium and iron,
leading to differences in vulnerability to PD pathophysiology (Kubis
et al., 2000; Lautenschlager et al., 2018; Moos and Morgan, 2004).
Despite this understanding of the pathophysiology, there are currently
no objective, diagnostic tests for PD that are sensitive, specific, and
routinely accessible in clinical practice (Khan et al., 2019). Under-
standing the magnitude of this problem and the impact on patients,
discovery of clinically useful biomarkers of PD is a highly active area of
research (Peralta et al., 2022; Mitchell et al., 2021).

Although neuroimaging has revolutionized diagnosis and staging of
many common neurological diseases, it currently plays a very limited
role in the diagnosis of PD (Khan et al., 2019; Pyatigorskaya et al.,
2018). The Neuroimaging Working Group of the International Parkinson
and Movement Disorder Society (MDS) recently reviewed the literature
on neuroimaging measures of PD (Peralta et al., 2022). They concluded
that there is a need to achieve clearer normal versus pathological
thresholds, superior performance in diagnosing early disease and
tracking progression, as well as application of multimodal imaging ap-
proaches. Currently, the only approved imaging technique in clinical
practice is dopamine transporter (DaT) imaging. A negative test greatly
reduces the likelihood of idiopathic PD (Kim et al., 2019). DaT scanning
has a number of disadvantages including its expense (McCleery et al.,
2015), limited accessibility to clinicians, especially those who are
operating outside of Movement Disorder clinics Peralta et al., 2022) as
well as problems with tracking progression, and specificity of this
measure in distinguishing PD from some of its neurodegenerative mimics
(i.e., clinical conditions that resemble PD but have different patho-
physiological mechanisms) (Kim et al., 2019; Ali and Morris, 2015).
Furthermore, considering a review by Peralta and colleagues (2022),
and another review of the PD biomarker literature by Mitchell and
colleagues (2021), the mean PD disease duration of patient samples is ~
4.5-5 years, with broad ranges, not ideal if a diagnostic measure is

sought, and PD groups are typically n < 30-35. These are limitations of
this literature given the research aims of developing a diagnostic test
that will generalize to the clinical setting (Moos and Morgan, 2004).
Once limitations present in this research, ours included, are resolved,
prospective multicentred studies will be needed, testing the most
promising biomarkers, optimally in combination, in much larger sam-
ples of early-staged PD patients relative to age-matched healthy controls
(HGCs) and PD mimics. Only then can these neuroimaging measures truly
translate to clinical practice.

Acknowledging some of these limitations in the current study, the
aim was to investigate the promise of imaging iron in midbrain sub-
regions with MRI to distinguish and classify PD patients from HCs at the
individual level. Due to the ubiquity of MRI, as well as the familiarity of
clinicians with this modality, from general practitioners to sub-
specialists, we expect that MRI measures could be more easily inte-
grated into routine non-specialist, clinical practice, where, unfortu-
nately, PD patients will increasingly be managed given trends in PD
prevalence that is not matched by training of new specialists (Sederman,
2022; Plouvier et al., 2017). Consequently, our overarching research
programme aims to develop quantitative, reproducible, and automated
MRI diagnostic and progression measures of PD.

Although iron is essential for cellular homeostasis and processes, it is
also implicated in neurodegeneration (Pyatigorskaya et al., 2020). Hare
and colleagues (2014) assessed vulnerability to oxidative stress in PD
models through an iron-dopamine co-expression index (Hare et al.,
2014). The SNc had a high iron-dopamine co-expression index sug-
gesting greater vulnerability to oxidative stress, potentially explaining
the resulting pattern of midbrain degeneration in PD. Dexter and col-
leagues (1991) found that total iron levels are elevated in the basal
ganglia of PD patients using histology (Dexter et al., 1991). Nigral iron
elevation is now increasingly recognized as an invariable feature of PD
(Peralta et al., 2022). The properties of iron, its abundance in the
midbrain, its involvement in oxidative stress and neurodegeneration, as
well as findings of elevated iron in PD, make it an ideal candidate for
detecting and tracking PD longitudinally (Ayton and Lei, 2014).

MRI can measure brain iron in vivo by assessing the impact of sus-
ceptibility on T2* relaxation times. Conventionally, R2* relaxometry
has been used, however, its values can be dependent on orientation
relative to the main magnetic field and other properties such as field
strength (Sethi et al., 2019). Quantitative susceptibility mapping (QSM)
is a newer technique that is less dependent on imaging parameters such
as echo time (TE), field strength, and orientation, and thus could provide
a more direct measure of susceptibility differences due to iron (Sethi
et al., 2019; De Rochefort et al., 2010). QSM correlated well with iron
content in deep gray matter nuclei, using histological measures such as
Perls staining (Deistung et al., 2013; Deistung et al., 2017).

In some studies, QSM, indexing iron, is elevated in the total SN at the
group level in PD patients compared to HCs, especially for later-staged
PD patients (Sethi et al., 2019; Barbosa et al., 2015; Langkammer
etal., 2016; Lotfipour et al., 2012). A useful biomarker must detect PD at
the individual level (Du et al., 2016; Guan et al., 2017; Takahashi et al.,
2018). Some studies noted elevated iron in PD patients in the SNc (Du
et al., 2016; Guan et al., 2017; Takahashi et al., 2018) and in one study
in the N1 nigrosome (Lancione et al., 2022). The use of manual seg-
mentation in these studies causes a dependence on practitioners with
neuroradiological expertise that could limit widespread adoption of
these approaches. QSM values in the SN/SNc also correlated with clin-
ical features of PD, including disease duration (Du et al., 2016; He et al.,
2015), motor symptom severity (Langkammer et al., 2016; Wang et al.,
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2016), cognitive symptom severity (Uchida et al., 2019; Uchida et al.,
2020), and levodopa equivalent daily dosage (LEDD)—a measure of
disease evolution and severity (Langkammer et al., 2016; Du et al.,
2016). Iron in the SNr and VTA are often not investigated or reported.
Though Zhang and colleagues (2023) aimed to assess QSM in the VTA,
they opted for a combined measure of the dopamine-producing neurons
in the VTA and the larger, adjacent, neuromelanin-containing but glu-
tamatergic neurons in the parabrachial pigmented (PBP) nucleus, which
is implicated in nociceptive pathways with unclear role in PD (Pauli
et al., 2022; Pautrat et al., 2023). Taken together, these findings with
iron imaging, and QSM specifically, in the total SN, the SNc and its
subregions (i.e., N1 nigrosome), as well as VTA warrant further inves-
tigation for their potential to diagnose PD, and perhaps track
progression.

Neuromelanin MRI has emerged as a proxy marker for midbrain
dopamine neurons, though note that neuromelanin is not specific to
dopamine-producing neurons, detected in other catecholamine-
producing regions such as the locus coeruleus and, as previously-
mentioned, in the PBP nucleus as well (Liu et al., 2023). Neuro-
melanin and iron are inversely related in the brain, and it is proposed
that neuromelanin performs a regulatory function of iron, consisting of a
dark pigment synthesized via iron-dependent oxidation of cytosolic
catecholamines, including dopamine (Cassidy et al., 2019; Martinez
et al., 2023). Using neuromelanin MRI, discrimination of PD patients
and HCs has been achieved at the group-level and the single-subject
level (Cassidy et al., 2019; Wang et al., 2023). Recent 3T MRI studies
have explored both iron, using QSM, and neuromelanin, using neuro-
melanin MRI, in the SN in PD (Martinez et al., 2023; Jokar et al., 2023;
Zhang et al., 2023). Jokar and colleagues (2023) found that QSM and
neuromelanin measures in the SN, and the absence of the N1 nigrosome
assessed by two raters with neuroradiology expertise, performed with
comparable diagnostic accuracy in PD (i.e., 0.78, 0.75, and 0.78
respectively). Combining these measures, Jokar and colleagues distin-
guished PD patients from HCs with diagnostic accuracies above 0.90,
sensitivity of 0.88, and specificity of 0.86-0.91. However, this study did
not restrict to early PD (n = 100, disease duration 0.2-13 years), clinical
information related to disease duration and severity were missing for
some patients, and though the SN was segmented automatically, regions
within SN were traced manually based on QSM and neuromelanin,
overlain and using thresholding, a template, presumably the SNc was
created and applied to PD. Finally, they did not use cross-validation
approaches or an independent sample, to test whether their models,
which were optimized to produce highest classification accuracy in their
specific dataset, would generalize.

Martinez and colleagues (2023) also compared SNc QSM (diagnostic
accuracy of 0.77) and neuromelanin (diagnostic accuracy of 0.86) and
reported elevated iron in the lateral, medial-rostral, and caudal SNc for
PD patients relative to HCs. Their idiopathic PD group (n = 39) had a
lengthy disease duration of average 8.6 years (+0.9 SEM). Like Jokar
and colleagues, their combined measures of QSM and neuromelanin in
the SNc and other midbrain/pontine nuclei had highest diagnostic ac-
curacies. Only logistic regression models that included iron and neuro-
melanin contrast ratios, as well as volumes, in the SNc, red nucleus, and
locus coeruleus achieved AUCs above 0.90 in discriminating PD patients
from HCs. Analysis in a small subgroup of 11 idiopathic PD patients < 5
years disease duration (mean duration and range not reported), revealed
QSM AUC = 0.71 and neuromelanin AUC = 0.81 both measured in SNc.
As for the full group, combined measures performed best with an ROC-
AUC above 0.90 for QSM and neuromelanin contrast ratios in the SNc,
red nucleus, and locus coeruleus. Weaknesses of this study include the
late-staged patients overall, the small early-staged PD sample, and the
use of manual segmentation and identification of the ROIs by a
neurologist in some steps and contrasts, despite automation of some
aspects of ROI definition. More important, however, they do not report
sensitivity and specificity, which makes it difficult to interpret their
accuracies and the potential for these measures to generalize to the
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clinic. An advantage of Martinez and colleagues’ study is that, though
they did not test their models in an independent sample, which is the
gold standard for assessing the generalizability of models, they did use
bootstrapping x 1000 with replacement to improve the representa-
tiveness of their ultimate model.

We are not aware of any neuroimaging studies that have estimated
iron in the SNc, SNr, total SN, and VTA separately in early-staged PD
patients with 3T MRI using an atlas-based segmentation of midbrain
nuclei. The latter is needed to ensure reproducibility of the approach
across centres. Furthermore, to our knowledge, no investigations have
assessed iron in VTA, in isolation, in vivo (Alberico et al., 2015). This has
been due to the previous lack of atlases, the structure’s small size, and
insufficient contrast to properly evaluate VTA. The recently developed
California Institute of Technology 168 (CIT168) probabilistic subcor-
tical atlas includes the VTA and could be used to objectively outline this
structure, as well as the SNc and SNr separately (Alberico et al., 2015;
Pauli et al., 2018). Though neuromelanin appears to be an interesting
and promising measure of PD, given differences between studies in
sample characteristics, methods for extracting midbrain regions/sub-
regions, statistical and modelling approaches, as well as infrequent
direct statistical contrasts of models, to this point, the superiority of
neuromelanin MRI or of MRI iron sequences in PD detection remains
unclear (Martinez et al., 2023; Jokar et al., 2023; Zhang et al., 2023).
Abnormal iron metabolism seems to precede neuromelanin changes in
the SNc and striatum, both of which follow striatal dopaminergic
denervation, according to findings by Biondetti and colleagues (2021).
In light of this and given our interest in testing early-staged PD patients
(mean disease duration = 2.40 + 0.2 years), we opted to contrast two
iron measures, QSM and R2*, in the current study. Furthermore, we will
evaluate the potential of QSM versus R2* values in midbrain nuclei to
distinguish early-staged PD patients from HCs at the group and single-
subject levels. We will use ROC curve analyses for our single-subject
level analyses and will directly compare diagnostic accuracy perfor-
mance with the Hanley-McNeil method to remove any doubt about
differences in potential of our iron measures in early PD.

Finally, we aimed to investigate whether 3T MRI performs compa-
rably to 7T MRI. This sub-aim was proposed to investigate whether ef-
forts to identify MRI biomarkers of PD have to this point been
unsuccessful due to an insufficiency of imaging resolution. To our
knowledge, this is the first time that the same early PD patients were
tested with iron sequences at both 3T and 7T MRI field strengths to
investigate changes in midbrain subregions in patients compared to HCs.
If differences noted at 7T are also observed at 3T MRI, the possibility of
diagnosing PD using MRI will be bolstered, given that 3T MRI is much
more widely available, whereas 7T is relatively inaccessible.

2. Materials and methods
2.1. Participants

Twenty-two participants with PD and 23 age- and education-
matched HCs participated in this experiment. All participants with PD
were previously diagnosed by a licenced neurologist, had no co-existing
diagnosis of dementia or another neurological or psychiatric disease,
and met the UK Brain Bank criteria for the diagnosis of idiopathic PD
(Hughes et al., 1992). All PD and no control participants were treated
with dopaminergic therapy. Age- and education-matched controls were
within five years of age and five years of education to the matched PD
patient. Participants with PD were recruited through the movement
disorders database at the London Health Sciences Centre. Participants
abusing alcohol, prescription or illicit drugs, or taking cognitive-
enhancing medications including donepezil, galantamine, riva-
stigmine, memantine, or methylphenidate were excluded. The Montreal
Cognitive Assessment (MoCA) was performed on all participants to rule
out cognitive impairment (Nasreddine et al., 2005). Due to a 7T MRI
scanner upgrade, seven participants (two HCs and five PDs) only have
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3T MRI data. Further, we excluded any participants who had a contra-
indication to MRI.

The Movement Disorders’ Society-Unified Parkinson Disease Rating
Scale Part III (MDS-UPDRS-III) was scored by a licenced neurologist with
sub-specialty training in movement disorders (P.A.M.) to assess the
presence and severity of motor symptoms for all patients off dopami-
nergic medication (Martinez-Martin et al., 1997). Control participants
were also screened to rule out undiagnosed neurological illness. De-
mographic and cognitive scores for all patients and controls were
recorded (Table 1). UPDRS motor subscale scores off dopaminergic
therapy, mean duration of PD, daily doses of dopamine replacement
therapy in terms of levodopa equivalents, and motor deficit dominance
was also recorded (Table 1). Calculation of LEDD for each patient was
based on the theoretical equivalence to levodopa(mg) as follows: levo-
dopa dose(mg) x 1 + levodopa controlled release(mg) x 0.75 + levo-
dopa(mg) x 0.33 if on entacapone(mg) + amantadine(mg) x 0.5 +
bromocriptine(mg) x 10 + cabergoline(mg) x 50 + pergolide(mg) x
100 + pramipexole(mg) x 67 + rasagiline(mg) x 100 + ropinirole(mg)
x 16.67 + selegiline(mg) x 10 (Wiillner et al., 2010). All participants
provided informed written consent to the protocol before beginning the
experiment according to the Declaration of Helsinki. This study was
approved by the Health Sciences Research Ethics Board of Western
University.

3. MRI data acquisition

Participants were scanned once on a 3T Siemens MAGNETOM
Prisma Fit whole-body scanner and once using an ultra-high field 7T
Siemens MRI Plus MAGNETOM scanner at the Centre for Functional and
Metabolic Mapping, Western University, Canada. A maximum of seven
days was allowed between scans using a random counterbalanced design
with respect to the scanning order. Each scanner had a 32-receiver
channel head coil with head position fixation devices installed. On the
3T scanner, the standard body transmit coil was used, however on the 7T
an 8-transmit channel radio frequency coil integrated in the receiver
array was used for parallel transmit.

On the 3T scanner, a localizer image was obtained first to position
participants. T1-weighted (T1w) anatomical scans were obtained for

Table 1
Demographics and clinical information for participants.

Measure 3T MRI Cohort 7T MRI Cohort
HC PD p-value HC PD p-value
(n= n= (n= (n=
23) 22) 21) 17)
Age, years 64.5 67.1 0.21 65.0 67.8 0.23
+ 1.0 + 1.1 + 1.5 + 1.7
Sex, female: male 14: 9 8:14 0.10 12: 9 6:11 0.18
MoCA (outof 30)  28.3 27.3 0.15 28.1 27.1 0.17
+ 0.3 + 0.4 + 0.5 + 0.7
MDS-UPDRS-III 0.7 + 34.8 < 0.6 + 39.4 <
0.2 +2.3 0.001%** 0.3 +3.1 0.001%**
Hoehn & Yahr - 2+ - - 2+ -
0.1 0.2
Disease - 2.4+ - - 25+ -
Duration, 0.2 0.4
years
Levodopa - 431 - - 394 -
Equivalent + 38 +43
Daily Dosage,
mg
Motor Deficit - 13:9 - - 13:3 -
Dominance,
right: left

Means =+ standard error mean reported. HC = healthy age-matched control; PD
= Parkinson’s disease; MoCA = Montreal Cognitive Assessment; MDS-UPDRS-
III = Movement Disorder Society Unified Parkinson’s Disease Rating Scale.

*** P < 0.001.
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structural information, registration of quantitative maps and the seg-
mentation of midbrain nuclei using the CIT168 probabilistic subcortical
atlas (Pauli et al., 2018). T1lw anatomical images were acquired using a
magnetization-prepared rapid gradient echo (MPRAGE) sequence
(repetition time (TR) = 2300 ms, echo time (TE) = 2.98 ms, flip angle =
9°, Field of View (FoV) = 256 x 256 mmz, 159 slices, voxel size =1 x 1
x 0.9 mm?, receiver bandwidth = 160 Hz/Px, acquisition time = 5:35
min). High resolution GRE images (Deistung et al., 2008) were acquired
with an rf-spoiled, flow compensated 3D gradient echo sequence with
six echoes (TE 8.09 ms to 40.49 ms with an interval of 6.48 ms), and (TR
= 52 ms, flip angle = 20°, FoV = 224 x 224 mm?, 96 slices, voxel size =
0.5 x 0.5 x 2 mm®, receiver bandwidth = 160 Hz/Px, acquisition time
= 8:30 min).

On the 7T scanner, a localizer image was similarly obtained first to
position participants. T1w images were acquired with a magnetization-
prepared 2 rapid gradient echo (MP2RAGE) sequence (TR = 6000 ms,
TE = 2.73 ms, flip angle; = 4°, flip angle, = 5°, FoV = 240 x 240 mm?,
224 slices, voxel size = 0.7 x 0.7 x 0.7 mm3, receiver bandwidth = 150
Hz/Px, acquisition time = 10:14 min). High resolution GRE images were
acquired with an rf-spoiled, flow compensated 3D gradient echo
sequence with four echoes (TE ranging from 4.61 ms to 15.50 ms and an
equal interval of 3.63 ms), and (TR = 35 ms, flip angle = 13°, FoV = 220
x 220 mrnz, 128 slices, voxel size = 0.8 x 0.8 x 0.8 mms, receiver
bandwidth = 310 Hz/Px, acquisition time = 9:07 min).

4. MRI data postprocessing
4.1. TI1-weighted postprocessing

T1w image processing was performed using FMRIB Software Library
(FSL) 5.0.11 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Jenkinson et al.,
2012) and Advanced Normalization Tools (ANTs) 2.2 (https://picsl.
upenn.edu/software/ants) (Avants et al., 2008). Brain Extraction
based on nonlocal Segmentation Technique (BeaST) was used for skull-
stripping T1w images from both 3T and 7T (https://github.com/khan
lab/beast) (Eskildsen et al., 2012). Then bias fields for skull-stripped
3T and 7T Tlw images were corrected using N4BiasFieldCorrection,
followed by intensity normalization.

4.2. Gradient echo magnitude postprocessing

GRE magnitude images from all echoes were averaged then skull-
stripped using BeaST. Skull-stripped averaged GRE magnitude images
were then linearly registered to the final postprocessed T1lw images
using FMRIB’s Linear Image Registration Tool (FLIRT).

4.3. QSM image generation

An in-house singular value decomposition algorithm based on Walsh
et al. (2000) was employed to reconstruct the GRE raw data (Walsh
et al., 2000; Klassen and Menon, 2013). This algorithm gives the least
squares best estimate of the magnetization and avoids phase singular-
ities. QSM processing was performed as follows: spatial phase unwrap-
ping was accomplished using a 3D best path algorithm (Abdul-Rahman
et al., 2007). The frequency at each voxel was then estimated by
weighted least squares; each phase echo was weighted by the local
signal-to-noise ratio in the corresponding T2*-weighted image. Finally,
background removal and dipole inversion were performed simulta-
neously using a single-step QSM algorithm (Chatnuntawech et al.,
2017). Since susceptibility values calculated by dipole inversion are
relative, an offset was applied by forcing the mean value within the
cerebrospinal fluid to be zero parts per billion (ppb).

Due to low contrast in QSM and R2* images, the transformation
matrices from the earlier averaged GRE magnitude to T1lw image reg-
istrations were used to perform linear registration of both quantitative
maps onto T1w images using FLIRT. QSM images were then offset using
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the mean susceptibility in the cerebrospinal fluid of each participant as
an internal reference, which allows for between subject comparisons to
be performed (Langkammer et al., 2012).

4.4. R2* relaxometry image generation

Non-linear least squares estimation of R2* was calculated at each
voxel using the Levenberg-Marquardt algorithm (https://netlib.org/
minpack/) (Marquardt, 1963; Levenberg, 1944) on the complex signal
with code available at: (https://github.com/AlanKuurstra/qsm_sstv).

4.5. Atlas-based segmentation

The CIT168 probabilistic subcortical atlas was used for single atlas-
based segmentation (https://neurovault.org/collections/3145/) (Pauli
et al., 2018). This high-resolution atlas clearly demarcates the SNc, SNr,
and VTA based on data from young controls in the Human Connectome
Project database.

Pre-processed Tlw images were registered with the MNI152N-
1in2009cAsym template using an initial affine registration using block-
matching, followed by deformable b-spline registration, both imple-
mented in NiftyReg v1.3.9 (Modat et al., 2010; Modat et al., 2014).
Overlay visualizations depicting the skull-stripping, affine registration,
and deformable registration were generated for each subject to check for
failures. Failures in affine registration were corrected by forcing
initialization with an existing transformation matrix. Discrete and
probabilistic segmentation images in the template spaces were auto-
matically propagated to each participant’s Tlw space, using nearest
neighbour interpolation for discrete segmentations, and linear for
probabilistic segmentations. The boundaries of the midbrain nuclei:
SNc, SNr, and VTA were based on these segmentations.

4.6. Statistical analysis

Demographic data for all participants was compared between groups
using one-way ANOVA looking at Age, MoCA total scores, and MDS-
UPDRS-III scores and a chi-square test was performed for Sex. For the
three midbrain nuclei, PD patients were compared to controls for the
mean susceptibility in parts per billion (ppb) in QSM images and mean
R2* values (1/s) in R2* images for each brain hemisphere.

Separate 2 x 2 repeated measures analysis of covariance (RM-
ANCOVA) was conducted with Group (PD versus HC) as the between-
subjects factor and Hemisphere (Left versus Right) as the within-
subjects variable, controlling for Age and Sex as covariates on a) QSM
and b) R2* measures in the SNc¢, SNr, VTA, and total SN. These were
performed separately for 3T and 7T MRI. Subcortical iron deposits in-
crease with age and elderly males may display higher iron levels than
elderly females, even when accounting for Age, thus warranting both as
covariates for our analyses (Persson et al., 2015). For all statistical an-
alyses, p < 0.05 was used as the statistical threshold. Benjamini-
Hochberg correction was used to control the false discovery rate at q
= 0.05 across all tests (Benjamini and Hochberg, 1995).

Mean ROC curve-area under the curve (AUC) were generated on
held-out data, with repeated k-fold cross-validation, where repeat = 50
and k = 5, to assess the potential of our iron measures to discriminate PD
patients from HCs at the single participant level (Table 2), using MAT-
LAB (version R2018a, MathWorks, Natick, MA, USA). Mean suscepti-
bility and R2* values were considered for both left and right
hemispheres. The mean ROC-AUC was calculated to determine and
compare diagnostic accuracy between techniques using the Hanley-
McNeil method (Hanley and McNeil, 1983). A best cut-off point for
sensitivity and specificity was determined using the Youden method. All
statistical analyses were performed using IBM SPSS Statistics (version
25, IBM Corp., Armonk, NY, USA).
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Table 2
Review of literature developing a PD diagnostic neuroimaging biomarker using
structural MRI.

Classification Model
with Testing
in Independent

Classification Model without
Testing
in Independent Sample

Group-level
Analysis Only

Sample
No cross- Cross- Single Multi-
validation validation Centre centred
PD Du et al. Barbosa et al. Present Xiao
vS. (2011) (MRI/ (2015) (QSM/ Study etal.
HC DTI/R2%) R2%) Qsm/ (2021)
Lotfipour Noh et al. R2%) (QsSM)"
et al. (2012) (2015) (SWI)" Cheng
(QsSM) Bae et al. et al.
He et al. (2016) (SWD*© (2019)
(2015) (QSM/ Murakami (QsSM)
R2%) et al. (2015)
De et al. (QSM/R2%)
(2016) (SWI) Azuma et al.
Du et al. (2016) (QSM)
(2016) (QSM/ Zhao et al.
R2%) (2017) (QSM/

Langkammer R2%)

et al. (2016) Kim et al.
(QSM/R2*) (2018) (QSM)
Peckham Sjostrom et al.
et al. (2016) (2017) (QSM)'
(SWI) Takahashi
Acosta- et al. (2018)
Cabronero (QSM/NM)

et al. (2017) Takahashi
(QsSM) et al. (2018)
Guan et al. (QSM/NM)
(2017) (QSM/ Lietal. (2019)
R2%) (QSM/R2%)
Guan et al. Azuma et al.
(2017) (QSM/ (2019) (QSM)
R2%) Shahmaei
Xuan et al. et al. (2019)
(2017) (QSM) (QsM)

An et al. Meijer et al.
(2018) (QSM)  (2015) (SWD)'
Du et al. He et al.
(2018) (QSM/ (2021)

R2%) (QsM)®
Bergsland Lee et al.

et al. (2018) (2021) (QSM)
(QsSM) Tang et al.
Chen et al. (2010) (PET/
(2019) (QSM) SPEHC)”
Ghassaban Vaillancourt
et al. (2019) et al. (2009)
(QSM/R2*¥) (DTD"

Guan et al. Ohtsuka et al.
(2019) (QSM/ (2014) (NM)“
DTI) Jokar et al.
Sethi et al. (2023) (QSM/
(2019) (QSM) NM) Martinez
Uchida et al. et al. (2023)
(2019) (QSM) (QSM/NM)
Ahmadi et al. Zhang et al.
(2020) (QSM/  (2023) (QSM/
R2%) NM)

Sun et al.

(2020) (QSM)

Thomas et al.

(2020) (QSM)

Song et al.

(2021) (QSM)

Tan et al.,

2021

(Tan et al.,

2021) (QSM)

Lietal.

(2022) (QSM)

Lee et al.

(continued on next page)
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Table 2 (continued)

Classification Model
with Testing

in Independent
Sample

Classification Model without
Testing
in Independent Sample

Group-level
Analysis Only

No cross- Cross- Single Multi-
validation validation Centre centred

(2000) (PET/
SPEHC)
Rolheiser
et al. (2011)
(DTD
Ofori et al.
(2015) (DTD
Mak et al.
(2015) (MRI)
Biondetti
et al. (2020)
(NM)
Schindlbeck
et al. (2021)
(PET/SPEHC)
Zhou et al.
(2021) (DTD
PD Meijer et al.
VS. (2015) (SWD)
mimic Shimada et al.
(2009) (PET/
SPEHC)

Sjostrom et al. Chougar Archer
(2017) (QSM)' et al. et al.
Azuma et al. (2021) (2019)
(2019) (QSM) (MRI) (DTIY

@ Metabolic brain imaging identified PD (84% sensitivity, 97% specificity),
MSA (85% sensitivity, 96% specificity), and PSP (88% sensitivity, 94%
specificity).

> DTI of caudal SN distinguishes PD from HC with 100% AUC.

¢ NM-sensitive MRI differentiates PD, atypical parkinsonism, and HC.

4 Abnormality in nigrosome 1 can be detected with 94.6% accuracy in PD
patients.

¢ Sensitivity and specificity of detecting nigral hyperintensity in parkinsonism
was 88.8% and 83.6% respectively. Concordance between MRI and PET imaging
was 86.2%.

f MR-imaging had specificity of 80-90% but sensitivity of 50-80% for
detecting atypical parkinsonism. AUC increased from 0.75 to 0.83 for identi-
fying MSA-P, and from 0.76 to 0.82 for identifying atypical parkinsonism as a
whole.

8 Semi-automated system not independently validated. AUC for different
models created ranged from 0.965 to 0.983.

! Independent testing consisted of created model with 80% of participants and
tested on remaining 20%. Accuracy was 86%.

! PD distinguished from PSP with ROC of 0.97.

J Independent testing consisted of created model with 80% of participants and
tested on remaining 20%. Automated imaging was used to differentiate
parkinsonism but not parkinsonism vs HC.

5. Results
5.1. Demographics

Our early-stage PD patients and HCs did not differ significantly in
Age, Sex, or cognitive ability, the latter measured using MoCA Total
Scores (Table 1). In our 3T MRI cohort, early-stage PD patients had a
mean disease duration of 2.40 + 0.2 years and a Hoehn & Yahr score of 2
+ 0.1 (Hoehn and Yahr, 1967; Goetz et al., 2004). For 7T, early-stage PD
patients had a mean disease duration of 2.50 + 0.4 years and a Hoehn &
Yahr score of 2 + 0.2. Recall that seven participants did not participate
in the 7T scans due to a scanner upgrade. The mean MDS-UPDRS-III (i.e.,
the motor sub-scale) score for PD patients was 34.8 + 2.3 in the 3T
cohort and 39.4 + 3.1 in the 7T cohort (Goetz et al., 2008). These data
for PD patients and HCs are presented in Table 1. As expected, PD pa-
tients had statistically higher scores on the MDS-UPDRS-III (t = 13.9, p
< 0.0001).
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5.2. Iron imaging at 3T and 7T MRI

Separate 2 x 2 RM-ANCOVAs were performed at 3T and 7T MRI for
QSM and R2* relaxometry to assess the group-level differences between
PD patients and HCs in the SNc, SN, SNr, and VTA. Group was the
between-subjects factor, and Hemisphere as the within-subjects vari-
able. Age and Sex were covariates.

5.3. QSM in the SNc

For QSM values in the SNc at 3T and 7T MRI, there were significant
main effects of Group [F(1,41) = 17.4, mSe = 3123, pyqj = 0.001 at 3T; F
(1,31) = 11.1, mSe = 1830, pyqj = 0.01 at 7T], revealing higher mean
susceptibility for PD patients than HCs (Fig. 2A and B). There were no
significant main effects of Hemisphere [F(1,41) = 2.29, mSe = 984, pqg;
= 0.31 a 3T; F(1,31) < 1 at 7T] nor significant Group x Hemisphere
interactions [F(1,41) < 1 at 3T; F(1,31) < 1 at 7T].

5.4. R2* in the SNc

For R2* values in the SNc, the main effect of Group was not signif-
icant at 3T [F(1,41) = 2.82, mSe = 92, pagj = 0.96; Fig. 3A] but was
marginally significant at 7T [F(1,31) = 7.47, mSe = 148, paqj = 0.052;
Fig. 3B]. The latter reflected marginally higher R2* values for the PD
group. No main effects of Hemisphere [F(1,41) < 1 at 3T; F(1,31) <1 at
7T], nor Group x Hemisphere interactions [F(1,41) = 6.66, mSe = 23,
Padj = 0.06 at 3T; F(1,31) < 1 at 7T] were significant.

5.5. QSM in the SNr

There were no significant main effects of Group or Hemisphere, nor
Group x Hemisphere interactions for QSM values in the SNr [F(1,41) <
1 at 3T for all; F(1,31) < 1 at 7T for all]. See Fig. 4A for results from 3T
MRI analyses.

5.6. R2* in the SNr

The main effects of Group [F(1,41) < 1 at 3T; F(1,31) = 2.07, mSe =
244, pqgj = 0.46 at 7T] and Hemisphere [F(1,41) <1 at 3T; F(1,31) < 1 at
7T], and the Group x Hemisphere interactions [F(1,41) = 3.47, mSe =
26, pagj = 0.96 at 3T; F(1,31) < 1 at 7T] on R2* values in the SNr were
not significant.

5.7. QSM in the SN

For QSM values in the SN, there were no significant main effects of
Group [F(1,41) = 2.3, mSe = 974, pqgj = 0.30 at 3T; F(1,31) = 3.6, mSe =
914, pagi = 0.12 at 7T]. There were no significant main effects of
Hemisphere [F(1,41) = 2.73, MSe = 901, p,qj = 0.28 at 3T; F(1,31) < 1
at 7T] nor significant Group x Hemisphere interactions [F(1,41) < 1 at
3T; F(1,31) < 1 at 7T1].

5.8. R2* in the SN

For R2* values in the SN, there were no significant main effects of
Group [F(1,41) < 1 at 3T; F(1,31) < 1 at 7T]. There were no significant
main effects of Hemisphere [F(1,41) < 1 at 3T; F(1,31) < 1 at 7T] nor
significant Group x Hemisphere interactions [F(1,41) < 1 at 3T; F(1,31)
< 1at7T].

5.9. QSM in the VTA

We found no significant main effects of Group [F(1,41) = 3.20, mSe
= 348, pagj = 0.15 at 3T; F(1,31) < 1 at 7T] or Hemisphere [F(1,41) =
1.48, mSe = 514, paq; = 0.42 at 3T; F(1,31) = 2.68, mSe = 149, Dadi =
0.36 at 7T1, nor significant Hemisphere x Group interactions [F(1,41) =
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SNc
SNr
VTA

R2*

Fig. 1. Example segmentation of midbrain nuclei on T1w, QSM, and R2* maps of an age-matched healthy control and an early-stage PD patient. Top row shows the
healthy control (HC) substantia nigra pars compacta (SNc), substantia nigra pars reticulata (SNr), and ventral tegmental area (VTA) from CIT168 atlas mapped onto
3-Tesla (T) images in the axial plane: T1-weighted (T1w), QSM, and R2* relaxometry. Second row shows the same HC at 7T. Third row shows early-stage PD
midbrain nuclei mapped onto 3T images in the axial plane. Bottom row shows the same PD patient at 7T. The SNc is shown in blue, SNr in green, and VTA in magenta
for all images. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.20, mSe = 1111, pygj = 0.24 at 3T; F(1,31) < 1 at 7T] on QSM values in
the VTA (Fig. 4B).

5.10. R2* in the VTA

There were no significant main effects of Group [F(1,41) = 1.62, mSe
=125, pagj = 0.53 at 3T; F(1,31) < 1 at 7T] or Hemisphere [F(1,41) < 1
at 3T; F(1,31) < 1 at 7T], and no significant Hemisphere x Group in-
teractions [F(1,41) = 7.12, mSe = 19, pqgj = 0.06 at 3T; F(1,31) = 1.42,
mSe = 19, pagj = 0.57 at 7T] in R2* values in the VTA.

5.11. ROC curve analyses in the SNc

Looking at SNc mean susceptibility from QSM at 3T, the mean AUC
was 0.83 (SEM = 0.0036, 95 % CI = 0.82-0.84, p < 0.001) with a
sensitivity of 0.76 and specificity of 0.77 using the Youden index criteria
(Fig. 5A). For QSM at 7T, the mean AUC was 0.80 (SEM = 0.0037, 95 %
CI =0.79-0.81, p < 0.001) with a sensitivity of 0.70 and a specificity of
0.77 (Fig. 5B).

For comparison, the ROC curves for QSM values of the SNr, total SN,
and VTA at 3T are shown in Fig. 5C-E. Mean AUCs of 0.44 and 0.40 for
SNr and SN revealed poor performance. Mean AUC of 0.68 for the VTA
revealed fair performance.

For SNc mean R2* value from R2* relaxometry at 3T, the mean AUC
was 0.54 (SEM = 0.0098, 95 % CI = 0.51-0.56, p = 0.62) with a
sensitivity of 0.60 and a specificity of 0.49 using the Youden index
(Fig. 6A). For R2* at 7T, the mean AUC was 0.74 (SEM = 0.0077, 95 %
CI =0.72-0.76, p = 0.002) with a sensitivity of 0.56 and a specificity of
0.69 (Fig. 6B).

QSM revealed higher mean AUC than R2* relaxometry at 3T (Z =
2.71, p = 0.007), but not at 7T (Z = 0.51, p = 0.61), using the Hanley-
McNeil method, suggesting that QSM values in SNc¢ have higher diag-
nostic accuracy for early-staged PD than R2* at 3T MRI, but not at 7T.
Using the Hanley-McNeil method, we found no significant differences in
mean AUC between field strengths (i.e., 3T vs 7T MRI) for QSM (Z =
0.30, p = 0.76) or R2* (Z =1.62, p = 0.10) (Hanley and McNeil, 1983).

6. Discussion

The overarching aim of this study was to investigate potential MRI
biomarkers of early-staged PD (mean disease duration = 2.40 + 0.2
years). We imaged iron levels in midbrain nuclei and their subregions
that are differentially affected by PD, using two a) quantitative tech-
niques and b) MRI field strengths (Dexter et al., 1991; Sethi et al., 2019).
Furthermore, the SNc, SNr, total SN, and VTA were segmented using
objective, atlas-based methods that are entirely reproducible. In keeping
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Fig. 2. Mean susceptibility for the SNc of early-stage PD patients and age-
matched healthy controls in MRI acquired at 3T and 7T. Data show paired
hemispheric means (-L for left and -R for right) for all participants in scatter-
plots with corresponding boxplots demonstrating median and interquartile
range in black lines. Substantia nigra pars compacta (SNc) mean susceptibility
in ppb from quantitative susceptibility mapping (QSM) at both field strengths
are shown as dashed white lines. Significant group differences were found using
RM-ANCOVA on data from 3T, F(1,41) = 17.4, peg; = 0.001, and 7T MRI, F
(1,31) = 11.1, pagj = 0.01, with PD patients showing increased iron deposition.
3T: ny¢ = 23, npp = 22, 7T: ngc = 20, npp = 15. ** pag; < 0.01.

with our predictions that are informed by studies of PD pathophysiology
(Moos and Morgan, 2004; Pyatigorskaya et al., 2018), early-staged PD
patients had significantly elevated QSM values in the SNc, indexing
higher iron levels, compared to age-matched HCs at both 3T and 7T MRI.
PD patients also displayed marginally increased R2* values in the SNc,
our second measure of iron, but only at 7T MRI. In contrast, there were
no significant differences in QSM or R2* values between early-staged PD
patients and HCs at the group level when looking at the SNr, total SN,
and VTA. The findings in the SNr and VTA were expected, given the
early-stage of our patients, and provided negative controls for our SNc
results.

ROC curve analyses using QSM values in the SNc revealed good
diagnostic accuracy in discriminating early-staged PD (mean disease
duration = 2.40 + 0.2 years) from HCs with mean AUC = 0.83 (95 % CI
= 0.82-0.84), sensitivity = 0.76, and specificity = 0.77 at 3T and mean
AUC = 0.80 (95 % CI = 0.79-0.81), sensitivity = 0.70, and specificity =
0.77 at 7T (Fig. 4A and 4B). In contrast, ROC curve analyses using R2*
values in SNc performed poorly, near chance in distinguishing PD and
HCs at the single-subject level (Fig. 5). The mean AUC using QSM values
in SNc was statistically better than the mean AUC using R2* values in
SNc at 3T using the Hanley-McNeil method. Not surprisingly, given that
there were no group-level differences, neither iron measure in the SNr,
total SN, and VTA successfully classified PD patients from HCs at the
individual level. Finally, our AUCs for QSM in the SNc¢ discriminating PD
and HCs were statistically equivalent at 3T and 7T MRI, using the
Hanley-McNeil method. This absence of difference is not evidence of
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Fig. 3. Mean R2* values for the SNc of early-stage PD patients and age-
matched healthy controls at 3T and 7T. Data show paired hemispheric means
(-L for left and -R for right) for all participants in scatterplots with corre-
sponding boxplots demonstrating median and interquartile range in black lines.
SNc mean R2* values in 1/s from R2* at both field strengths are shown as
dashed white lines. Using RM-ANCOVA, marginally significant differences were
found between groups at 7T, F(1,31) = 7.47, pag; = 0.052, with PD patients
showing increased iron deposition. 3T: nyc = 23, npp = 22, 7T: nyc = 20, npp
=15.

equivalence, given that the probability of falsely failing to reject the null
hypothesis is not set by the experimenter, in contrast to the Type I error
rate, and the determinants are not controlled. For examples of potential
causes of our findings, there were fewer participants scanned at 7T MRI
and the use of a 7T atlas might have proved more sensitive. Nonetheless,
our results did not provide evidence that 7T was, in fact, superior.

Contrasting measures of iron and neuromelanin in the diagnosis of
PD.

QSM outperformed R2* relaxometry in classifying early PD patients
relative to HCs at the single-subject level. This is in line with previous
studies that have found that QSM is more sensitive to iron levels in PD
than R2* relaxometry (Pyatigorskaya et al., 2018; Ravanfar et al., 2021).
Others have investigated neuromelanin as a PD biomarker. Neuro-
melanin is inversely related to iron levels in midbrain and pontine (i.e.,
locus coeruleus) structures that are implicated in PD. Wang and col-
leagues (2023) measured neuromelanin in the total SN, outlined using
manual tracing, in later-staged PD patients (n = 64; disease duration =
5.35 =+ 3.05 years; n = 32 had Freezing of Gait;) relative to HCs (n = 32)
(Wang et al., 2023). Fitting an ROC curve to their training dataset, not
relative to a hold-out or entirely independent test set, they achieved
AUC = 0.87, distinguishing PD patients for HCs in their data. Jokar and
colleagues (2023) and Martinez and colleagues (2023) measured both
QSM and neuromelanin in PD. Jokar and colleagues attained compa-
rable PD diagnostic accuracy using QSM and neuromelanin in the SNc
(AUC = 0.78 and 0.75 respectively) in a PD sample who ranged broadly
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Fig. 4. Mean susceptibility for the SNr and VTA of early-stage PD patients and
age-matched healthy controls at 3T. Data show paired hemispheric means (-L
for left and -R for right) for all participants in scatterplots with corresponding
boxplots demonstrating median and interquartile range in black lines. Sub-
stantia nigra pars reticulata (SNr) (A) and ventral tegmental area (VTA) (B)
mean susceptibilities in ppb from QSM at 3T are shown as dashed white lines.
Using RM-ANCOVA, no significant group differences were found between PD
patients and controls in the SNr, F(1,41) < 1, or VTA, F(1,41) = 3.2, paqj = 0.15.
3T: ngc = 23, npp = 22.

in disease duration (i.e., 0.2-13 years). Martinez and colleagues re-
ported lower AUC = 0.77 and 0.71 for QSM compared to AUC = 0.86
and 0.81 for neuromelanin in their total sample (n = 39; disease dura-
tion 2-23 years) and small sample of early-staged idiopathic PD patients
(n = 11; mean and range not reported but all < 5 years) respectively
(Martinez et al., 2023). They did not confirm that these AUC differences
were statistically significant, though this seems possible. Determining
whether neuromelanin is superior to QSM/iron as a diagnostic measure
of PD remains fraught given significant methodological differences
across studies and controversy between studies that contrasted both
measures within the same patients. Investigations by Biondetti and
colleagues (2021), suggesting that iron elevation in the SNc precede
reductions in neuromelanin (Martinez et al., 2023; Biondetti et al.,
2021), add the important caveat that stage of disease might also impact
this issue. In our study, we found good diagnostic accuracy of PD pa-
tients versus HCs, with SNc iron, potentially because we investigated
early-staged PD patients (mean disease duration = 2.40 + 0.2 years).
There are many differences between studies reported in the literature
that hamper direct comparisons of the diagnostic measures conveyed
(Table 2). In our study, we report classification accuracies using QSM
values in the SN¢ (mean AUC = 0.83, 95 % CI = 0.82-0.84 at 3T and
mean AUC = 0.80, 95 % CI = 0.79-0.81 at 7T) that refer to PD-HCs mean
discrimination accuracy a) of the tests of the model in the hold-out set,
using repeated cross-validation and b) not for fitting the model to
training data as others report (Jokar et al., 2023; Wang et al., 2023), or
c) using bootstrapping with resampling techniques that increase the
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representativeness of the model (Martinez et al., 2023). Assessing true
generalizability requires testing diagnostic models in an entirely inde-
pendent sample, which none of the studies reported here, ours included,
have achieved to this point. Nonetheless, to increase the generalizability
of our findings, we tested at two field strengths, employed QSM and R2*
techniques, and used repeated k-folds cross-validation on our limited
data to enhance the likelihood our ROC findings will replicate. These
methodological differences alone preclude direct contrasts of measures
across studies. Furthermore, in our study, we use a reproducible, atlas-
based segmentation of midbrain structures and subregions on these
structures. Most other studies employ manual segmentations of
midbrain nuclei or subregions at some stage in their process (e.g., SNc)
(Martinez et al., 2023; Barbosa et al., 2015; Ariz et al., 2023). Seg-
mentation of structures by individuals with particular expertise, such as
neuroscientists, neurologists, or neuroradiologists, might provide more
precise identification of structures, yielding greater sensitivity, though
reliance on a skilled individual to perform the segmentation hampers
exporting the method, and risks variability across centres. Finally, in our
study, we specifically recruited early-staged PD patients (mean disease
duration = 2.40 + 0.2 years), compared to samples with mean disease
duration of 8.6 + 5.4 years in Martinez et al. (2023) and 4.85 + 2.7
years in Zhang et al. (2023), as well as with a range of 0.2-13 years
disease duration in Jokar et al. (2023). Taken together, these differences
in this literature constrain direct comparisons between measures, as well
as extrapolation of findings and interpretation beyond the specific
conditions of individual studies to this point, given lack of validation. To
fully understand the potential of QSM and neuromelanin separately or
combined as diagnostic measures in PD, future studies should collect
these measures in the same, much larger, early-staged PD patients, with
similar methods, and evaluating statistical differences between AUCs
achieved in independent test sets (e.g., using the Hanley-McNeil
method). Based on previous studies, it is likely that highest diagnostic
accuracies will be accomplished by combining QSM and neuromelanin,
though understanding the strengths and weaknesses of each measure, at
different stages of disease and in PD subgroups remains an important
endeavour.

Isolating midbrain subregions improves diagnosis of PD and esti-
mation of progression

A specific aim of this study was to investigate whether segmenting
and isolating midbrain structures that are differentially implicated in
early PD would improve the sensitivity of QSM or R2* to detect changes
that are known to occur even in early PD (Barbosa et al., 2015; Guan
et al., 2017). Iron values in the total SN (i.e., SNc and SNr combined),
revealed no significant group differences (Supplementary Fig. 1), nor an
ability to distinguish individual PD patients from HCs (Fig. 4D) (Peralta
et al., 2022; Sederman, 2022; Hare et al., 2014; Deistung et al., 2008).
This is in line with previous studies that reveal measures of iron from
total SN nigra are relatively insensitive to pathophysiological changes in
early-staged PD (Barbosa et al., 2015; He et al., 2015). This is potentially
because the SNr seems relatively impervious to iron accumulation, in
early PD[78,80,] and consistent with this concept, we found no group-
level, PD-HCs difference in the SNr in our early-staged PD. There is
some evidence that QSM increases in SNr in late PD (Chen et al., 2019).
In light of this, it seems imperative to isolate the SNc or perhaps even
subregions of SNc to derive the most sensitive and accurate MRI diag-
nostic biomarkers of early-staged PD.

QSM and R2* measures of SNr and VTA had no ability to discrimi-
nate our PD patients and HCs (Fig. 4C and 4E). This was expected given
our understanding of PD pathophysiology and previous findings, though
measures from these regions might be helpful in tracking PD progression
(Sethi et al., 2019; Barbosa et al., 2015; Du et al., 2016; Guan et al.,
2017). In segmenting the SN/VTA, we provide an in vivo assessment of
iron in human VTA. Previous segmentation algorithms have had diffi-
culty delineating the subtle border between the SNc and SNr, let alone
providing reliable boundaries of the much smaller VTA (Pauli et al.,
2018; Eapen et al., 2011). This is complicated by the lack of consensus in
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Fig. 5. ROC curves for SNc, SNr, SN, and VTA mean susceptibility at 3T and SNc mean susceptibit7T with SNr, whole SN, and VTA mean susceptibility at 3T. Data
show confusion matrices and ROC curves for 50 repeated 5-folds cross-validation (dash lines) and average ROC curve (black line) for QSM at 3T in the SNc (A), QSM
at 7T in the SNc (B), QSM at 3T in the SNr (C), SN (D), and VTA (E) of early-stage PD patients versus controls. 3T SNc: Mean AUC = 0.83 (95 % CI = 0.82-0.84), ny¢
= 23, npp = 22, 7T SNc: Mean AUC = 0.80 (95 % CI = 0.79-0.81), nyc = 20, npp = 15, 3T SNr: Mean AUC = 0.44 (95 % CI = 0.40-0.48), nyc = 23, npp = 22, 3T SN:
Mean AUC = 0.40 (95 % CI = 0.36-0.44), nyc = 23, npp = 22, 3T VTA: Mean AUC = 0.68 (95 % CI = 0.65-0.71), nyc = 23, npp = 22.

the literature about the anatomical nomenclature to describe the VTA
(Trutti et al., 2019). Similar challenges present themselves when
defining SNc, from SN and further from the N1 nigrosome subregions
that are challenges we and others are tackling (Takahashi et al., 2018).
Atlas-based or automated segmentation approaches are expected to
overcome these issues, allowing for reproducibility across sites. This is
an essential feature of a clinically useful neuroimaging biomarker of PD
(Trutti et al., 2019). Estimates of iron using QSM and R2* were not
different between our groups in the VTA even at 7T MRI. However, we
anticipate that VTA iron, like SNr iron, might serve as a potential pro-
gression biomarker, given that VTA and SNr degenerates later than SNc.
Investigations in mid-staged and late-staged PD patients, preferably
followed longitudinally, could confirm this. Work by Zhang and col-
leagues (2023) has shown that after Hoehn & Yahr Stage 2, PD patients
(n =101, disease duration 4.9 years) show bilateral VTA iron elevation
in comparison to HCs, however their inclusion of the PBP nucleus is
potentially confounding and they did not distinguish across different
disease stages to see if magnitude of QSM correlates with measures of PD
progression/severity or other PD symptoms/subtypes (Zhang et al.,
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2023).

Measures of the ventrolateral subregion of the SNc, the N1 nigro-
some, the region first degenerated in PD (Kish et al., 1988; Huddleston
etal., 2017), have shown promise as biomarkers (Jokar et al., 2023; Ariz
et al.,, 2023; Chau et al., 2020; Mahlknecht et al., 2017). Diagnostic
accuracies, sensitivities, and specificities range widely (Jokar et al.,
2023; Ariz et al., 2023; Prasuhn et al., 2021), however, and sample sizes
in these studies are generally small (n (100), with few studies focussing
exclusively on early PD, and methodologies ranging from visual in-
spection by expert neuroradiologists (Prasuhn et al., 2021), quantitative
measures such as iron or neuromelanin extracted from hand-drawn
subregions (Kim et al., 2019; Barbosa et al., 2015), to studies that
have sought to automate the location of the N1 nigrosome based on
healthy control templates (Martinez et al., 2023; Ariz et al., 2023). When
directly contrasted in the same studies, measures of iron or neuro-
melanin in the total SNc and the N1 nigrosome subregion have generally
not shown a clear advantage one relative to the other (Jokar et al., 2023;
Ariz et al., 2023). In all cases, models that combine measures of iron and
neuromelanin, from SNc and N1 nigrosome, perform with highest
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accuracy (Martinez et al., 2023; Jokar et al., 2023; Ariz et al., 2023). The
N1 nigrosome has shown limited potential to measure progression of PD,
possibly related to significant degeneration at the time of PD diagnosis
(Wang et al., 2017). Finally, the N1 nigrosome lacks specificity for PD
relative to other forms of Parkinsonism (Wang et al., 2017; He et al.,
2023; Shams et al., 2017).

MRI diagnostic measures in current clinical context.

Despite limitations of our study, chief among them the unlikelihood
that a single MRI measure will be sufficiently sensitive and specific to
reliably diagnose PD—a complex, heterogeneous, and progressive dis-
ease, we present a quantitative neuroimaging biomarker using QSM as a
measure of iron in SNc that distinguishes early-staged PD patients (mean
disease duration = 2.40 + 0.2 years) and HCs at the single-subject level,
with AUC = 0.83, sensitivity = 0.76, specificity = 0.77. Furthermore,
our results suggest that 3T MRI resolution is sufficient. Based on these
findings, as well as those from other recent studies of iron or neuro-
melanin in midbrain (Martinez et al., 2023; Jokar et al., 2023; Zhang
et al., 2023; Chougar et al., 2022; Biondetti et al., 2020) or striatal
(Alushaj et al., 2023) subregions, there is optimism that neuroimaging-
based diagnostic measures of PD will be achievable in the near future, to
fill the anticipated gap in PD management (Ou et al., 1990).

For context, the clinical diagnostic accuracy in an early-stage PD
cohort followed for five years was 91.5 % for movement disorder experts
and 84 % for general neurologists and geriatricians in a study conducted
at the National Hospital for Neurology and Neurosurgery (Queens
Square, UK) (Virameteekul et al., 2023). Although our single MRI
measure falls short of the accuracy of experts in movement disorders,
should it replication and generalize, it paralleled the performance of
neurologists and geriatricians in this study at a premier centre focused
on Neurology and Neurosurgery. Though performance of all clinicians in
this study improved beyond the accuracy of our measure when they
referred to the MDS PD clinical diagnostic guidelines (Postuma et al.,
2015), these guidelines are an extremely complex set of inclusion/
exclusion criteria, supportive features, as well as red flags, whose
application requires a broad and deep knowledge of neurology, and
indeed of movement disorders. The MDS diagnostic recommendations
can be challenging, especially for generalists with lesser expertise in
neurology, movement disorders, and PD-related physical exam skills,
who will be increasingly charged with the diagnosis and care of PD
patients (Ou et al., 1990; Ross et al., 2022). A meta-analysis performed
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by Rizzo and colleagues (2016), reviewing 20 studies and more than
7000 patients, including 11 studies that referred to autopsy data,
revealed lower PD diagnostic accuracy, with 83.9 % for movement
disorder specialists who followed patients over years.101 More often,
the diagnosis of PD is performed by clinicians with lesser expertise such
as general neurologists, geriatricians, internists, or even family physi-
cians, who had average diagnostic accuracies of 73.8 % for patients
whom they followed over years.101 The aim is for neuroimaging mea-
sures to approach accuracy of clinical decision making of movement
disorder specialists to bridge the gap, and just as repeated clinical
evaluations improve diagnosis, potentially repeated scanning might
increase the accuracy of classifications of these measures.

7. Limitations

One important caveat is that the generalizability of our MRI measure,
and that of others in this literature, have yet to be shown, given the lack
of independent samples to validate measures and models developed in
training data. Furthermore, large samples of early-staged PD patients
relative to HCs and PD mimics, who are tested prospectively, preferably
in multicentered data, are needed. Finally, given this literature, multi-
variate/multimodal measures will likely be most accurate, sensitive, and
specific in diagnosing PD (Martinez et al., 2023; Jokar et al., 2023),
accomplished by combining QSM and neuromelanin (Martinez et al.,
2023; Jokar et al., 2023; Ariz et al., 2023), as well as diffusion (Alushaj
et al., 2023; Khan et al., 2019) volume (Jokar et al., 2023; Khan et al.,
2019), and morphometry (Khan et al., 2019) in the SN¢, N1 nigrosome,
and striatum. Recent work by Nobileau and colleagues (2023) with
neuromelanin MRI in the SN and the locus coeruleus suggested that
combining measures across multiple subcortical subregions could
distinguish between PD and PD mimics (Nobileau et al., 2023). Under-
standing the unique contributions of these different neuroimaging
measures, at different stages and subtypes of disease, as well as the most
optimal combination are required before clinical translation.

Isolation of these midbrain nuclei was achieved using the CIT168
probabilistic subcortical atlas, the first to distinguish VTA from SNc and
SNr. The use of atlas-based segmentation rather than manual tracing/
segmentation is a significant advantage of our approach with respect to
the reproducibility of our findings (Yaakub et al., 2020). However, the
CIT168 atlas used in this study has limitations. The atlas is derived using
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a younger cohort. However, because both PD patients and controls are
age-matched, and we have used the same atlas in both groups, this
moderates the disadvantages of using an atlas derived in healthy young
controls. The atlas is based only on 3T MRI data, and uses averaging of
numerous brains to raise the contrast-to-noise ratio between regions for
delineation (Pauli et al., 2018). Furthermore, this atlas does not restrict
measures to the N1 nigrosome subregion of the SNc to allow for com-
parison of our measure in this subregion (Lehericy et al., 2017). The
single atlas segmentation employed could be improved through multi-
atlas segmentation or algorithm approaches to better define nuclei
boundaries. Nonetheless, to our knowledge, no other atlases include all
three midbrain nuclei thus making the CIT168 atlas the current ideal for
this work.

Given the novelty of QSM, more work needs to be done to establish a
gold standard method for susceptibility map generation (Yu et al.,
2019). Techniques may differ in their diagnostic capacity, thus war-
ranting comparison of various approaches for susceptibility map gen-
eration (Acosta-Cabronero et al., 2018). Furthermore, our method used
a univariate threshold to define classes. More recent work highlights the
advantages of incorporating whole CSF zero referencing before the
inversion step rather than after, as we have implemented here (Dimov
et al., 2022).

8. Conclusions

We demonstrate that QSM indexing iron in the SNc, at 3T MRI alo-
ne—even without incorporating clinical information or other neuro-
imaging measures, including neuromelanin-sensitive MRI—classified
PD patients with good diagnostic accuracy in the hold-out sets of our
cross-validation approach. This suggests potential of this measure to be
included in multivariate and perhaps multimodal models of PD diag-
nosis that will have greater potential for generalizability given the
challenging aim of diagnosing PD, a highly complex and heterogeneous
condition. Our approach uses a publicly-available atlas to define and
segment midbrain nuclei and, therefore, is entirely reproducible and can
be performed by individuals with no specialized neuroradiological
training. These features are strengths of the diagnostic biomarker shown
here for potential clinical translation, given some pragmatic consider-
ations, pending confirmation of these results, prospectively tested in a
multicentered replication, with an entirely independent validation
sample. These steps are needed for any neuroimaging measure before
clinical adoption could be considered. Our findings and those studies
reviewed here indicate that MRI might fulfil the promise of operating in
PD as it does in most other common neurological conditions—aiding in
diagnosis, staging, and prognosis. A widely-available and objective
diagnostic MRI test will greatly improve clinical management of PD
patients, particularly those in regions where access to neurologists and
movement disorder neurologists is limited. Finally, biomarkers will
improve the power of studies to investigate disease-modifying therapies
and a cure for PD, where none currently exist.
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